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Introduction

A social choice procedure as a repeated Nash game between the
social agents

Stability analysis of the derived strategies

Topology design, which aims to the stabilization of these strategies
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Motivation and novelties

Develop a model for social choice procedures, which captures the
conformity and manipulative behaviors

A similar model has been proposed by R.Etesami et al.(’17).

We have introduced dynamically changing internal beliefs.

Develop a graph topology design methodology in order to influence
the effects of manipulative behaviors.

Applicability of the design methodology to many problems in other
areas of interest.
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Model formulation

Each agent has an internal belief or opinion (θi (k)) and an expressed
opinion or action (ui (k)) at each time step k

The opinion shaping criteria model conformity, parameterised by ci .

The action shaping criteria model manipulative behaviors,
parameterised by gi .
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Notation

Let A be the adjacency matrix of the communication graph.

di is the degree of node i and D = diag{di} is the degree matrix.

C = diag{ci} is a diagonal matrix containing the parameters ci .

G = diag{gi} is also a diagonal matrix containing the parameters gi .

Ni denotes the neighborhood of agent i, ie Ni = {j : (i , j) ∈ E},
where E is the set of edges.

Let 1 stands for a vector with all its coordinates equal to 1 and I for
the identity matrix, of proper dimension
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Opinion Dynamics

At each step of the procedure, the opinion of each agent is formed so as to
minimize the following criterion:

Joi (k + 1) = ci (θi (k + 1)− θi (k))2 + di (θi (k + 1)−
∑

j∈Ni
θj(k)

di
)2 (1)

Thus, these dynamics arise:

θi (k + 1) =
ci

di + ci
θi (k) +

1

di + ci

∑
j∈Ni

θj(k) (2)

Equivalently, with matrix notation:

θ(k + 1) = (D + C )−1(A + C )θ(k) (3)

which are known to converge to a limit vector θc under two non restrictive
assumptions, as shown for example by M.DeGroot (’74) or by A.Olshevsky
and J.Tsitsiklis (’09).
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Action Dynamics

At each step of the procedure each agent knows only the previous actions
of her neighbors, so her estimation of the social outcome is:

ũi (k) =

∑
j∈Ni

uj(k − 1) + ui (k)

di + 1
(4)

Thus, her action shaping criterion has the following form:

Jai (k) = (ui (k)− φ(θi (k)))2 + gi (ũi (k)− φ(θi (k)))2 (5)

and the action dynamics which derive form its minimization are:

ui (k+1) =
(
1+

digi
gi + (di + 1)2

)
φ(θi (k+1))− gi

gi + (di + 1)2

∑
j∈Ni

uj(k) (6)

or with matrix notation:

u(k + 1) = GθΦ(θ(k + 1))− GuAu(k) (7)
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Coupled dynamics

In the last equation (7):

Gθ = diag{1 +
digi

gi + (di + 1)2
} (8)

Gu = diag{ gi
gi + (di + 1)2

} (9)

Let z(k) = [θ1(k)...θN(k), u1(k)...uN(k)]T

and the resulting augmented system describing its dynamics:

z(k + 1) =

[
(D + C )−1(A + C ) 0

GθΦ ◦ (D + C )−1(A + C ) −GuA

]
z(k) (10)
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Decoupling lemma

Lemma

If the matrix Au = GuA is asymptotically stable, ie |λi (Au)| < 1,∀i and
the function Φ is continuous in Rn and locally Lipschitz in a neighborhood
of θc with a Lipschitz constant LΦ, then the coupled dynamics (10) will be
stable.
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Sufficient Condition

Since the matrix (D + I)−1A is a substochastic matrix and thus a stable
one, a simple but restrictive sufficient condition for the stability of the
whole system is the spectral radius
ρ(Gu(D + I)) = max{‖λi (Gu(D + I))‖, i = 1...N} to be less than one as
well or equivalently

(di + 1)gi
gi + (di + 1)2

< 1⇒ gi < di + 2,∀i (11)

Thus, a useful remark for the topology design initialisation can be stated
here. If we consider a graph topology with:

di > gi − 2, ∀i (12)

then the dynamics are stable on this topology.
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Simulation parameters

We consider a group of 20 social agents, which communicate with
each other over several different graph structures.

Their manipulation parameters gi and their conformity parameters ci
remain the same in all simulations.

Their initial opinions are randomly chosen from the [0, 10] interval.

Their initial actions ui (0) = φ(θi (0)), where φ(θ) = 10tanh( θ
10 ).
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A random graph

Figure: A random graph, as introduced by P.Erdős and A.Rényi (1959), with edge
probability p = 0.4.

1

1This random graph has |E | = 114 edges.
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Stable example

Figure: Opinion and action dynamics on a random graph with edge probability
p = 0.4.
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Unstable example

Figure: Opinion and unstable action dynamics on a random graph with edge
probability p = 0.3 .

2
2The random graph considered in this simulation has |E | = 52 edges.
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Stabilization ideas

Considering the problem of choosing a proper graph structure, which
would result in stable dynamics, and be as close as possible (here with
respect to the edge number |E |) to the aforementioned unstable one, we
make several experiments beginning from an L∗-lattice which satisfies our
sufficient condition (L∗ > gmax − 2), L∗ = 14 in this example, and relaxing
it as shown in the following table:

Graph structure λmax(Au) |E |

L∗-lattice 0.4042 140
8-lattice 0.7758 80
6-lattice 1.0114 60
Small-world 0.9491 60

Table: Stability of several graph structures
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The 8-lattice

Figure: A lattice graph of node degree 8 .
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The small-world graph

Figure: A small-world graph, as introduced by J. Watts and S.Strogatz (1998),
derived from a 6-lattice with rewiring probability pr = 0.5 .
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Stable dynamics on a small-world graph

Figure: Opinion and action dynamics on a small world graph resulting form a
6-lattice.
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Topology design problem statement

Let A0 be the adjacency matrix of the initial topology.
Let {Pk , k = 1...n(n−1)

2 } be a basis for the symmetric matrices of size
n, with zero diagonal elements. Each Pk stands for the representation
of the k-th edge at the adjacency matrix of the graph, for a proper
enumeration of all the possible edges.
Let the vector x0 be the coordinates of A0 with respect to this basis.

Let also x ∈ {0, 1}
n(n−1)

2 be the vector of changes. If x(k)=1 a change
occurs at position k, else no change occurs at this position.
Let finally the sign function Sx0(k) = 1 if x0(k) = 0 and Sx0(k) = −1
if x0(k) = 1. This function indicates if the possible change
corresponds to the addition of a new edge or to the removal of an
existing one.

So the adjacency matrix of the designed topology has the following form:

A(x) = A0 +

n(n−1)/2∑
k=1

x(k)PkSx0(k) (13)
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Topology design problem statement (cont’d)

The degree matrix changes accordingly:

D(x) =
n∑

i=1

ei (A(x)1)TP i
d (14)

Subsequently, we define the matrix function, in accordance with the
equation (9):

Gu(x) = G (G + (D(x) + I )2)−1 (15)

and consequently
Au(x) = Gu(x)A(x) (16)

which are nonlinear with respect to the decision variables x.

The criterion for choosing a design is the minimum change form the initial
graph structure. Thus, we have to minimize ‖x‖1, which is equivalent to
the minimization of the linear objective 1T x .
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Topology design problem statement (cont’d)

The resulting problem is:

minimize
x ,P

{1T x} (17)

x ∈ {0, 1}n(n−1)/2 (18)

P > 0 (19)

A(x)Gu(x)PGu(x)A(x)− P < 0 (20)

The last two constraints can be relaxed as follows in order for the feasible
region to become closed:

P ≥ εI (21)

A(x)Gu(x)PGu(x)A(x)− P ≤ −δI (22)

The parameters ε and δ must be carefully chosen to be very small so as to
not reject many feasible solutions.

In this problem formulation several linear constraints may be added
without changing its difficulty.
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Characteristics of the design problem

The last constraint A(x)Gu(x)PGu(x)A(x)− P ≤ −δI is nonlinear in the
decision variables x. So, we consider the change of variables
Z = Gu(x)PGu(x) (it holds that if P > 0 then Z > 0 and vice versa):

A(x)ZA(x)− G−1
u (x)ZG−1

u (x) ≤ −δI (23)

This last constraint (23) is polynomial in the decision variables x and with
a proper change of variables it can be converted to a Bilinear Matrix
Inequality (BMI).

The feasibility of a BMI is known to be a nonconvex problem in the
general case [M.Mesbahi, M.G.Safonov,G.P.Papavassilopoulos(2000)]
So the same holds for our initial problem (17)-(20).
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Research Directions

Our research direction now is to develop a proper algorithm to deal with
the BMI constrained integer programming problem for the network
topology design. Specifically, some kind of organised random search
algorithm will be considered, such as:

Genetic algorithms

Particle swarm optimization

Simulated annealing
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The End
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