Self-Consistent and Manipulative Behavior in Social

Choice as a Repeated Nash Game on a Graph

Athanasios-Rafail Lagos  George P. Papavassilopoulos
lagosth993@gmail.com yorgos@netmode.ece.ntua.gr

School of Electrical and Computer Engineering
National Technical University of Athens

42nd annual meeting of the AMASES, Naples, 13-15 September 2018

A-R.Lagos G.P.Papavassilopoulos (NTUA) Manipulation in Social Choice AMASES, 2018 1/26



Overview

@ Introduction

© Model formulation
© Stability Analysis
@ Simulations

© Topology design
@ Research Directions

@ References

A-R.Lagos G.P.Papavassilopoulos (NTUA) Manipulation in Social Choice AMASES, 2018 2 /26



Introduction

@ A social choice procedure as a repeated Nash game between the
social agents

@ Stability analysis of the derived strategies

@ Topology design, which aims to the stabilization of these strategies
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Motivation and novelties

Develop a model for social choice procedures, which captures the
conformity and manipulative behaviors

A similar model has been proposed by R.Etesami et al.('17).

We have introduced dynamically changing internal beliefs.

Develop a graph topology design methodology in order to influence
the effects of manipulative behaviors.

Applicability of the design methodology to many problems in other
areas of interest.
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Model formulation

@ Each agent has an internal belief or opinion (0;(k)) and an expressed
opinion or action (u;(k)) at each time step k

@ The opinion shaping criteria model conformity, parameterised by ¢;.

@ The action shaping criteria model manipulative behaviors,
parameterised by g;.
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@ Let A be the adjacency matrix of the communication graph.

@ d; is the degree of node i and D = diag{d;} is the degree matrix.

o C = diag{c;} is a diagonal matrix containing the parameters c;.

o G = diag{g;} is also a diagonal matrix containing the parameters g;.

@ N; denotes the neighborhood of agent i, ie N; = {j : (i,j) € E},
where E is the set of edges.

@ Let 1 stands for a vector with all its coordinates equal to 1 and | for

the identity matrix, of proper dimension
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Opinion Dynamics

At each step of the procedure, the opinion of each agent is formed so as to
minimize the following criterion:

. 0i(k
Joi(k +1) = ¢i(0i(k + 1) — 6;(k))*> + d;(0:(k + 1) — ZJE"(’;, i ))2 (1)
Thus, these dynamics arise:
Ci 1
0i(k +1) = d,-+c,-9’(k)+ s Zej(k) (2)
JEN;

Equivalently, with matrix notation:

O(k +1)=(D+ C) YA+ C)o(k) (3)

which are known to converge to a limit vector ¢ under two non restrictive
assumptions, as shown for example by M.DeGroot ('74) or by A.Olshevsky
and J.Tsitsiklis ('09).
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Action Dynamics

At each step of the procedure each agent knows only the previous actions
of her neighbors, so her estimation of the social outcome is:

2jen; Uik = 1) + ui(k)

fi(k) = d+1

(4)

Thus, her action shaping criterion has the following form:

Jai(k) = (ui(k) — ¢(0;(k)))* + &i(@i(k) — ¢(8i(k)))? (5)
and the action dynamics which derive form its minimization are:

digi

lkt1) = (1+gi +(di+1)?

8i
)¢(9i(k+1))—m ; uj(k) (6)

or with matrix notation:

u(k +1) = Ge®(O(k + 1)) — GuAu(K) (7)
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Coupled dynamics

In the last equation (7):

: digi
— 14 diei
Gy dlag{ + o (di n 1)2} (8)
G, = diag{——>—} (9)
g+ (di +1)?

Let z(k) = [01(k)...0n(k), ur(K)...un(K)]T
and the resulting augmented system describing its dynamics:

(D+ C)"YA+ Q) 0

z(k+1)= Gdo(D+C) Y A+C) —G,A 2(k)

(10)
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Decoupling lemma

If the matrix A, = G,A is asymptotically stable, ie |\ij(A,)| < 1,Vi and
the function ® is continuous in R" and locally Lipschitz in a neighborhood
of ¢ with a Lipschitz constant Le, then the coupled dynamics (10) will be

stable.
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Sufficient Condition

Since the matrix (D + Z)"!A is a substochastic matrix and thus a stable
one, a simple but restrictive sufficient condition for the stability of the
whole system is the spectral radius

p(Gu(D + 7)) = max{||\i(G,(D + I))||,i = 1...N} to be less than one as
well or equivalently

(di +1)g;

—g_+(d'+1)2<1:>gi<di+2,VI‘ (11)

Thus, a useful remark for the topology design initialisation can be stated
here. If we consider a graph topology with:

di > g —2,Vi (12)

then the dynamics are stable on this topology.
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Simulation parameters

@ We consider a group of 20 social agents, which communicate with
each other over several different graph structures.

@ Their manipulation parameters g; and their conformity parameters ¢;
remain the same in all simulations.

@ Their initial opinions are randomly chosen from the [0, 10] interval.
@ Their initial actions u;(0) = ¢(#;(0)), where ¢(6) = 10tanh(1%).
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Figure: A random graph, as introduced by P.Erd8s and A.Rényi (1959), with edge

probability p = 0.4.

'This random graph has |E| = 114 edges.
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Stable example
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Figure: Opinion and action dynamics on a random graph with edge probability
p=0.4.
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Unstable example
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Figure: Opinion and unstable action dynamics on a random graph with edge
probability p = 0.3 .

>The random graph considered in this simulation has |E| = 52 edges.
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Stabilization ideas

Considering the problem of choosing a proper graph structure, which
would result in stable dynamics, and be as close as possible (here with
respect to the edge number |E|) to the aforementioned unstable one, we
make several experiments beginning from an L*-lattice which satisfies our
sufficient condition (L* > gmax —2), L* = 14 in this example, and relaxing
it as shown in the following table:

Graph structure A\, (A,) |E]

L*-lattice 0.4042 140
8-lattice 0.7758 80
6-lattice 1.0114 60
Small-world 0.9491 60

Table: Stability of several graph structures
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The 8-lattice
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Figure: A lattice graph of node degree 8 .
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small-world graph

3
27 .16 B
=18 i i 10
- 19
AT S 13 n
JmE
- ? T
o+ - o0 ¥ Iy = 11 -
-y o
il ) - 12 i
-s -7 et
e “s |
- 14
-3
-4 -3 = -1 o 1 2 3 4

Figure: A small-world graph, as introduced by J. Watts and S.Strogatz (1998),
derived from a 6-lattice with rewiring probability p, = 0.5 .
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Stable dynamics on a small-world graph
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Figure: Opinion and action dynamics on a small world graph resulting form a
6-lattice.
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Topology design problem statement

@ Let Ay be the adjacency matrix of the initial topology.

o Let {Pk k= 1@} be a basis for the symmetric matrices of size
n, with zero diagonal elements. Each P¥ stands for the representation
of the k-th edge at the adjacency matrix of the graph, for a proper
enumeration of all the possible edges.

@ Let the vector xp be the coordinates of Ay with respect to this basis.

e Letalso x € {0,1 o . If x(k)=1 a change
occurs at position k, else no change occurs at this position.

o Let finally the sign function Sy,(k) =1 if xo(k) = 0 and Sy, (k) = —1
if xo(k) = 1. This function indicates if the possible change
corresponds to the addition of a new edge or to the removal of an
existing one.

So the adjacency matrix of the designed topology has the following form:
n(n—1)/2
A(x) = Ao + Z k)P* Sy (K) (13)
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Topology design problem statement (cont'd)

The degree matrix changes accordingly:

n

D(x) = ) ei(A(x)1)" P} (14)
i=1
Subsequently, we define the matrix function, in accordance with the
equation (9):
Gu(x) = G(G + (D(x) +1)*) (15)

and consequently
Au(x) = Gu(x)A(x) (16)

which are nonlinear with respect to the decision variables x.

The criterion for choosing a design is the minimum change form the initial
graph structure. Thus, we have to minimize ||x||1, which is equivalent to
the minimization of the linear objective 17 x.
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Topology design problem statement (cont'd)

The resulting problem is:

mirli’rpize{lTx} (17)
x € {0,1}"(n=1)/2 (18)
P>0 (19)
A(x)Gu(x)PGu(x)A(x) — P <0 (20)

The last two constraints can be relaxed as follows in order for the feasible
region to become closed:
P > el (21)
A(x)Gu(x)PG,(x)A(x) — P < =l (22)
The parameters € and § must be carefully chosen to be very small so as to
not reject many feasible solutions.

In this problem formulation several linear constraints may be added
without changing its difficulty.

A-R.Lagos G.P.Papavassilopoulos (NTUA) Manipulation in Social Choice AMASES, 2018 22 /26



Characteristics of the design problem

The last constraint A(x)G,(x)PG,(x)A(x) — P < —4l is nonlinear in the
decision variables x. So, we consider the change of variables
Z = Gy(x)PGy(x) (it holds that if P > 0 then Z > 0 and vice versa):

A(x)ZA(x) — G, 1(x)ZG, 1 (x) < =6l (23)

This last constraint (23) is polynomial in the decision variables x and with
a proper change of variables it can be converted to a Bilinear Matrix
Inequality (BMI).

The feasibility of a BMI is known to be a nonconvex problem in the
general case [M.Mesbahi, M.G.Safonov,G.P.Papavassilopoulos(2000)]
So the same holds for our initial problem (17)-(20).
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Research Directions

Our research direction now is to develop a proper algorithm to deal with
the BMI constrained integer programming problem for the network
topology design. Specifically, some kind of organised random search
algorithm will be considered, such as:

@ Genetic algorithms
@ Particle swarm optimization

@ Simulated annealing
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The End
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