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On the Probability of Existence of 
Pure Equilibria in Matrix Games I 

G. P. PAPAVASSILOPOULOS 2 

Abstract. We examine the probability that a randomly chosen matrix 
game admits pure equilibria and its behavior as the number of  actions 
of the players or the number of players increases. We show that, for 
zero-sum games, the probability of having pure equilibria goes to zero 
as the number of actions goes to infinity, but it goes to a nonzero 
constant for a two-player game. For  many-player games, if the number 
of  players goes to infinity, the probability of  existence of  pure equilibria 
goes to zero even if the number of actions does not go to infinity. 
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1. Introduction 

The possible lack of existence of pure equilibria in game problems is a 
long known fact which led to the admittance and examination of mixed 
equilibria. The existence of mixed equilibria for any matrix zero-sum game 
was first proven by Von Neuman in 1936 (Ref. 1) and later on was extended 
to the nonzero-sum game by Nash in 1950 (Ref. 2). Using infinite-dimen- 
sional versions of the Brower fixed-point theorem enabled the extension of 
this basic existence result to other classes of games with infinite action spaces 
(Ref. 3). The fact that pure equilibria may fail to exist for games with a 
deterministic description in contrast to what holds for classical optimization 
problems (single player games) under similar convexity or compactness 
assumptions is a discomforting result, albeit a deep and conceptually fascin- 
ating one. The objective of the present paper is to examine the probability 
that, for a randomly chosen game, a pure equilibrium exists. 

We consider the following questions: (i) If the elements of an m x n 
matrix are chosen independently and randomly according to a uniform 
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distribution over an interval, what is the probability that the resulting zero- 
sum game admits a pure solution. (ii) How does this probability change as 
m, n tend to infinity. (iii) Similarly, if two m • n matrices A, B are randomly 
chosen, what is the probability of existence of  a pure equilibrium and how 
does it change as m, n tend to infinity. The extension of  these questions to 
the case of  an arbitrary number of  players and the study of the behavior of 
the probability of existence of pure equilibria as the number of players or 
the number of available actions to the players tends to infinity are also 
considered. 

These questions are answered in the rest of this paper. We provide 
explicit formulae for the probability of existence of pure equilibria for each 
case and study their limiting behavior. The following interesting facts are 
shown. For randomly chosen zero-sum games, the probability of existence 
of pure equilibria tends to zero as the number of actions of the players goes 
to infinity. In contrast, for nonzero-sum two player games, the limit of the 
probability of existence of  pure equilibria as the number of actions of the 
two players goes to infinity, tends to the number 1 - e  -~ 20.63. For many- 
player games, if the number of players is fixed and the number of  their 
actions goes to infinity, the probability of existence of pure equilibria tends 
to a fixed nonzero number. Finally, if the number of players goes to infinity, 
then the probability of existence of  a pure equilibrium tends to zero. 

The structure of this paper is as follows. In Section 2, we examine the 
zero-sum case; in Section 3, the two-player case; and in Section 4, the 
many-player cases. In Section 5, we present some interesting directions for 
extending the results. 

Note to the Reader. Although the issues taken up in this paper could 
have been considered many years ago, our own search in the game literature, 
far beyond the references cited at the end, did not reveal any related paper 
addressing these issues. If  the reader is aware of some related work, we 
would be grateful if he/she could communicate it to us. 

2. Zero-Sum Case 

Consider the zero-sum game 

min max(x'Ay), 
y x 

where A = (au) is an m x n real matrix and 

x'=(xl  . . . . .  xm), xi>_O, ~', x i = l ,  
i ~ l  

Y'= (Yl . . . .  , y,,), yi>O, ~ yt = 1, 
i = 1  

(1) 
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are the mixed equilibria of the two players. Consider that the a o. are chosen 
independently and randomly, according to a uniform distribution from an 
interval [61,62]. I f$  = (1, 0 , . . . ,  0), p = (1, 0 . . . . .  0) constitute a pure equi- 
librium, it will hold that 

a m l ,  a m - l , l ,  �9 �9 �9 , a21 _~<all ~ a 1 2 ,  a13 ,  �9 �9 �9 , a l n .  (2) 

Let us now calculate the probability that, for the n + m - 1  numbers 
present in (2), chosen independently and randomly, (2) holds. The possible 
orderings of n + m - 1 numbers are (n + m - 1)! in multitude. The orderings 
for which (2) holds equals the product of the multitude of possible orderings 
of a12, a 1 3  . . . . .  al, [which is ( n -  1)!] by the product of the multitude of 
possible orderings of aml,am-l,1 . . . . .  a21 [which is ( m - l ) ! ] .  Thus, the 
multitude of possible orderings of  the n + m -  1 numbers appearing in (2) 
for which (2) holds is ( n -  1)!(m- 1)!, consequently, the probability that (2) 
holds if all . . . . .  al , ,  a21, �9 �9 �9 am1 are chosen independently and randomly 
is 

( m -  1)!(n-  1)!/(m + n -  1)!. (3) 

Actually, the quantity in (3) is the ratio of the volume of the hypercube in 
R ,+ , , - l  specified by (2) over the whole volume of  the hypercube. Clearly, 
it is independent of the length of the side of the hypercube and thus holds 
for 61 ---'- ~ ,  6z~  + oo. Also notice that this ratio of volumes does not change 
if strict inequalities are considered in (2), since an equality such as am1-----a11 

corresponds to an n + m -  2 dimensional manifold which has zero volume 
in R "+"-1. 

Considering now the other cases where a U (i,j) ~ (1, 1), is a pure equilib- 
rium solution and that there is a total nm of such cases, we conclude that 
the probability that the game (1) has a pure equilibrium solution is 

[(m- 1)!(n- 1)!~(re+n- 1)!]mn=m!n!/(m+n- 1)[ 

=(m+n)/(m+n n ). (4) 

Finally, let us point out that, if the game has two pure equilibria (for example 
all ,  a23), it will hold that all = a23 = a13 = a21 ; then, the corresponding subset 
of the hypercube in R " + ' -  ~ is of dimension less than n + m -  1, and conse- 
quently has zero volume. In conclusion, we have proven the following 
theorem. 
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Theorem 2.1. I f  the elements of  an m x n real matrix A are chosen 
independently and randomly with a uniform probabil i ty distribution over 
any interval, the probabil i ty of  having a pure equilibrium is 

P, , , , , (S)=Pm, , (S)=(m+n)/ (m+n)=m,n, / (m+n-a) , .  (5) 

Remark 2.1. Notice that the interval [61,62], 6 ;<62 ,  does not influ- 
ence the result. 

Remark 2.2. I f  m = 1, then 

Pl,(s) = 1, n = 1, 2, 3 . . . . .  (6) 

Remark 2.3. Let m be fixed, and let n > rn > 1. It holds that  

Pm~(S) = m!n!/(m + n - 1)! 

=m![1 �9 2 . 3 . . .  n]/[1 �9 2 . . . n .  ( n+  1 ) . . .  ( n + m -  1)] 

=m!/[(n+ 1 ) ( n + 2 ) . . .  ( n + m -  1)]~0, as n--. +oo. 

Also, 

Pm~(S) =m!/[(n+ 1 ) . . .  (n+ m-- 1)]~m!/n m-I , as n--* ~ .  

(7) 

(8) 

Remark 2.4. Let m = n. Then, 

Pnn(S) =n!n!/(2n- 1)[ =n!n[/(2n)! 2n. 

Using the Stirling formula for n - - . ~ ,  

n - - n  n!=n e 2x/~-n, 

we have, for n ~ + o %  

P,n(S) ~- [(n%-n2v/2-~)2(2n)/[(2n)2%-2~~] = 2v/-~(nv/-~/4, ) ---,0. 

The above remarks yield the following theorem. 

Theorem 2.2. I f  m and n ~  ~ ,  then 

emn(S)~O. 

(9) 

(10) 

Remark 2.5. Let us consider that we choose randomly a zero-sum 
game in the following manner :  we first choose an integer n between 1 and 
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N with a uniform probability distribution and an integer m between 1 and 
M with a uniform probability distribution; N and M are fixed positive 
integers; n and m are chosen independently. Next, we choose ao., i= 1 . . . . .  
n and j =  1 , . . . ,  m, independently with a uniform probability distribution in 
[61,62 ], where 61 < 62 are arbitrarily fixed numbers. The resulting zero-sum 
game admits a pure equilibrium with probability 

N M 

(1/(MN)] ~ ~ Pmn(S)=PMN(S). 
n = l  m = l  

Since Pm,(S)~O as m and n ~ + ~ ,  it holds that 

PMu(s)--,O. 

This can be interpreted as follows. Consider all the zero-sum matrix games, 
i.e., any n, m, a b . Then, the probability that a randomly chosen game admits 
a pure equilibrium is zero. 

3. Nash Game with Two Players 

Let us consider a two-player, nonzero-sum game where 

Jl (x, y) = x'Ay, Jz (x, y) = x'By 

are the costs of the two players, A and B are n x m real matrices, and 

x ' = ( X l , . . .  ,x ,) ,  xi>O, ~ x i = l ,  
i = 1  

Y'=(Yl . . . . .  Ym), Yi>--O, ~ yi=l,  
i = 1  

are the mixed equilibria. In order to calculate the probability that the game 
admits a pure equilibrium solution when the elements of the matrices A and 
B are chosen randomly and independently with uniform distributions over 
the same interval, we work as follows. Consider that Player 2 (namely, y) 
chooses for each row of A the position of the minimal element of this row. 
Similarly, Player 1 (namely, x) chooses for each column of B the position 
of the maximal element of the column. If  two choices of the two players 
occupy the same (/j) position in A and B, respectively, then we have a pure 
equilibrium solution. Let us consider first the choices of Player 2. We set 
one at the position of the row where the maximal element of the row is 
located and set zero at the other positions. Considering that choosing two 
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or more elements of  the row to have the same value has probability zero, 
we assume that each row will have only one 1. For  example, the following 
pattern may appear: 

0 1 0 

1 0 0 

0 0 1 

0 0 1 

1 0 0 

0 0 0 

0 0 1 

0 

0 

0 

0 , 

0 

1 

0 

( l l a )  

with 

m = 4 ,  n = 7 ,  ( l i b )  

nl =2,  n2 = 1, n3=3, n4 = 1. ( l l c )  

The multitude of  ones is n~ in the first column, n2, in the second, and so on. 
It holds that 

nl > 0  . . . . .  n,, > 0, (12a) 

n l + n 2 +  �9 �9 �9 +nm=n. (12b) 

The multitude of  possible first columns which have nl ones is (,~). Given 
the position of  the ones in the first column, the n2 ones in the second column 
will have to be in n2 of  the remaining n - n ~  positions. Having set the ones 
of  the first, second, and so on up to the kth column, we can set the ones of 
the ( k+  1)th column in nk+~ of  the remaining n-n~-n2. . . -ng positions, 
and thus we have 

n - - n l - - n 2  . . - - n k )  

Hk+ 1 

possible choices for the (k + 1)th column. Thus, the total number of possible 
choices of  Player 2 with nk ones in the kth column for k = I . . . . .  m is 

(nn)(nnn2,)(n-n;3-n2). " .(n-n~ "n'm--nm-l) 

= n!/(nl!n2!.., nm! ). (13) 
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Using the formula 

Z [ n ! / ( n l ! . . .  n m ! ) l p T ~ . . . p ~ " = ( p l  + " "" + p m )  n, (14) 
n l  + �9 . . - 4 - r i m =  n 

which holds for any numbers pl  . . . . .  Pro, yields that the multitude of matri- 
ces of dimension n x m which have at most a one in each row and zeros else- 
where is 

n ! / ( n l !  . . . n m ! ) = m  n.  (15) 
n I + . . .  + r i m =  n 

For a matrix chosen by Player 2 with nk ones in the kth column, the probabil- 
ity that Player 1 places a one in each column, and his one does not coincide 
in position with the ones put by Player 2, is 

(1 - n l / n ) ( l  - n z / n ) . . .  (1 - n m / n ) .  (16) 

Thus, the probability that a pure equilibrium does not arise is 

P , , , ( F ) = ( 1 / m  n) Y, 
n l  + "'" W n m  = n  

n l  _ > 0  . . . . .  n m > _ O  

[n!(1 - n l / n )  . . .  (1 - n m / n ) ] / ( n l !  . .  . n,,,!). 

(17) 

The following lemma will be used in this section and later on in Section 4. 

Lemma 3.1. Consider the sum 

S~ = ( l /m")  Y' [n!(1 - a n l / n ) . . .  (1 - a n , , , / n ) l / ( n l ! . . ,  n,,,!), 
I~ I + . . .  + t t m =  n 

n l  > _ 0 , . . . ,  n m ~ O  

where a is a fixed real number. The following relations hold: 

rain(re,n) 
(i) Sa-- 5-'. 

k=O 

(ii) i f O _ < a < l a n d m < n ,  thenS~<_(1-a /m)m;  

(iii) if a >0,  then lim Sa = e-~. 
m ~ n  ~ o o  

(18) 
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Proof. 
(i) Carrying out the multiplication in (18), we have 

Sa = (1/m n) {~ (n! / (n l ! . . .  nm!)] + . . . .  + ( - a )  k 

x ~  1/ [ (nl -  1)! . . .  (nk- 1)!n~+l!... nm!]+"�9 " } 

x 2  ( n - k ) ! / [ ( n ~ - l ) ! . . .  (nk-1)!nk+l! . . .nm!]+" �9 �9 } 

and thus, 

In the last step of the derivation in (19), we made use of the formula (14). 
Using the formula 

(mn)=o, i fm>n,  (21) 

we can rewrite (20) in the equivalent form 

S~= ~ ( - a / m n )  ~ k!, (22) 
k=O 

which is symmetric in m and n, as it should be expected. 
(ii) It is easy to verify that the maximum of the product 

( 1 - a z l )  . . .  (1-aZm),  subject to zl+ �9 �9 �9 +zm=l ,  zl>_O . . . . .  zm>O, with 
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0 < a < 1, is achieved at 

z* . . . . .  z* = 1/m. 

Thus,  since 

n~+. �9 "+nm=n and n i>0 ,  

if holds that  

(1 - anl/n)(1 - an2/n) . . .  (1 - an,,/n) <_ [1 - (n/m)(a/n)]" = (1 - ot/m) m. 
(23) 

Using Inequal i ty (23) in (18), we obtain  

S~ < (1/mn)(1 - a/m)" ~ n!/(nl! . . . .  nmt) 

= ( l / m " ) ( 1  - a/m)"m n = (1 - a/m) m. 

Let m < n  and a be a fixed nonnegat ive real number.  Consider  (iii) 
the sum 

S,~=k~=o(-a/mn)~'(k)(k)k' 

k = 0  

k = e v e n  

- ~ (a/m)k(k)[n(n--1)...(n--k+l)]/nk. ( 2 4 )  
k = o d d  

It  holds that  

> ( n - k +  1)k/n k= [1 - ( k -  1)/n]k; 

and since for  any b > 0 it holds tha t  

( 1 - b ) k = l - ( ~ ) b + ( ~ ) b  2 . . .  > _ _ l - ( ~ ) b ,  (25) 
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we have  

I t  also holds tha t  

Using (25) and  (26) in (24), we have  

k = e v e n  k = o d d  

= ~  (a/mle(k)-(1/n) 2 (a/m)k(k)k(k-1) 
k = 0 k = e v e n  

=(1-a/m)m-(1/n) Y, (a/m)k(k)k(k-1). 
k = e v e n  

Let  us consider  the second te rm o f  (27). I t  holds tha t  

Z 
k = e v e n  

k < m  

= Z 
k = 2 , 4 , 6 , . . .  

k<_m 

= Z 

k = 2 , 4 , 6  . . . .  

= (a /my  

(a/m)k-2(a/m)2m[/[(k- 2)!(m - k)!] 

k < m  
y' (a/m) k-z 

k = 2 , 4 , 6 ,  . . .  

x [m!/[(k- 2)!(m - ( k -  2))!](m - k + 2)(m - k + 1)] 

k < m  

<_(aim) 2 Y. 
k = 2 , 4 , 6 , . . .  

l) 

= [ a 2 ( m -  1) /m] (a/m)k-2 k -2  " 
k = 2 , 4 , 6 , . . .  

(26) 

(27) 
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U s i n g  the  b i n o m i a l  i den t i t y  w i th  t~ = a / m ,  we have  

[(1 + ~ ) " +  (1 - 6 )m1/2  

+ mt:t 
+~2(~)+ +~ ,(mmx), 

m =  even,  

m = odd ,  

wh ich  yields  

~, (a/m)~_ 2 m 
= z,4,6 . . . .  k - 2 

m =  even,  

m = o d d ,  

~tl. (m ) + a / m ) m + ( 1 - a / m ) m l / 2 - ( a / m ) m - 1  m - 1  ' 

m = even,  

m = odd .  

U s i n g  (28) a n d  (29) i n  (27) yields 

Sa _> (1 - a / m ) "  - (1/n)[a2(m - 1) /m] (1  + a / m ) "  + (1 - a/m)"](1 /2)  

I ̀~ -l,'m''~ ), 
+ 

( (1 /n ) [a2(m- -1 ) /m](a /m)m- l  (mm l 

m = even,  

m = odd ,  

(28) 

(29) 

o r  

Sa >__ (1 - a /m)"  - (1/n)[a2(m - 1) /m](1/2)[(1 + a / m ) "  + (1 - a /m) m] 

~(1/n)a2+m[(m - 1 ) / m m + l ] ,  m = even,  

+ [ ( 1 / n ) a ' + " [ ( m - 1 ) / m " - l ] ,  m = o d d .  
(30) 
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In either case, it holds that 

lim inf S~ > e-~. 
rn ,n  --* oo 

Using now part  (ii), we have the desired result. []  

Let us now take a = I. Applying Lemma 3.1, we have the following 
theorem. 

Theorem 3.1. I f  the elements of the m x n real matrices A and B are 
chosen independently and randomly with the same uniform distribution over 
any interval, then the probability that the resulting two-player Nash game 
has a pure equilibrium solution is 1 -Pmn(F) ,  where 

Pm,(F) = (1 /m n) ~ [n!(1 - n l  I n ) . . .  (1 -nm/n ) ] / (n l !  . . . nm!) 
n I + . . .  + n m = n  

n l  >~ 0 ,  . . . ,nm>_ O 

m i n ( r n , n )  ( m ] ( n ] k l  

= ~ [ - 1 / ( m n ) f f  
k=o \ k  l \ k /  "" 

Applying part (iii) of  Lemma 3.1 for a = 1, we also have the following 
theorem. 

Theorem 3.2. We have 

lim Pm~(F)=e -1 
m~n-.* + oo 

Remark 3.1. The importance of  Theorem 3.2 is that it implies that, if 
we consider all the two-player nonzero-sum games in the sense of  Remark 
2.5, then since (1-1 /e )~_0.63 ,  this means that 63% of  them have pure 
equilibrium solutions in contrast with the zero-sum game, where 0% have 
pure equilibrium solutions. It should be recalled that another basic difference 
between zero-sum and nonzero-sum is that the former have a unique value, 
whereas the latter have different pairs of  values for different solutions. Thus 
in some sense, the nonzero-sum games, having more solutions than the zero- 
sum ones, allow a higher possibility of  admitting pure equilibria. 

Remark 3.2. Let n >m.  Using a = 1, and part (i) of  Lemma 3.1, we 
have 

(mll"t ,. 
Pm,(F) = ~ [ -1 / (mn)]  ~ \ k ] \ k ]  

k = O  

(31) 
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For  the kth term of  (31), it holds that 

[-1/(mn)]k(k)(~)k[ 

(:) 
Since n(n- 1 ) . . .  ( n -  ( k -  1)) has k terms, it behaves like n k as n--* oo ; thus, 

[ n ( n - 1 ) . . .  (n--(k--1))]/nk~--nk/nk--*l, as n ~ + o o .  

Therefore, 

[-1/(nm)]k(k)(k)k,~(-1/m)~(k ), a s n ~ ;  

thus, 

k = 0  

Letting now m---,~, we conclude that 

lim lim Pm,(F)--.e -1, 
m ~ o o  n ~ c o  

Thus, since 

Pmn(F)<(1 - 1/m)m~e -I 
and 

for n ~ + ~ .  

lim lim Pm~(F)=e -1, 

we have a good indication that 

lim Pm,,(F)=e -1. 
m , t t ~  

To prove it, we need the more complex arguments used in proving part (iii) 
of  Lemma 3.1. 

as n and m ~ .  (32) 
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Remark 3.3. Since 

e-'~= ~ (--a)k/k!, 
k=O 

it is reasonable to expect that, for the sum 

S,~(m, n) = ~ [(-a)k/k!]g(k, m, n) 
k=0 

to converge to e -'~, it is necessary that 

lim 5(k, m, n) = 1. (33) 
m , n  ---~ c t )  

For the formula of  Sa in part (i) of  Lemma 3.1, 5(k, m, n) is given by 

5(k,m,n) I (1/mn)k(ml(nlk '  ifk<min(m,n), = ~ k J \ k )  "' (34) 

0, if k > min(m, n), 

for which (33) holds, since 

5(k, m, n) = [m(rn- 1)(m - k +  1 ) / m k ] . . .  [n(n- 1 ) . . .  (n - k +  1) /n~]~ 1, 

as m and n o + ~  for fixed k. Thus, it is reasonable to expect that the sum 
Sa, as given in part (i) of  Lemma 3.1, converges to e -~. Clearly, additional 
conditions on 5(k, m, n) beyond (33) are needed in order to guarantee con- 
vergence of  S~ (m, n) to e -~. Finally, it should be pointed out that 5(k, m, n) 
may depend on more arguments and not just m and n. For example, instead 
of  (34), we could have 

5(k, m, n, l) 

= { ! ?  )k'(1/m~)(k)k!(1/nk)(~)k'(l/lk)'  ifk>ifk<min(l'm'n)'min(l, m, n). 

Clearly, 

5(k, m, n, l) = [m(m- 1 ) . . .  (m-k+ 1)/m k] 

x In(n- 1 ) . . .  (n-k+ 1)/nk] �9 It(l- 1 ) . . .  (l-k+ 1)/l k] 

1 �9 1 �9 1 = 1, as m, n, l ~  ~ ,  for each fixed k. 
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Remark 3.4. Part (ii) of  Lemma 3.1 and (29) yield, for m < n, 

(1 - 1 / m ) ' > P m , ( F )  

_> (1 - 1/m) m- (1/n)[ ( m -  1) /m](1/2 ) 

• [(1 + 1/m)m+ (1 - l / m ) ' ]  

{((m- 1)/m m+l , m = even, (35) 
+ ( l / n )  _ 1)/rn,,_l,  m = o d d ,  

which can be used to estimate the rapidity of approximation of  Pm,,(F) to 
its limit. 

4. Nash Game with More Than Two Players 

In this section, we will first consider the three-player case. It will be 
clear how the derived formulas generalize to the more-than-three-player 
case. The cost of  player i is given by 

,Ux, y,z)=Y~ ' ak~oXl, ywZ,~, i = 1, 2, 3, 

where 

k = l  . . . .  ,n,  w = l , . . .  ,m, o -= l  . . . . .  e, 

Xk>O, x~ + . . . .  +xn = 1, 

yw>O, yl + . . . .  +ym = 1, 

zo>0 ,  z l + ' "  +ze=  1. 

Let Pt,,(F) denote the probability that a two-player nonzero-sum game 
with l • m matrices does not have a pure equilibrium solutions. Note that 
PI,,,(F) was calculated in the previous section; see Theorem 3.1. 

In order to calculate the probability that a randomly chosen game 
with three players does not have a pure solution, we consider the following 
experiment. Consider the three-dimensional grid of  Fig. 1. 

The possible pure equilibrium may arise as follows. For  each fixed value 
of  n, say n = k, we are faced with a two-player nonzero-sum game with l x m 
dimensional matrices. If  this l x m game has a pure equilibrium between the 
two corresponding players, this will happen if the choices of  the two players 
meet at a particular point of  the grid with k = fixed. The third player will 
choose o-1 points of  the grid with k = 1, o-2 points of  the grid with k = 2, and 
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Fig. 1. Three-dimensional grid for a Nash game with three players. 

so on, until he also chooses a .  points of the grid with k = n. It will also be 

0 " 1 + 0 " 2 + ' ' "  + a . = l m .  

For a particular configuration (o'1 . . . .  , o-~), the probability of failing 
to have the choice of the third player coincide with the choices of the other 
two players on the subgrid with k fixed is 

P,m(  F )  + P , . , (  S )[ ( lm  - (r , ) t i m ]  = 1 - ( a ,  / lm)P t , , , (  S ) . 

The probability of failing for each k is 

[1 - ( a ,  / I m ) P , , , , ( S ) ]  . . . [1 - ( ( Y n / l m ) P t m ( S ) ] .  

The possible positions of the choices of the third player if a l , . . . ,  o-. choices 
correspond to each horizontal subgrid (i.e., k = 1 , . . . ,  n) are 

( l m l ( l m - C r l l . . . ( I m - c r l . . . C r n - 1 ) = ( l m ) , / ( ( y ] , c r 2 , . . . c r n , ) "  

(yl / \ r / \ r 

It holds that [recall (14)] 

~. ( l m ) ! / ( a l !  . . . o . ! ) = n  tin. 

r l q - . . .  -b ~ n =  l m  
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Thus, the probability of  failing to have a pure equilibrium for the three- 
player game is 

P,,,,,,(F) = E {[1 - Ptm(S)(a, t im)].. .  
0"1 + -,- + O-n=/~ 

• [ 1 - P l m ( S ) ( t T n / l m ) ] / ( t T l [ . . .  ~r.!)}[(lm)!/n'm]. ( 3 6 )  

Using Lemma 3.1 (i), we can rewrite Ptm,(F) as 

Ptmn(F):~{[1-Pt , , , (F)]/ lmn}k(k)(Ik)k ' .  (37) 
k=0 

Let us summarize the above results in the following theorem. 

Theorem 4.1. If  the a~w,~ are chosen randomly and independently with 
the same uniform distribution over any interval, then the probability that 
the resulting three-player Nash game has a pure equilibrium solution is 
1- Plm,,(F), where Piton(F) is given by (36) or (37). 

It should be clear to the reader how this result can be generalized to 
the N-player case. In what follows, we concentrate on studying the limit 
behavior of  this probabil i ty as the number of  actions or number of  players 
goes to infinity. Let us first consider an N-player game where the number 
of  actions goes to infinity. Let us denote by pN(F) the probability of  failing 
to have pure equilibria for an N-player game with infinite action sets for the 
players. Since 

lim Plm(F)  = e -~ = p2(F), 
lrn~ + ~  

using Lemma 3.1 yields the formula 

p3(F) = exp[ -  1 + P2(F)], pE(F) = e -1, 

and more generally 

eN+l(F)=exp[-l+eg(F)], p2(F) = e-l,  N > 2 .  (38) 

It is easy to see that the recursion (38) yields a monotonically increasing 
sequence pN(F) which converges to 1 as N---}+~. This proves the following 
theorem. 

Theorem 4.2. If  the number of  actions available to the players tends 
to infinity and the number of  players tends to infinity, the probability of  
having a pure equilibrium solution goes to zero. 
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Next, we examine the case where the number of actions available to all 
the players is fixed and equal to n, but the number of players N increases 
to infinity. Let us denote by PU.(F) the probability that the randomly chosen 
game does not admit a pure equilibrium solution. It holds that (see 
Theorem 3.1) 

P,Z(F) = ~ (-1/n2)k(nk)(nk)k,. (39) 
k=0 

Using (37), we have 

p 2 F  n 3 k n n k! (40) p3 (F )=  ~. { - [ 1 -  . (  )]/ } k k ' 
k=0 

and using (38), 

P~v~+1(F): ~ {-[1-P~(F)]/nN+'}k(k)(n~)k , .  (41, 
k=0 

It holds that 

/~v. +'(F) 

= ~ (-1)k[1 - t~.(F)]kIn!/k!(n - k)!][(nU)!/k!(n N- k)!](k!/n Nk+k) 
k=0 

= ~ (--1)k[1--P~,(F)]k(1/k!)[n!/(n--k)!nk][(nN)!/(nN--k)!nUl'] 
k=0 

= P~. ( F )  + 
k=2 

= P~V. ( r )  + 
k=2 

x ( l / k ! ) ( 1  - 1 / n ) . . .  [1 - ( k -  1 ) / n ] ( 1  - 1/nN)... [1 - (k- 1)/nN]. 
The inequality 

[1 - P~,(F)]k(1/k!)(1 - 1/n). . .  [1 - ( k -  1)/n] 

x ( 1 -  1/nU)...  [ 1 - ( k -  1)/n u] 

_> [1 -P~,(V)]k+'[1/(k+ 1)!](1 - 1/n). . .  [1 - ( k -  1)/n] 

x (1 -k/n)(1 - 1/nN).. .  [1 - ( k -  1)/nN](1 -k /n  ~) 

is equivalent to 

1 >[1 -t~.(F)][1/(k+ 1)](1 -k/n)(1 --k/nN), 

( -  1) k[1 - PU, (F)]e(1/k!)[n!/(n - k)!nk][(nS)!/(nS- k)!n u~ ] 

(-1)k[1 - pN(F)]k 

(42) 

(43) 
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which obviously holds, since P~ (F)~[0, 1] and k<n, k<n N. Thus, for k=  
even, the sum of the consecutive kth and (k+ 1)th terms of (42) [the kth 
term is positive and the (k + 1)th term is negative] is nonnegative. Therefore, 
the summation in (42) is nonnegative; consequently, 

P~ § ~(F) > P~(F). (44) 

Note that the monotonicity of P~(F) in N is important in its own sake. (44) 
implies that the sequence p~Vnn (F) converges as N ~ .  Letting now N ~ ,  
we Conclude that, as N ~  ~ ,  a limit point of P~V~ (F), say x*, will satisfy [see 
(42)] 

0= ~, (--1)k(1 --x*)k(1/k!)(1 -- l / n ) . . .  [1 - ( k -  1)/n] 
k=2 

= ( l - x * )  a ~ ( -1 )k (1-x*)k -a(1 /k ! ) ( l -1 /n ) . . . [1 - (k -1) /n] .  (45) 
k=2 

Clearly, x*= 1 satisfies (45). Since for x * r  1, x*~[0, 1), it holds that 

(1 - x*  ) k - E ( 1 / k ! ) ( 1  -- 1/n)... [1 -- ( k -  1 ) / n ]  > (1 - x * )  k-1  

x [1/(k + 1)!](1 - 1/n) . . .  [1 - ( k -  1)/n](1 -k /n) ,  (46) 

the sum 

(--1)k(1--x*)k-2(1/k!)(1--1/n)... [1- (k-1) /n]  (47) 
k=2 

is strictly positive [recall a similar argument in (43)]. Thus, the only root of 
(45) is x*= 1. To sum up, we have proven the following theorem. 

T h e o r e m  4.3. The sequence P~V~(F) converges monotonically to 1 as 
N ~  + ~ ; i.e., the probability of having pure solutions, for a randomly chosen 
N-player Nash game with a fixed finite multitude n of player actions, con- 
verges to zero as the multitude of players goes to infinity. 

It should be noticed that, in some sense, Theorem 4.3 includes Theorem 
4.2, since Theorem 4.2 corresponds to the extreme case of Theorem 4.3 
where the multitude of actions is not fixed finite n, but infinite. 

5. C o n c l u s i o n s  and E x t e n s i o n s  

In this paper, we examined the probability that a randomly chosen 
matrix game admits pure equilibrium solutions. We provided explicit for- 
mulae for the probability of this occurrence for zero-sum and nonzero-sum 
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games and studied their behavior as the number of actions available to the 
players or as the number of players goes to infinity. We showed that, for 
zero-sum two-player games, this probability goes to zero as the number of 
actions goes to infinity. In contrast, for nonzero-sum Nash games, this does 
not hold. Nonetheless, for Nash games, if the number of players goes to 
infinity, this probability goes to zero independently of whether the number 
of actions is finite or infinite. 

Several extensions of these results can be examined. For example, matrix 
games of particular structure correspond to the extensive form of dynamic 
games; in particular, examination of the limiting behavior of the probability 
of existence of pure equilibria as the time length goes to infinity is of particu- 
lar interest. Another extension recommended by J. B. Cruz, Jr. is the follow- 
ing: Cruz Problem. Considering the result presented here that a randomly 
chosen zero-sum two-player game with infinite action spaces almost never 
has pure equilibrium solutions, whereas a corresponding two-player Nash 
game randomly chosen does have pure solutions with nonzero probability, 
the following well-posedness problem arises. If we chose randomly a two- 
player Nash game with infinite action spaces, subject to the restriction 
liB+ A II < E, is it true that the probability that it has pure solutions goes to 
zero as E~0, so as to recover the zero-sum result? This problem is similar 
in spirit to the examination of lack of well-posedness for dynamic differential 
zero-sum games with respect to their limiting behavior as the time interval 
goes to infinity, demonstrated in Ref. 4. 

Another direction for investigation is the following. It is known that, 
between zero-sum and nonzero-sum cases, there are important differences. 
Perhaps, the most basic one is that the solutions of zero-sum games produce 
a unique cost value for the players, whereas the solutions of nonzero-sum 
games may result in different cost for each player. Another difference that 
surfaced from the analysis presented in this paper is that the probability of 
having pure equilibria in randomly chosen games is zero for zero-sum games 
and nonzero for nonzero-sum games. Nonetheless, it was also shown that, 
as the number of player tends to infinity, the probability of appearance of 
pure equilibria tends to zero, i.e., recovers the zero-sum case characteristic. 
An immediate question arises due to this behavior and it is the following: 
Although an N-player nonzero-sum game may have many solutions which 
result in differnt costs for each player, is it true that, as N tends to infinity, 
although multiplicity of solutions may still be present, the resulting costs to 
each player tend to a unique value? 

A more general issue is the study of multiplicity of the solution cost 
values for each player, its dependence on the number of actions and players, 
and its limiting behavior as the number of actions or players goes to infinity. 
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