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In this paper a new rule in cellular automata is introduced. Through extensive simulations, visual
inspection and numerical explorations, its generic dynamical behavior is outlined and classified into
categories. Properties such as regular and complex behavior are reported and studied in connection
with the system’s parameters as well as the initial configurations and topology of the automaton
state space. Further research on the rule is recommended since under certain variations (many
of them are reported) this rule can be a reliable model for simulating procedures among various
scientific fields.

I. INTRODUCTION AND HISTORICAL NOTES

Cellular automata are perhaps the simplest mathemat-
ical representations of complex dynamical systems. They
are a class of spatially and temporally discrete, determin-
istic models characterized by local interaction and an in-
herently parallel form of evolution.
The history of cellular automata can be traced back to
1948, when J. L. von Neumann introduced them to study
simple biological systems [8]. As his work progressed,
Neumann started to cooperate with S. M. Ulam, who
introduced him to the concept of cellular spaces [19].
These described the physical structure of a cellular au-
tomaton, i.e., a grid of cells which can be either “on” or
“off”. Shortly after, A. M. Turing proposed, in 1952, a
model that illustrated reaction-diffusion in the context
of morphogenesis [14]. In the 1970s, cellular automata
found their way to one of the most popular applications
called simulation games, of which J. H. Conway’s, Game
of Life is probably the most famous [3]. However, the
widespread popularisation of these systems was achieved
in the 1980s through the work of S. Wolfram. Based on
empirical experiments using computers, he gave an exten-
sive classification of cellular automata as mathematical
models for self-organising statistical systems (collected
papers in [19]). Wolfram’s systematic research is to re-
late cellular automata to all disciplines of science (e.g.,
sociology, biology, physics, mathematics, economy, etc).
In this paper, we will introduce a new model (we shall
call it the F-rule). This model came as a result of com-
prehensive research in dynamical structures of networks
as these were constructed out of game theory and statisti-
cal physics. The F-rule is an outgrowth of the Prisoner’s
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Dilemma game as it is stated by Nowak et all [9]. An in-
depth numerical investigation of this model was first done
in [16]. In that work a slightly different version of the
rule is studied where it is mainly viewed from the point
of Game Theory. In this paper, we restate the model as
a cellular automaton and attempt to gain a deeper un-
derstanding of its dynamics. Some preliminary results of
this research are presented in [2]. This paper is a major
extenstion of [2]. Here we explore our rule using various
lattice dimensions and initial conditions, while all possi-
ble parameter configurations are considered. The model
is primarily assumed as a dynamical system evolving in a
discreet state space and time. Our aim is to classify the
rule’s behavior and characterize both qualitatively and
quantitatively the degree of it’s complexity. Varying on
different state parameters and specifications drastically
different behaviors are observed.

A. Notations and Definitions

Before we introduce our model, it is necessary to
present some generic characteristics of cellular automata.
These concepts will assist in getting a picture of the rule’s
dynamic behavior locally and globally.

1. The State Space

We define an Euclidean space L : Nd, where N is the
set of natural numbers, as the discrete state space. This
is the lattice of d -dimensional sites upon which our au-
tomata live, and their dynamics unfold. Every individual
site can be defined by a (1 × d) vector −→x . In our work,
both one and two-dimensional state spaces are explored
.
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FIG. 1: The r = 1 neighborhood of the state spaces, outlined
with the rectangular sketches. (a)The 1-D space. Each in-
dividual site i interacts with the contigious i − 1 and i + 1
around it. (b)The 2-D space. Every site is defined to interact
with each of it’s eight neighbors (the Moore’s scheme).

2. Neighbourhood of a cell

Let us now define the regime of local interaction. Ev-
ery cell changes it’s state after communicating with it’s
neighboring cells. We note byN (−→x , r) the range-r neigh-
bourhood of −→x ,without −→x itself, and by N (−→x , r) the
range-r neighborhood, including −→x , i.e.

N (−→x , r) = {−→y εL : 0 < ||−→x −−→y ||∞ < r} (1)
N (−→x , r) = {−→y εL : 0 ≤ ||−→x −−→y ||∞ < r} (2)

where || ∗ ||∞ : Nd → N is the infinity norm. In our work,
unless otherwise stated, we suppose r = 1 which means
that the neighbourhood of a given center site −→x , is the
set of sites which are immediately adjacent to −→x (see
Fig.1). In 1-D dynamics this is the most common inter-
action scheme. On the plane this is, generally, known as
Moore’s scheme [20].

3. Local Value Space

Each cell −→x ε L can assume only a finite number of
different values:

σ(−→x ; t) ε Σ = {0, 1, 2, ..., k − 1} × N (3)

where σ(−→x ; t) is the value of −→x at time t ε N. In our
paper, we set k = 2. The set of possible states at time
t can be either σ = 0 or σ = 1. In the following, a
black-coloured site means a site in 0 state, whereas a
white-coloured site is in state 1.

4. Boundary Conditions

Although cellular automata theoretically live on in-
finitely large lattices, computer simulations run on finite
sets. Thus, it is also essential to define conditions on
the boundaries of the lattices. Among various types of

boundary conditions that have been proposed [19], [4]
, in this paper, finite lattices are exclusively considered
with periodic boundary conditions in both one and two
dimensions.

5. Initial Conditions

In the following, we will implement our model in two
types of lattices. In the one-dimensional and in the two-
dimensional space. In each of these sections there will be
two sorts of initial configurations.
The simple seeds. Here the system starts from a pattern
full of cells at state 1 (white) except one single cell that is
in state 0 (black). The growth of cellular automata from
such setup should provide models for a variety of physi-
cal and other phenomena,such as symmetric growths like
crystal or snow-flake growth [19],[10].
The random seeds. Here, the system starts from a disor-
dered configuration where each cell is at state 1 or 0 with
equal probability p = 1/2. This setup reflects the notion
of arbitraty initial conditions as it is known in the dy-
namical system theory and helps us observe the model’s
self-organization properties as well as the global behavior
of cells under certain parameter values.

B. The F-Rule

Having specified our cellular world, we now move on
to define the transition rule under which every site L
is updated. To each −→x ε L, we assign a cost function
V (−→x ,N (−→x ); t) : Σ2 × N → W = {a, b, c, d} ⊂ R such
that:

V (−→x ,−→y ; t) =


a if σ(−→x ; t) = σ(−→y ; t) = 0
b if σ(−→x ; t) = 0, σ(−→y ; t) = 1
c if σ(−→x ; t) = 1, σ(−→y ; t) = 0
d if σ(−→x ; t) = σ(−→y ; t) = 1

(4)

These costs reflect the tension of local interactions be-
tween individual cells. So, the initial step of our rule is
that for a fixed value σ(−→x ; t) and for every σ(−→y ; t) of
−→y ε N (−→x ) we adjust a number w ε W to −→x . Finally, for
a fixed arrangement of states in N (−→x ), site −→x receives
an overall cost:

V(−→x ; t) =
∑

−→y εN (−→x )

V (−→x ,−→y ; t) (5)

Or in the analytic form:

V(−→x ; t) = (1− σ(−→x ; t))

{ ∑
−→y εN (−→x )

[
a(1− σ(−→y ; t)) + bσ(−→y ; t)

]}
+

+σ(−→x ; t)

{ ∑
−→y εN (−→x )

[
c(1− σ(−→y ; t)) + dσ(−→y ; t)

]}
(6)
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Finally, ∀−→x εL,−→z εN (−→x ) the update rule is defined to be:

σ(−→x ; t+ 1) = F(σ(−→z ; t)) = σ(−→z ; t)

s.t.
{
−→z εN (−→x ), V(−→z ; t) = max−→z εN (−→x )

{
V(−→z ; t)

}}
(7)

In case there are more than one neighbors with same
maximum V but in different state we avoid the conflict
by setting −→x to follow the white neighbor. We denote by
F(a,b,c,d) the F − rule with the specific cost parameters.

1. Properties and Remarks

It can be easily shown that:

1. F(a,b,c,d) ≡ F(a+q,b+q,c+q,d+q) ∀ q ε R (8a)
2. F(a,b,c,d) ≡ F(aq,bq,cq,dq) ∀ q ε R+ (8b)
3. F(a,b,c,d) ≡ L1 ⊕2 F(d,c,b,a) (8c)

The first two properties signify the model’s invariance
under additivity and multiplication, while the third prop-
erty states that the inverse of the opposite-cost rule
equals the straight-forward one.
At this point, we will make some remarks concerning the
nature of this model. First, the F-rule is a purely de-
terministic dynamic procedure. Neither stochastic fluc-
tuations, nor any sort of noise, affect the evolution of the
cells. Second, one may easily notice that the a and d costs
reflect the local interaction among cells in the same state.
Similarly, the b and c costs reflect the local interaction
among cells with opposite states. In the following, we
shall refer to a, d as equal-state and to b, c as cross-state
costs. Moreover, a carefull insight into the rule’s local
behavior reveals that the interactions are in fact within
a range r = 2 rather than r = 1. In the previous para-
gragh we noted that the decision of σ(−→x ; t+ 1) depends
on the values of V(−→z ε N (−→x ); t). However, every cost V
is, subsequently, a result of local interaction between the
neighbours of the center site and their own neighbors.
What, actually, happens is the local alternation of two,
interconnected, procedures. On our Nd (d = 1, 2) lat-
tice L of σ = 0, 1 states, the power set of L: is noted as
P(Nd), and consists of 2N

d

elements which take values
from Σ. In other words P(Nd) is the set of all possible
states of the pattern. We also denote by J(t) the state
of cost values of L at time t. Now if G(t) ε P(Nd) is the
global state of the system at time t then F-rule can be
separated into alternating between two sub-rules:

F =

{
f1 : G(t)→ J(t)
f2 : J(t)→ G(t+ 1)

(9)

where f1 is the function that sets the costs out of the
states and f2 is the function that updates the (new) states
out of the costs. In this work we will generally investi-
gate the behavior of lattice states G. It would be very
interesting, though, to study the states of costs J and

interpret them in conjuction with the G set.
Hoping that, by this point, our model is understood, our
next questions arise intuitively.“What is so interesting
about this rule?”, “What kind of behavior is this rule
capable of exhibiting?”. We will provide some answers
by running simulations. As we have mentioned in [2], an
analytical approach of the solution of the model is ex-
tremely difficult. For this reason we simulated the rule,
examining every possible combination of the payoff pa-
rameters a, b, c and d. In the simple seed initial condi-
tions we will work as follows: We will, first, assume a < d.
Then (8a) implies that we can only consider positive val-
ues of the parameteres. Additionally, from (8b) we can
set a = 0 and d = 1 and with no loss of generality let
b, c free. Similarly, we will, then, consider the case a > d
(a = 1, d = 0). Varying the cross-interaction parameters
we will see how differently the system behaves and how,
for some critical values, the system alters from “regular”
to “irregular” behavior. Moreover, in the 2-D case, we
will see that the system’s behavior also changes by vary-
ing the lattice’s topology. In the random setups we will
work in a similar manner.

II. THE 1-D F-RULE

Our exporation of the model begins by implementing it
in an one-dimensional strip (Fig. 1(a)) and projecting it’s
evolution. The dynamics in this case are rather simple as
one can see in Fig. 2. Varying the b, c cost parameters,
four types of evolution are, all in all, observed.
In case of a = 0, d = 1 the occuring parameterization is:

(a) c ≥ 2b − 1 The system evolves to homogeneous
state. All sites get to σ = 1 (Fig. 2(a)).

(b) 1/2 < b ≤ 1, c < 2b− 1 In simple seeds the system,
directly, stays static for all time (Fig. 2(b)).

(c) 1 < b ≤ 2, c < b−1 The system expands at the first
step and reaches a static equilibrium (Fig. 2(c)).

(d) b > 1, c ≥ b − 1 The system, directly, evolves to
period 2 oscillation (Fig. 2(d)).

(e) b > 2, c < b − 1 The system converges to homoge-
neous state. All sites, eventually, get to σ = 0 (Fig.
2(e)).

In case of a = 1, d = 0, we have:

(a) c ≥ 2b The system, directly, evolves to a uniform
state (Fig. 2(a))

(b) b > 1, b + 1 ≤ c < 2b In simple seeds the system
directly evolves to period 2 where in random seed
it may converge to period 2 behavior. (Fig. 2(c))

(c) c < min{2, 2b, 1 + b} The system converges to
homogeneous black global state.(Fig. 2(e))
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Using Wolfram’s notification [18], F in one dimension
generates patterns of class c1 and c2 only. Namely, the
patterns that evolve after a finite number of steps to a
unique homogeneous state, in which all sites have the
same value. We see such behavior in Figs. 2(a),(e).
These rules may be considered to evolve to simple limit
points in phase space; their evolution completely destroys
any information on the initial state. The spatial and tem-
poral dimensions for such attractors are zero. In class c2,
we have simple stable states of periodic structures (Figs.
2(b)-(d)). The dynamics become far more complex in the
2-D case.

III. THE 2-D F-RULE

A. Evolution from Simple Seeds

Given the initial setup, the evolution of our automaton
depends on the relative values of the b and c parameters
as they were set by the V-costs. We continue from [2]
to further examine the effect of these payoff values. In
that premilinary paper we took a few analytical steps in
order to sketch the mechanism of the rule as a function
of the payoffs. Case a < d was only examined and led to
a phase-transition diagram among regular and irregular
patterns. Here, together with this plot, we also examine
the case a > d. For the simple-seed setup, nine different
schemes have been identified ( Figs. 4 and 5):

P0 : The system directly (i.e. without transient states)
evolves to homogeneous state where all cells attain
the same value (i.e. σ = 1).

PT0 : The system, after a transient behavior, evolves to
the homogeneous state σ = 1

P1 : The system directly evolves to periodic behavior
of period 1.

PT1 : The system expands in the first iteration and re-
mains static ever after.

P2 : The system directly evolves to periodic behavior
of period 2.

P3 : The system directly evolves to periodic behavior
of period 3.

PT4 : The system, after a transient behavior, evolves to
period 4.

C : The system exhibits an irregular complex behav-
ior.

B : The systems grows uniformly. At each time step,
a regular patter with a fixed density of zero sites is
produced.

In Fig 3(a), we present a raw phase transition pattern
on the (b, c) plane for a < d and in Fig 3(b) a window

of the region denoted by C (see below for more). The
phase-transition diagram when a > d is sketched in Fig.
4. Moving along the diagrams’ boundary lines we deal
with the set of critical (bifurcation) values. For instance,
in Fig 3(a) at the PT1, C boundary we step on the
critical vertical line of b = 8/5. Similarly, the C to B
boundary consists of the connected lines b = 8/3 and c =
b− 5/3 [2]. For the moment we are, primarily, interested
in investigating this “irregular” C region.

B. The C region

Contrary to the other sections, C is a parameter sub-
space, where the automaton appears to exhibit extraordi-
nary dynamical behavior. The F-rule in this region gen-
erates exclusively expanding patterns. In Fig. 6 we put
a few of these carpets where snapshots of their evolution
is presented. Every subfigure contains the plane pattern
as well as a space time evolution of the lattice’s main di-
agonal line (the line that includes the initial black cell).
Unlike the other regions, these carpets have no simple
faceted form and in most cases non-uniform interior. Ad-
ditionally, due to symmetric initial states, these patterns
are completely invariant under all the rotation and reflec-
tion symmetry transformations. In order to identify part
of the C dynamics, we implemented various techniques
presented below. Our first step was to numerically esti-
mate the transition phase space for the individual cases
a < d and a > d. Part of these diagrams are presented
in Fig 3(b). One may notice that C is a collection of
mutually disjoint subsets of (b, c)-plane. Moreover, these
subsets have occurred out of subsequent straight line in-
tersections. In every of these subsets, our system gener-
ates the same pattern and, of course, exhibits the same
dynamic behavior. So the following question would be
“what is this dynamic evolution?” We will respond to
this question by presenting numerical results coming out
of different simulation techniques.

1. Global dynamics on a finite, fixed L

At first we kept the lattice size constant (at N = 50)
with periodic boundary conditions and we explored the
system’s long term behavior. Each simulation test was
run for at most 20, 000 iterations. The dynamic behavior
is, classified in three qualitative categories:

C1 After a transient behavior, all sites of L, eventually,
attain the same value. A class similar to PT0 type
(see Fig) but with much longer and more compli-
cated transient time. Here the patterns begin to
expand until their frontiers meet. Then, the over-
all automaton appears like a collection of travelling
waves that interact with each other until they to-
tally fade out.
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FIG. 2: The 1-D F-rule and the patterns that are generated. The dynamics in one dimension are smooth and regular.

FIG. 3: The case a = 0, d = 1.(a)A parameter window of the
(b, c)-plane, were we have sketched a rough phase transition.
While regions P0,P1,PT1,P2,P3 and B show regular dy-
namics, region C is rich in irregular behavior. (b)The phase
transition focused on the C region (1.6 < b < 2.9). See text
for explanation. The linear boundaries were numerically esti-
mated. The calculation’s precision is 10−3.

FIG. 4: The case a = 1, d = 0. (a)A window of the (b − c)
parameter subspace as it is numerically calculated. (b) Here a
magnification of the rectangular area of Fig. 4(a). All regions
have been assigned to a symbol characterising the generated
patterns. See text for more.

C2 After a transient behavior, all sites of L, converge to
strictly periodic (period-T) motion. By strictly pe-
riodic of period T we mean that ∃ t ε N : σ(−→x ; t) =
σ(−→x ; t + T ) ∀ −→x ε L. The difference from C1 is,
obvisously, in the system’s final state. Here our
model exhibits periodic oscillations. It is observed
that both the transient and the period time are
quantities highly dependent on the neighborhood
definition and the lattice topology. In the following

paragraph, we will present an alternative type of
periodic structure as a result of varying the magni-
tude of the lattice.

C3 The dynamic evolution does not converge to any of
the previous two classes. A typical class C3 behav-
ior is the one that after a sufficiently large num-
ber of iterations (approx. (20, 000)) the pattern
neither, strictly, repeats itself, nor turns out to a
homogeneous state.

For case a < d detailed numerical results concerning the
transient time and the steady-state period can be found
in [2].

2. Global dynamics on a finite, varied L

A different approach is to explore the system’s behav-
ior by varying, instead of the (b, c) parameters, the lat-
tice’s structure. In this section, our control parameter
will be size, N . We will show that many of the above
analysis and classifying results are in fact dependent on
the size of lattice. A simple but fundamendal statistical
tool that we will use, is the average fraction of sites at
σ(−→x ; t) = 1:

ρ(t) =
#1(t)

#0(t) + #1(t)
=

#1(t)
N2

(10)

where by #σ(t) we denote the number of cells’ at time t
and state σ. We will work with two characteristic models:

• F(0,1.65,0,1). On a 50 × 50 matrix this is a class C1
rule [2]. Is this true for all N , though? In Fig.
7(a) we see the results of the system’s converging
behavior. The x-axis is the size N of the lattice
(N ×N) and the y-axis is the number of iterations
the rule takes to turn to a global zero (black) state.
For N = 30 all cells will be black after t = 29 it-
erations. For N = 40 the same holds for t = 184
while for N = 50, t = 101. Finally for N = 70 our
rule needs 2510 steps to converge. However, when
N = 74 the system does not converge to black. In-
stead, after thousands of iterations it returns to a
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FIG. 5: Typical patterns of regular behavior of the F-rule. When a < d, P0, P1, PT1, P2, P3 and B appear, while in a > d
P0, PT0, P2, PT4 and B appear. See text for more.

previous state but not in the strict sense, we de-
fined above. In Fig. 8(a) we present this new type
of behavior. The state of the system at t = 4983
becomes the same as it’s state at t = 85, under the
obvious smooth transformation of the axes. This
is a new type of periodic behavior not observed
until now. One may argue that since the cellular
automaton will anyway turn to strictly periodic-
ity, the behavior in question is just a trivial tran-
sient phenomenon. This is not the point, however.
Our point here is that not only the dynamic clas-
sification presented above depends on the lattice’s
topology; but also that if we trace the time subse-
quence (85, 4983, 9881, 14779, ...) we observe a coor-
dinates’ transformation: The system transposes by
N/2 units up and rotates by 90o counterclockwise.
This trivial type of transformation may, however,
not be the canon. During a dynamic evolution, it is
highly possible that more interesting subsequences
(i.e. arbitrary units and degrees shifts) exist, such
that the system propagates along the donut-like L
structurally invariant.

• F(1,0.6,2.67,0). This pattern, presented in Fig. 6(d),
is generated by a highly unstable rule the dynamics
of which are presented in Fig. 7(b). The square-
edged curve shows the time the rule takes to con-
verge to periodic attractors. The circle-edged curve
shows the attractor’s period as a function of size
N . We see, for example, that on a 10 × 10 L the
rule converges to global white state, 10 iterations
later (class C1). On a 40 × 40 lattice it converges
to period-24 oscillation after 4 iterations, while for
N = 50, after 33 transient steps, it settles down to
a period-56 circle (class C2). The periodic behavior

disappears for N ≥ 90 where the system seizes to
converge (class C3).

C. Complex Behavior

In this section, we will provide sufficient evidence to ar-
gue that the F-rule is rightfully characterized as complex.
The cost parameters belong to C classes. The system ini-
tiates from a simple-seed configuration and evolves on a
large size (practically infinite) matrix L.

1. Growth Dimensions

The limiting structure of patterns generated by the
growth of cellular automata from simple seeds can be
characterized by various growth dimensions. The type of
dimension we will make use of depends on the boundary
of the pattern. The boundary may be defined as the set
of sites that can be reached by some path on the lattice
that begins at infinity and does not cross any nonzero
sites. This set of limiting cells can thus be found by a
simple recursive procedure:

Dg = lim
t→∞

log(#0(t))
log (t)

(11)

Where #0(t) is the number of black cells generated at
time t, already defined in (9). Growth dimensions, in gen-
eral, describe the logarithmic asymptotic scaling of the
total sizes of patterns with their linear dimensions.One
may define upper and lower spatial growth dimensions
D+
g , D−g in terms of the upper and lower limits, lim sup
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FIG. 6: Typical C-type patterns. (a)F(0,1.65,1.0834,1), (b)F(0,1.65,0.2375,1), (c)F(0,2.6,2.52,1), (d)F(1,0.6,2.67,0), (e)F(1,0.6,2.4,0), (f)
Explanatory map of the evolving dynamics. The space-time section is the temporal projection of the square lattice’s main
diagonal line of cells.

FIG. 7: (a)Code F(0,1.65,0,1). The length of transient state
of this rule as a function of lattice’s size, N . For N<74 the
system always converges to σ(G) = 0. For N = 74, however,
the final state of the rule changes and a new type of periodic
behavior emerges (see text). (b)Code F(1,0.6,2.67,0). This rule
passes through all dynamic classes as N varies (see text for
more). The square-edged curve represents the transient time
length and the circle-edge curve the steady state period.

and lim inf respectively, of log #0(t)/ log t at t → ∞. In
Fig. 9 we present log − log plots of some rules: In case

(a) where we have dendritic boundary growth (see Fig.
6(a)) Dg = 1.98 ± 0.01. In case (b) (Fig. 6(b)) there is
both non-uniform interior and boundary evolution and
we have Dg = 2.1± 0.02. In case (c) (Fig. 6(e)) the ex-
panding pattern creates non-uniform interior while the
boundaries remain faceted and D = 1.9 ± 0.01. Finally,
in case (d) (Fig. 6(d)) log #0(t) varies irregularly with
log (t) the most; there D+

g = 2, D−g = 0. On superfi-
cial inspection of this index, class C patterns appear to
generally satisfy these asymptotic values.

2. Space-Time Patterns

A direct technique of examining the asymptotical be-
havior of plane cellular automata is through a state sub-
space analysis. One may choose to define Poincaré-like
sections and study the dynamic evolution of this sub-
space. We chose the diagonal line of the two-dimensional
lattice with time (as in Fig. 6). The reason this spe-
cific section is selected is that it is the axis of sym-
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FIG. 8: Snapshots of F(0,1.61,0,1) and N=74. We present four
shots of the lattice, at t = 85, 4983, 9881 and 14779 respec-
tively, where we depict this special type of periodicity. Next
to those lattices, there are the ρ curves of the same orbit but
at different time intervals. We can clearly see that after the
vertical limit line we have set, the density of white cells is the
same, proving the periodic structure.

FIG. 9: Growth dimensions defined as the ratio of the
logarithm of black cells over the logarithm of time. The
presented codes are: (a)F(0,1.65,1.0834,1) (b)F(0,1.65,0.2375,1)

(c)F(1,0.6,2.4,0) (d)F(1,0.6,2.67,0).

metry on which the system expands more rapidly than
any other direction. One might also consider the main
horizontal axis [2]. Moreover, we surely prefer to deal
with one-dimensional patterns since such automata are,
more effectively, handled. In Figs. 6(a)-(e) we present
examples of space-time sections which reflect the dy-
namics of the 2D F-rule in one dimension. Eq. (11)
can also be applied here: (a) Dg = 1, (b) D+

g =
0.947± 0.002,D−g = 0.8629± 0.001 (c) Dg = 0.99± 0.01
(d) Dg = 1.161 ± 0.003 (it is noted here that the space-
time section is the Sierpinski gasket, a self-similar ob-
ject with Dfractal = log 3/ log 2 w 1.58).

IV. EVOLUTION FROM RANDOM SEEDS

A (completely) random seed configuration results when
each site −→x ε L chooses to be black or white with prob-
ability (p = 1/2). Such disordered configurations are
members of the set of all possible configurations. Pat-
terns generated from them are thus typical of those ob-
tained with any initial state. The presence of structure
in these patterns is an indication of self-organization on
the lattice [20]. Qualitatively speaking, three types of
collective global behavior have been identified.

A. Equal-State costs greater than Cross-State
costs.

a,d > b,c

In this case, the evolution favors the interaction among
cells with the same states. The final state of the system
is a static equilibrium where the occuring pattern is an
assembly of black and white “ghettos” as in Fig. 10(a).
We see that the state at t = 0 (completely disordered).
The system reaches the equilibrium within the first seven
time steps. The last diagram presents index ρ(t) (see
figure’s comments for more). Every cell on the lattice has
in its neighborhood a cell of the same state and maximum
cost:

∀ −→x ε L ∃ −→z ε N (−→x , 1) : σ(−→x ) = σ(−→z )

where V(−→z ) = max−→z εN (−→x )
V(−→z )

(12)

If we increase one of the two leading parameters, say
a, we will observe the increase of the black sites over
white. In fact, it has been analytically derived that for
a > ac = 8/7 all sites attain the same (black) state. The
same holds, of course, if we turn d over a. The role of
b, c parameters, as long as they do not exceed a and b, is
that of controlling the average number of black and white
cells respectively. See table I. For such non-zero values
of the intermediate costs we have the critical inequality
7a+ b > 8d instead of ac.

B. Cross-State costs greater than Equal-State
costs. b,c > a,d

Completely different patterns occur when “cross-state”
costs b, c are larger than “equal-state” costs a, d. The
typical code for this family is F(0,1,1,0) a simulation of
which is presented in Fig. 10(b). The system after a tran-
sient mode of 65 time steps, settles down to a period-10
cycle. One may notice the black and white regions inside
of which there are white and black kernels, respectively.
They are these cellular kernels that, actually, motivate
this oscillation. Observe that in Fig. 10(b) the sketches
at t = 76 and at t = 77 are almost inverted images. We
rightfully call this behavior a ying-yang oscillation. In
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FIG. 10: The F model starting from random seeds. (a) F(1,0,0,1) - the system reaches a static final state. (b)F(0,1,1,0)- the
system oscillates in a period-10 cycle. (c) F(0.5001,0.5,1,0)- the system behaves aperiodically.

b c index ρ(t) %

0 0 63.35
0 0.1 37.57
0 0.2 37.58
0 0.3 28.72
0 0.4 22.14
0 0.5 18.08

0.1 0.2 36.50
0.3 0.2 63.25

TABLE I: The role of cross-state costs and their effect on the
black and white population. Increasing b the black cells raise
over white, while increasing c the white cells raise over black.
This holds as long as both b and c stay lower than a and d.
Otherwise, new dynamics occur.

general, an F(a,b,c,d) where b, c > a, d generates orbits
that after a transient time converge to periodic attrac-
tors. The qualifying formula of this family is:

∀ −→x ε L ∃ −→z ε N (−→x , 2) : σ(−→x ) = σ(−→z )

where V(−→z ) = max−→z εN (−→x )
V(−→z )

(13)

The transient time, the period of the attractor and
the magnitude of oscillation ρ(t)/(1 − ρ(t)) are “unpre-
dictable” quantities. Namely, they seem independent of
the cost parameters. It is unknown, though, whether
these quantities depend on the initial conditions and how
much. What we are only sure of is that the system will
converge to even-period limit sets. The role of a, d costs
is, as long as they remain lower than cross-state costs,
similar to the first family. They merely stabilise the
mean amount of black and white cells respectively, in
other words, the mean value of ρ in steady state.

C. One Equal-State parameter is between the
Cross-State parameters. d < b < a < c

The last case is studied by fixing d = 0, b = 0.5, c = 1
and vary a. We then increased parameter a from a =
0. The moment a jumps over b a new type of behavior
appears. In particular, for:

(a) 0 < a < b = 1/2. The system behaves like in
the previous case since we have b, c > a, d. The
attractors are of even period and the mean value of
ρ(t) is around 0.63.

(b) 1/2 < a < 2/3. The system does not con-
verge. Here a typical rule is F(0.5001,0.5,1,0) which
we present in Fig. 10(c) and study ever after. Like
in the case of simple seeds we have simulated the
model for about 20, 000 iterations. The system nei-
ther converges to a static equilibrium nor to a pe-
riodic circle. This “aperiodic” evolution in a de-
terministic model like ours resembles chaos. In the
following, we will further support this idea.

(c) 2/3 < a < c = 1. The system converges to periodic
attractors.

(d) a > 1. All sites attain the zero state.

D. Stability

An important tool to characterize the evolution of an
automaton is the discrete Green function. Green func-
tions measure changes in patterns generated by a given
rule resulting from a small change in the initial state,
and give the average probability that sites a given dis-
tance away from the small area of differing initial values
will be changed after a certain number of iteration steps.
We can get a glimpse of the form of these Green func-
tions for a selected rule by plotting the difference pattern.
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These are pattern of difference between two evolutions of
the same rule starting from two different initial states.
The rate of growth of these patterns is defined to be

∆(n) = Fn[σ(G1; 0)]⊕Fn[σ(G2; 0)] (14)

This rate gives an idea of the speed with which various
features in a cellular automaton evolution may propagate
through the lattice. The information we are interested in
is the small perturbation in the initial states. Wolfram in
his pioneering work was the first to, at least heuristically,
introduce this idea as a technique to effectively quantify
the rate of propagation of information. The asymptotical
rate is a number analogous to the Lyapunov exponents in
the dynamical systems theory. A consistent approach to
these global quantities was made [12] who defined Lya-
punov exponents in one dimensional cellular automata.
The multidimensional case was solved by [13] a few years
later who introduced the idea of directional Lyapunov
Exponents. In our work, we generated two almost equal
random setups that differ in one site. We let them run
under the same F-rule and used (13) to see the resulting
effect. We used three different rules; one of each category.
The results are presented in Fig. 11. In (i) we present
the difference pattern after 100 iteration. In (ii) and
(iii) there are the space-time sections of the horizontal
and the diagonal line of the state space. These patterns
represent 4 out of 8 directional exponents [21]. Finally
in (iv) and (v) we present the ρ(t) index of the resulting
orbits. So in Fig. 11(a) there is the simulation result
of F(1,0,0,1). The initial perturbation was directly either
eliminated or stabilised to a plastic difference like in Fig
11(a). This dynamic behavior signifies of the system’s
expected robustness in initial perturbations. A more un-
stable evolution appears when the cross-state costs excell
the equal-state ones. In case of F(1,0,0,1) the initial differ-
ence expands at first but finally remains localised (Fig.
11(b),(i)). Nevertheless, the system oscillates. Both the
initial patterns have converged to periodic sets, the first
of period 8 (see Fig. 11(b),(iv)) and the second of period
4 (Fig. 11(b),(v)). Thus the difference pattern oscillates
too. It is worth saying that it is possible for the two
systems to oscillate with the same period but not with
the same magnitude; a quantity characterised as unpre-
dictable in §IVB. Global instability is reported for the
family of §IVC rules. In Fig. 11(c) we present the dif-
ference patter of F(0.5001,0.5,1,0). In this category a single
site perturbation is enough to lead to two totally different
orbits (see 11(c),(iv) and (v)) which, nevertheless, evolve
with the same ρ. From space time sections we observe the
linear growing difference which implies exponential diver-
gence (asymptotical in case of infinite lattice) of nearby
configurations [4],[20], i.e. chaos.

V. THE F-RULE VERSUS THE O-RULE.

We have so far considered our model as a system and
we have worked on it from the field the dynamical sys-

tems. One should not neglect the fact, though, that the
base of the rule is derived from a typical evolutionary
game; the iterated Prisoner’s dilemma. The F-rule could,
naturally, be considered as a game among interacting
agents which can follow the strategy of being black or
white. Based on the same cost function f1 we introduce
the alternative strategy as follows: the cell updates it’s
state so that it optimizes it’s own overall cost V:

σ(−→x ; t+ 1) = {0, 1} : V(−→x ) = MAX (15)

The alternative strategy is, actually, another update
function f2 which we shall name the Optimal-rule. We
will not use these rules as possible strategies that cells
can follow, though. In this scenario, all agents play only
the F-rule apart from an individual who plays only the
O-rule. Our purpose is to study the effect of this “smart”
player and how this propagates to the rest of the popula-
tion. We have set this player at point (N/2 + 1, N/2 + 1)
and have run the simulations on a N = 80 square lattice
and three characteristic code-rules were examined. In
the presented simulation below we also count the num-
ber of white sites at time step t. This is familiar, from
the theory of error-correcting codes, measure known as
the Hamming distance [19]. This will reveal the tempo-
ral respond of the overall system towards the game of the
individual. The results are presented in Fig. 12.

• F(1,0,0,1). This family of rules leads to static equi-
libria. The smart player will then have to follow the
state of ghettos. If it is in a white neighborhood it
goes white, else it goes black. In case it is on the
boundary of two neighborhoods the O-player will
go with the majority of the states around. This
may have a very small effect on one or two con-
tiguous F-players but nothing more than that. In
Fig. 12(a) we present the most probable scenario
in which the smart player finds itself in a homoge-
neous white surrounding and synchronizes it’s state
to the white too.

• F(0,1,1,0). In this case, the state of cells tends to
change at every iteration so that the smart player’s
game can be considered as a constant perturba-
tion. Nevertheless, as one may notice the Hamming
distance plot in Fig. 12(b) it’s effect propagates
slowly with time, as well as it finally remains local-
ized. In other words, the difference pattern reveals
a diffusive-like growth that lasts as soon as both
lattices converge to a periodic cycle.

• F(0.5001,0.5,1,0). In this, highly unstable, zone we
should expect that such perturbation reflects to the
pattern globally (see Fig. 12(c). It is worth com-
paring the Hamming distance plots of this case and
the previous. Here, H(t) grows almost linearly with
time until it saturates due to the finite-size lattice.
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FIG. 11: Difference patterns of the F-rule starting from random seeds.(a) F(1,0,0,1). If there is a noticeable difference then
it’s range will not exceed few cells and remain plastic for all times. (b) F(0,1,1,0). In this case the initial difference expands
during the transient steps. As soon as the patterns converge to periodic attractors, the difference pattern will converge too.
Hence the range of the effect is expected to be a function of transient length. In the steady-state mode, the space-time patterns
produce periodic structures with the range of the resulted difference. (c) F(0.5001,0.5,1,0). The system is highly unstable. A
small disturbance is enough to cause an ever-expanding difference that eventually will propagate throughout the space. The
space-time patterns produce expanding aperiodic structures. In other words, we have chaos.

FIG. 12: F vs. O. In every subfigure we present the F-pattern, the F and O-pattern, the occuring difference plot and the plot
of the number of the white sites on the difference pattern versus time. (a) F(1,0,0,1), (b) F(0,1,1,0), (c) F(0.5001,0.5,1,0)

VI. DISCUSSION

A. Growth Inhibition

So far we have thoroughly discussed the 2-D model’s
transition from regular to irregular behavior. We have an
idea of what happens but still do not know why this hap-
pens. The mechanism that characterizes the C-region is
depicted in Fig.13 for the code rule F(0,1.65,1.0834,1). At
step t = 0 there are three costs that emerge with V0 to
be the dominating one. The automaton expands at t = 1
and new costs occur. Now V2 as well as V3 dominate
their neighborhoods. However V2 adjusts to a black cell
while V3 to a white cell. Thus, growth at t = 1 is allowed

along the diagonals but inhibited along the horizontals
and verticals. Indeed, at t = 2 we see the automaton has
expanded at the diagonals and actually creates five black
”kernels” which will at t = 3 expand at all directions.
Iterating this procedure, the expansion will converge at
an object with dendritic boundaries. This phenomenon
is very common in the way some crystals grow as well
as in many physical and biological systems [20],[17]. At
a microspocic level the crystallization occurs when a liq-
uid or gas is cooled below its freezing point. The pro-
cedure always start from an individual seed and unfolds
by adding more frozen atoms to their surface. In some
cases, whenever a piece of ice is added to the snowflake,
there is some heat which is released averting the addi-
tion of further pieces in the vicinity. So, instantly, freez-
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ing is allowed at some directions while it is inhibited at
the rest. This effect can be simulated by a cellular au-
tomaton that updates cells to black if they have exactly
one black neighbor and white if they have more than
one black neighbor. This is the case in C-region and is
clearly presented by the illustrated example. Note that
at t = 1, V5 has only one black neighbor while V3 or V4

have more than one. If growth inhibition is the base of
our model’s complexity on the plane, it is also the an-
swer on the question why the 1-D F-rule does not create
irregular patterns. Using Wolfram’s notification the only
possible spatio-temporal patterns that can appear are of
class c1 (homogeneous black of white) or class c2 (stable
periodic). The reason of this regularity is that by defi-
nition the F-rule, in one dimension, lacks the property
of growth inhibition. A white cell in the middle of white
neighbors will anyway remain white. Similarly, a black
cell cannot turn to white, unless one rich white neighbor
appears. This is the restricting factor of the dynamics
in one dimension. It is worh noting that lifting this re-
striction 1-D F-rule becomes strictly chaotic. Let’s define
F exactly as F but with the slight difference that when
black (and only black) cell is around black neighbors it’s
next state will be anyway white. The resulting dynamics
obey the same parameterization as in §II, but the final
group of patterns is not the uniformly expanded as in Fig
2(e), but this in Fig. 14. This is a typical chaotic pattern
with a self-similar strtucture.

B. Conclusions and Remarks

The multifarious dynamic behavior of a new model is
presented. We examined the model in various initial con-
figurations, space dimensions and topologies and param-
eter setups. We attempted to shed light upon different
aspects of the rule’s dynamics and classify the collective
and asymptotic behavior of the emerging patterns both
qualitatively and quantitatively. The phase-transition di-
agramms presented in Figs. 3 and 4. We notice that in
case a < d the C-region is a significantly larger set than
the one in a > d. This highly depends on the initial
configuration that in both cases is a single black cell in a
world of white cells. On the other hand, both diagramms
appear as a mass of line segments while some of them
are also crooked. In [2] we tried to describe the mecha-
nism out of which all this linear boundaries emerge. We
only mention here that all these bifurcation lines (as well
as every critical cost value) depend on the definition of
neighborhood. In this work we have adopted the Moore’s
scheme. Be assured that with another scheme, new phase
transition properties will take place. But it is not only
the local interaction regime that plays a crucial role in
our work. In the dynamics of our model a determinant
factor is the lattice topology. In the C-classification we
introduced, we showed that rules may behave completely
differently when the size of the lattice is changed. They
may switch from one category to another or even reveal

FIG. 13: Growth inhibition of F(0,1.65,1.0834,1). At t = 0:
V0 = 13.2, V1 = 8.0834, V2 = 8. At t = 1: V0 = 0, V1 = 4.95,
V2 = 8.25, V3 = 8.2502, V4 = 8.1668, V5 = 8.0834, V6 = 8. At
t = 2: V0 = 13.2, V1 = 8.1668, V2 = 8.0834, V3 = 8.

new types of behavior.
The evolution from disordered states is a different funda-
mental approach. We worked with completely disordered
states and observed the collective behavior of the F-rule
and particularly it’s ability for self-organisation. The
three types of behavior reported include: A coarsening
evolution that leads to labyrinthine patterns. This state
is strongly reminiscent of behavior observed with ferroflu-
ids or magnetic bubbles [11] and also in classic proba-
bilistic models such as the Voter’s or the Ising model
[7], [5]. The second type is this of the system’s conver-
gence to periodic cycles and is characterised by strong
self-organisation. The system starts from an arbitrary
initial state and follows a finite transient time (the dura-
tion of which we assume that depends on the size of the
lattice) and settles down to periodicity. The governing
dynamical feature of this case is the ying-yang type of
oscillation which in the steady state satisfies (13). More-
over the system seems to have limited sensitity to initial
conditions only during the transient mode. This phe-
nomenon is known in the dynamical system theory as
transient chaos [6]. The last case we met is this when
one equal-state cost (a) gets in the middle of the cross-
state costs (b, c with b < c). The result is a structurally
unstable system which behaves aperiodically and is char-
acterised by sensitivity to small perturbations. Rergard-
ing the deterministic nature of our model we have every
reason to believe that this is a chaotic behavior.
In the last section we attempted to extend the F-rule to
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FIG. 14: The F (0,b>2,c<b−1,1)-rule, as defined in text, in one dimension. The cost parameters are set for the rule to expand.
However the resulting pattern is not uniform as in of the F-rule. (a)Evolution from simple initial state. The resulting pattern
is the self-similar Sierpinski fractal. (b) Evolution from disordered initial state. This is a typical chaotic pattern.

the field of Game Theory. Regarding a smart player that
always plays as to maximize it’s own profit we see how
it’s play effects the rest of the players. This quantifies the
idea of how much robust is the decision function f2 we
examine. The simulation results show that depending on
the selected cost parameteres the influence of the smart
player can be neglibible, local, even global (Figs.12(a)-(c)
respectively). This result is in direct conjunction with the
rule’s relevant instability.

C. Where do we go from here?

Up to this point, an extensive effort to explore a pro-
posed mathematical model is made. In this section, we
will make suggestions for further research. Furtheremore,
we shall propose types of variations which we believe are
of special interest. In the end, we will outline fields on
which such model may be applicable. In this paper, our
purpose is to study a new update rule in cellular au-
tomata and to shed light upon its perspectives. How-
ever, many more things are left to do. One line of re-
search could be on the direction of phase transition dia-
grams which we outlined above. Moreover the inspection
of the cost distribution and the overall behavior of the
so-called J(t) space is strongly recommended. The con-
necting factors between G(t) and J(t) pave the way for
remarks upon the immitation and the cooperation fea-
tures among the interacting cells. For example, one may
define a cooperation criterion as the maximization of the
global cost that can emerge under a certain amount of
white cells, and then to search for the appopriate cost
parameters to satisfy it.

D. Variations of the F-rule

Perhaps, the most significant advantage of this model,
is its structural flexibility. Conventional variations of

cellular automata are the various definitions of neigh-
borhoods N (−→x , r) (Moore or Von Neumann scheme,
among others [4]) or the state space topology (e.g.
boundary conditions), the dimensionality of the rule
(Ld) or perhaps the number of elements in Σ. Apart
from typical changes we can also vary our rule in terms of:

Cost function f1. In this paper we assumed that
at the end of every iteration, costs are reset to zero.
Namely, we made use of instant costs upon the update
decision of cells. Another version with significant phys-
ical meaning would be this of accumulative or discount
costs per iteration. Each cell saves its cost values from
previous states adding it on the future payoffs. For every
iteration, a constant discount factor is multiplied with
all past costs before the new cost is added. Preliminary
simulations have revealed that the collective behavior of
such automata is totally different.
Decision function f2. We have assumed that the update
rule defines the new state of site −→x : σ(−→x ; t+ 1) to equal
to the state of its neighbor with the maximum cost.
An already proposed variation is the O-rule. Another
important version though, would be that every −→x ε L
do the following: It calculates the average costs among
the same state neighbors. Then −→x decides to step to
the state with the highest average cost. Of course,
function f2 could be configured to decide according to
the minimum of costs. Such behaviors may also be
observed in practice.

E. Applications

This automaton could reliably simulate procedures in
many fields of life, some of which are reported below:
Social networks
If we consider L to be a compact society of citizens (cells),
then white, σ = 1, state would adjust to a good man while
the black, σ = 0, would adjust to the bad man. Our lat-
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tice is, thus, a collection of concrete neighborhoods which
interact, according to a cost function (eq. (6) or Fig.
2(a)), locally and eventually globally. So let’s consider
the neighborhood N (−→x ) of cells. Suppose that −→x is a
good man with s also good neighbors and (8 − s) bad
neighbors. Then, for every good −→y ε N (−→x ), −→x gains a
reward of d units while for every bad, our hero may get a
penalty of c units. From this point of view, table cost is a
locomotive regulator of interactions of “good” over “bad”
and vice versa. Together with this regulator one can de-
fine static controllers as fixed regions of sites (perhaps on
the boundary) whose value remain unchanged through-
out simulation. Such areas would imitate the role of a
church or a police station around a neighborhood. It is
also worth mentioning the social meaning of the O-rule
by which a player learns to adaptate it’s state judging
from it’s environment as to maximize it’s personal profit.
Both these rules are most usually observed social behav-
iors of every day life.

Economic Networks
Modelling market interaction. Economics is a subject of
social networks, in which the procedure of learning or
imitation and then reply among interacting individuals
is fundamendal (a game theory approach can be found
in [1]). In F-realm, sites would be sellers and buyers. To
make this more intriguing one could raise the number of
possible states and then separates them in two categories:
people who sell certain goods, and of people who buy
them. Cost values would form the relative value between
goods. Similar interpretation can be given for O-model.

Other applications
Although strictly deterministic, the F-rule produces pat-
terns that bear great resemblance to stochastic models
like the Voter’s or the Ising model. This comes as no
surprise, though, since both models preserve a probabil-
ity distribution subject to local interaction among indi-
viduals. The Ising model, in particular, follows a Boltz-
man distribution with probabilities scaled according to
an Energy function structurally similar to our cost func-
tion (6). It is worth mentioning that the three group of
patterns generated from random seeds in sections IVA,
IVB and IVC could be qualitatively connected to pat-
terns of the 2D Ising model below, near and above the
critical temperature, respectively [7]. It is important to
clearify that this is the main difficulty in our model. The
F-rule is a deterministic model with behavior that is in
some cases similar to stochastic models. While, all such
models are primarily defined by a global probability mea-
sure; what we deal with, is a local function that even easy
to understand, it is most difficult to implement any an-
alytical technique. That’s how we end up simulating.
Furthermore, deriving a probability measure out of di-
rect simulations is not only a scientifically controversial
method but also of forbidding computational complexity.
Nevertheless, there is no doubt that our model can have
potential applications in physical (statistical mechanics -
lattice gas theory)[7, 15] or even biological (interaction
between malignant and non-malignant cells) networks as
well as in computer networks. However, further research
on this model is required.
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