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Abstract The purpose of this paper is to formulate and study a game where there is a
player who is involved for a long time interval and several small players who stay in the
game for short time intervals. Examples of such games abound in practice. For example, a
Bank is a long term player who stays in business for a very long time whereas most of its
customers are affiliated with the Bank for relatively short time periods. A University and
its Students provide another example and it is this model that we use here for motivating
and posing the questions. The University is considered to have an infinite time horizon and
the Students are considered as players who stay in the game for a fixed period of 5 years
(indicative number). A class of Students who start their studies at a certain year is considered
as one player/Student who is involved for 5 years. This player overlaps in action with the
other students who entered at different years and with the University. We study this game
in a linear quadratic, deterministic, discrete and continuous time setups, where the players
use linear feedback strategies and are in Nash or Stackelberg equilibrium, and where the
Students have the same cost structure independently of the year they started their studies.
An important feature of the solutions derived is that they lead to Riccati type equations for
calculating the gains, which are interlaced in time i.e. their evolution depends on present and
past values of the gains. In the continuous time setup this corresponds to integrodifferential
equations.

Keywords Nash · Stackelberg · Linear quadratic · Different and overlapping time horizons

1 Introduction

The purpose of this paper is to formulate and study a game where there is a player who is
involved for a long time interval and several small players who stay in the game for short
time intervals. Examples of such games abound in practice. For example, a Bank is a long
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term player who stays in business for a very long time whereas most of its customers are
affiliated with the Bank for relatively short time periods. A University and its Students pro-
vide another example and it is this model that we use here for motivating and posing the
questions. The University is considered to have an infinite time horizon and the Students are
considered as players who stay in the game for a fixed period of 5 years (indicative num-
ber). All the formulae can be straightforwardly adapted for the case of other time horizons.
(Having these formulae is important because one can use them for studying the impact of
extending or shortening the time horizon of the small players.) A class of Students who start
their studies at a certain year is considered as one player/Student who is involved for 5 years.
This player overlaps in action with the other students who entered at different years and with
the University. For example, when a Student is in the third year of his studies, he overlaps
with the Student who is in the first year of his studies, with the Student who is in the second
year, the Student who is in the fourth year, the Student who is in the fifth year, and of course
with the University.

We will study this game in a linear quadratic, deterministic, discrete and continuous
time setups, where the players use linear feedback strategies and are in Nash or Stackel-
berg equilibrium, and where the Students have the same cost structure independently of the
year they started their studies. We seek feedback solutions that are linear functions of the
current state, since it is known that they are the only ones that survive in the presence of
small disturbances. An important feature of the solutions derived is that they lead to Riccati
type equations for calculating the gains, which are interlaced in time, i.e., their evolution de-
pends on present and past values of the gains. In the continuous time setup this corresponds
to integrodifferential equations. Variants of this game may consider additional features of
importance in practice, such as the random entry time and exit of the small players, the exis-
tence of a pool of different types of Students from which the Students who start their studies
at a certain year are drawn, etc.

Earlier versions of portions of this work have been presented by the author and his coau-
thors in [14–17].They deal with aspects of the deterministic formulation with the exemption
of [17] where the random entry/exit and pools of different types of small players is consid-
ered. Relations to the work presented here can be found with the reputation games, [11],
the overlapping generations problems; see [3, 19], and the intergenerational game models
introduced in [2] and further developed in [4, 12, 13].

In Sect. 1, we present the basic model. In Sect. 2, we present the Nash feedback solution,
and in Sect. 3 the feedback Stackelberg solution. In Sect. 4, we present some sufficient con-
ditions for existence, and in Sect. 5 the continuous time analogues are given. In Sect. 6, some
conceptual numerical algorithms are delineated as to highlight some important features that
deserve further consideration. Section 7 presents two scalar examples for the feedback Nash
strategy, one for the discrete time and the other for the continuous time. These examples
exhibit some very interesting features of the games at hand. Conclusions are in Sect. 8.

2 State Equations and Costs

The state evolves according to

xk+1 = Axk + Buk + B1u
1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k, k = 0,1,2, . . . (1)

The cost of the University is

J = 1
2

∞∑

k=0

(
xT

k Qxk + uT
k Ruk

)
(2)
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The cost of the Student who enters the University at time k is

Js[k, k + 5] = 1
2

{
xT

k Q1xk + xT
k+1Q2xk+1 + xT

k+2Q3xk+2 + xT
k+3Q4xk+3

+ xT
k+4Q5xk+4 + xT

k+5Q6xk+5 +
(
u1

k

)T
R1u

1
k +

(
u2

k+1

)T
R2u

2
k+1

+
(
u3

k+2

)T
R3u

3
k+2 +

(
u4

k+2

)T
R4u

4
k+2 +

(
u5

k+2

)T
R5u

5
k+2

}

= 1
2
xT

k+5Q6xk+5 + 1
2

4∑

l=0

(
xT

k+lQl+1xk+l +
(
ul+1

k+l

)T
Rl+1u

l+1
k+l

)

xk ∈ Rn,uk ∈ Rm,ui
k ∈ Rmi (3)

The matrices involved have dimensions:

A(n × n), B(n × m), Bi(n × mi)

Q(n × n), Qi(n × n), R(m × m), Ri(mi × mi)

Q = QT ≥ 0, Qi = QT
i ≥ 0, R = RT > 0, Ri = RT

i > 0, i = 1,2,3,4,5

The Student who enters the University at time k sees a state evolution as follows, where his
control actions are u1

k , u2
k+1, u3

k+2, u4
k+3, u5

k+4, (marked in bold):

xk+1 = Axk + Buk + B1u
1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

xk+2 = Axk+1 + Buk+1 + B1u
1
k+1 + B2u

2
k+1 + B3u

3
k+1 + B4u

4
k+1 + B5u

5
k+1

xk+3 = Axk+2 + Buk+2 + B1u
1
k+2 + B2u

2
k+2 + B3u

3
k+2 + B4u

4
k+2 + B5u

5
k+2

xk+4 = Axk+3 + Buk+3 + B1u
1
k+3 + B2u

2
k+3 + B3u

3
k+3 + B4u

4
k+3 + B5u

5
k+3

xk+5 = Axk+4 + Buk+4 + B1u
1
k+4 + B2u

2
k+4 + B3u

3
k+4 + B4u

4
k+4 + B5u

5
k+4

(4)

At time instant k, say for example, k = 46, the costs involved are: J , Js[46,51], Js[45,50],
Js[44,49], Js[43,48], Js[42,47], which means that the players involved are the University
with current action uk and cost J , the Student who is a first year student at time k = 46 with
current action u1

k and cost Js[46,51], the Student who is a second year student at time k = 46
with current action u2

k and cost Js[45,50], the Student who is a third year student at time
k = 46 with current action u3

k and cost Js[44,49], the Student who is a fourth year student
at time k = 46 with current action u4

k and cost Js[43,48], and the Student who is a fifth
year student at time k = 46 with current action u5

k and cost Js[42,47]. Thus, the controls to
be characterized by backward induction for the feedback Nash or the feedback Stackelberg
equilibria are u46, u1

46, u2
46, u3

46, u4
46, u5

46.

3 The Feedback Nash Solution

In this section, we will derive the feedback Nash solution. The open loop Nash solution is
also of interest but it will be considered elsewhere. The feedback Nash solution is obtained
by using dynamic programming; see [1, 6, 8, 11, 22, 23]. The feedback solutions we are
after are restricted to be linear functions of the current state, since it is known that they are
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the only ones that survive in the presence of small disturbances. At time k, the University
solves the problem:

min
uk

1
2

(
xT

k Qxk + uT
k Ruk + xT

k+1Kxk+1
)

min
uk

1
2

{
xT

k Qxk + uT
k Ruk +

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)T

× K
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)}

and the solution satisfies

Ruk + BT K
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)
= 0

At time k, the first year student solves:

min
u1
k

(
xT

k Q1xk +
(
u1

k

)T
R1u

1
k + xT

k+1K1xk+1
)

min
u1
k

[
xT

k Q1xk +
(
u1

k

)T
R1u

1
k +

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)T

× K1
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)]

where
1
2
xT

k+1K1xk+1

is the cost to go and the solution is

R1u
1
k + BT

1 K1
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)
= 0

At time k, the second year student solves:

min
u2
k

(
xT

k Q2xk +
(
u2

k

)T
R2u

2
k + xT

k+1K2xk+1
)

min
u2
k

[
xT

k Q2xk +
(
u2

k

)T
R2u

2
k +

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)T

× K2
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)]

where
1
2
xT

k+1K2xk+1

is the cost to go and the solution is

R2u
2
k + BT

2 K2
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)
= 0

At time k, the third year student solves:

min
u3
k

(
xT

k Q3xk +
(
u3

k

)T
R3u

3
k + xT

k+1K3xk+1
)

min
u3
k

[
xT

k Q3xk +
(
u3

k

)T
R3u

3
k +

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)T

× K3
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)]
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where
1
2
xT

k+1K3xk+1

is the cost to go and the solution is

R3u
3
k + BT

3 K3
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)
= 0

At time k, the fourth year student solves:

min
u4
k

(
xT

k Q4xk +
(
u4

k

)T
R4u

4
k + xT

k+1K4xk+1
)

min
u4
k

[
xT

k Q4xk +
(
u4

k

)T
R4u

4
k +

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)T

× K4
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)]

where
1
2
xT

k+1K4xk+1

is the cost to go and the solution is

R4u
4
k + BT

4 K4
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)
= 0

At time k, the fifth year student solves:

min
u5
k

(
xT

k Q5xk +
(
u5

k

)T
R5u

5
k + xT

k+1K5xk+1
)

min
u5
k

[
xT

k Q5xk +
(
u5

k

)T
R5u

5
k +

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)T

× K5
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)]

where
1
2
xT

k+1K5xk+1

is the cost to go and the solution is

R5u
5
k + BT

5 K5
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)
= 0

Under the appropriate invertibility assumptions, the system of equations has a solution of
the form:

uk = Lxk, u1
k = L1xk, uk

2 = L2xk,

uk
3 = L3xk, u4

k = L4xk, u5
k = L5xk

where the gains L, L1, L2, L3, L4, L5 satisfy:

RL + BT K(A + BL + B1L1 + B2L2 + B3L3 + B4L4 + B5L5) = 0

RiLi + BT
i Ki(A + BL + B1L1 + B2L2 + B3L3 + B4L4 + B5L5) = 0, i = 1,2, . . . ,5

(5)
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Or

Ac = A + BL + B1L1 + B2L2 + B3L3 + B4L4 + B5L5

RL + BT KAc = 0

RiLi + BT
i KiAc = 0, i = 1,2, . . . ,5

(6)

For the costs to go 1
2xT

k+1Kixk+1 of the students hold:

K5 = Q6

Ki = Qi+1 + LT
i+1Ri+1Li+1 + AT

c Ki+1Ac, i = 0,1, . . . ,4
(7)

where

J ∗
s [k, k + 5] = 1

2
xkK0xk

is the optimal cost of the student who entered the University at year k. For the cost to go of
the University, using the first three equations of the present section in conjunction with the
fact that the University’s problem is infinite time, time-invariant yields:

K = Q + LT RL + AT
c KAc

and

J ∗ = 1
2
x0Kx0

is the optimal cost of the University. From (5), (6), we have

L = −R−1BT KAc

Li = −R−1
i BT

i KiAc, i = 1,2, . . . ,5
(8a)

and substituting in (7) we get:

K = Q + AT
c

(
K + KBR−1BT K

)
Ac

K5 = Q6,

Ki = Qi+1 + AT
c

(
Ki+1 + Ki+1Bi+1R

−1
i+1B

T
i+1Ki+1

)
Ac, i = 0,1, . . . ,4

A =
(
I + BR−1BT K + B1R

−1
1 BT

1 K1 + B2R
−1
2 BT

2 K2 + B3R
−1
3 BT

3 K3

+ B4R
−1
4 BT

4 K4 + B5R
−1
5 BT

5 K5
)
Ac

(8b)

Let us formalize the above results in the form of a proposition.

Proposition 1 Let us assume that the system of (8b) has a solution: K5 ≥ 0, K4 ≥ 0, K3 ≥ 0,
K2 ≥ 0, K1 ≥ 0, K0 ≥ 0, K ≥ 0, Ac that satisfy also (9). Then the (linear) feedback Nash
solution of the problem (1)–(3) is u = Lxk for the University and ui = Lixk , i = 1,2, . . . ,5
for the Students, where (8a) and (8b) give the L, K , Li , Ki , i = 0,1,2, . . . ,5. The optimal
cost of the University is J ∗ = 1

2 x0Kx0 and for the Student who starts at year k is J ∗
s [k, k+5]

= 1
2 xkK0xk .

Essentially, (8b) is the system of equations that has to be solved for the K0, K1, K2, K3, K4,
K5, K and the closed loop matrix Ac . Notice that it has to hold: K5 ≥ 0, K4 ≥ 0, K3 ≥ 0,
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K2 ≥ 0, K1 ≥ 0, K0 ≥ 0 which will obviously hold since all the Qi ≥ 0. In addition it has to
hold that: K ≥ 0. For having asymptotic stability and thus finite University cost it suffices:

∣∣eigenvalues(Ac)
∣∣ < 1 (9)

(If there is no University player, the sufficiency condition (9) that guarantees finiteness of
the University cost is not needed. The closed loop matrix does not need to be asymptotically
stable, since then the costs of the Students, being calculated during finite time periods, are
finite even though the system may become unstable as time goes to infinity.) Notice that we
have an interlaced (in time) system of quadratic type difference equations, since the evolu-
tion of the difference equation for Kk depends on past and future values of the unknown Kk .
This type of equations is beyond the usual coupled Riccati equations that appear in several
Linear Quadratic Games.

Remarks It would be interesting to isolate some interesting cases and study them on their
own, such as:

1. Only Students are present; no University is present. This is model where coordination
can exist through time without the permanent presence of a coordinator. The role of the
coordinator is assumed by a succession of overlapping generations that although they in-
dividually have a finite life time, they are interlaced by succession, and thus a permanent
sustenance is manifested. We examine this issue in the context of an example in Sect. 7.

2. Increase the number of years a Student stays in the University, and study the limiting
behavior on the costs and the closed loop matrix.. Study the impact of increasing the
number of years a Student stays in the University in conjunction with the absence of the
University, i.e., absence of a coordinator.

3. Take: Q1 ≤ Q2 ≤ Q3 ≤ Q4 ≤ Q4 ≤ Q6 = Q, i.e., as far as the state is concerned; the ob-
jective of the student as he matures in years of study coincides with that of the University
(Q). Take R = I for the University and the Ri ’s of the Students to increase toward the
R = I of the University: R1 ≥ R2 ≥ R3 ≥ R4 ≥ R5 = I . (As the Students mature tend to
agree with University’s overall goals.) In this case, we can take B1 = B2 = B3 = B4 = B5.
We do not need to take B = B1 since University and Students do not affect the state in
an identical manner.

4 The Feedback Stackelberg Solution

Let us now derive the feedback Stackelberg solution. This type of solution was introduced in
[7, 20, 21], and it uses dynamic programming for deriving the solutions. For further insights
into this solution concept, see [5, 6]. We consider that the University is the Leader and the
Students are Followers who play Nash among themselves. Here, as for the previous case,
we seek feedback solutions that are linear functions of the current state, since it is known
that they are the only ones that survive in the presence of small disturbances. At time k, the
students solve the problems (1), (3) where they consider the uk as given, and the following
equations result:

Riu
i
k + BT

i Ki

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)
= 0, i = 1,2, . . . ,5

(10)
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The University solves the problem:

min
uk,u1

k ,u2
k ,u3

k ,u4
k ,u5

k

1
2

(
xT

k Qxk + uT
k Ruk + xT

k+1Kxk+1
)

min
uk,u1

k ,u2
k ,u3

k ,u4
k ,u5

k

1
2

{
xT

k Qxk + uT
k Ruk +

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)T

× K
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)}

subject to the constraints (10).
The constraints are linear and, therefore, Lagrange multipliers λi ∈ Rmi , i = 1,2,3,4,5

exist and we can append the constraints to the objective function and form the Lagrangian
L. Since the objective function is convex, setting the gradient of the Lagrangian with respect
to the unknowns uk , u1

k , u2
k , u3

k , u4
k , u5

k equal to zero provides together with the constraints
(10) necessary and sufficient conditions for the minimization of the University’s problem.

The Lagrangian is:

L
(
uk,u

1
k, u

2
k, u

3
k, u

4
k, u

5
k,λ1,λ2,λ3,λ4,λ5

)

= 1
2
xT

k Qxk + 1
2
uT

k Ruk + 1
2

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)T

× K
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)

+ λT
1

(
R1u

1
k + BT

1 K1
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

))

+ λT
2

(
R2u

2
k + BT

2 K2
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

))

+ λT
3

(
R3u

3
k + BT

3 K3
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

))

+ λT
4

(
R4u

4
k + BT

4 K4
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

))

+ λT
5

(
R5u

5
k + BT

5 K5
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

))

λi ∈ Rmi , i = 1,2,3,4,5

Setting the gradients of L with respect to uk , u1
k , u2

k , u3
k , u4

k , u5
k equal to zero, we get respec-

tively:

∇uk
L

(
uk,u

1
k, u

2
k, u

3
k, u

4
k, u

5
k,λ1,λ2,λ3,λ4,λ5

)

= Ruk + BT K
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)

+ BT (K1B1λ1 + K2B2λ2 + K3B3λ3 + K4B4λ4 + K5B5λ5) = 0

∇u1
k
L

(
uk,u

1
k, u

2
k, u

3
k, u

4
k, u

5
k,λ1,λ2,λ3,λ4,λ5

)

= BT
1 K

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)

+ R1λ1 + BT
1 (K1B1λ1 + K2B2λ2 + K3B3λ3 + K4B4λ4 + K5B5λ5) = 0

∇u2
k
L

(
uk,u

1
k, u

2
k, u

3
k, u

4
k, u

5
k,λ1,λ2,λ3,λ4,λ5

)

= BT
2 K

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)

+ R2λ2 + BT
2 (K1B1λ1 + K2B2λ2 + K3B3λ3 + K4B4λ4 + K5B5λ5) = 0
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∇u3
k
L

(
uk,u

1
k, u

2
k, u

3
k, u

4
k, u

5
k,λ1,λ2,λ3,λ4,λ5

)

= BT
3 K

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)

+ R3λ3 + BT
3 (K1B1λ1 + K2B2λ2 + K3B3λ3 + K4B4λ4 + K5B5λ5) = 0

∇u4
k
L

(
uk,u

1
k, u

2
k, u

3
k, u

4
k, u

5
k,λ1,λ2,λ3,λ4,λ5

)

= BT
4 K

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)

+ R4λ4 + BT
4 (K1B1λ1 + K2B2λ2 + K3B3λ3 + K4B4λ4 + K5B5λ5) = 0

∇u5
k
L

(
uk,u

1
k, u

2
k, u

3
k, u

4
k, u

5
k,λ1,λ2,λ3,λ4,λ5

)

= BT
5 K

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)

+ R5λ5 + BT
5 (K1B1λ1 + K2B2λ2 + K3B3λ3 + K4B4λ4 + K5B5λ5) = 0

The system of equations that we have to solve for the unknowns uk , u1
k , u2

k , u3
k , u4

k , u5
k , λ1,

λ2, λ3, λ4, λ5 is:

Riu
i
k + BT

i Ki

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)
= 0, i = 1,2, . . . ,5

Ruk + BT K
(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)

+ BT (K1B1λ1 + K2B2λ2 + K3B3λ3 + K4B4λ4 + K5B5λ5) = 0

Riλi + BT
i K

(
Axk + Buk + B1u

1
k + B2u

2
k + B3u

3
k + B4u

4
k + B5u

5
k

)

+ BT
i (K1B1λ1 + K2B2λ2 + K3B3λ3 + K4B4λ4 + K5B5λ5) = 0, i = 1,2, . . . ,5

(11)
Under the appropriate invertibility assumptions, the solutions for the unknowns will be linear
in xk , i.e.,

uk = Lxk, u1
k = L1xk, u2

k = L2xk

u3
k = L3xk, u4

k = L4xk, u5
k = L5xk

We set

Ac = A + BL + B1L1 + B2L2 + B3L3 + B4L4 + B5L5

λ = K1B1λ1 + K2B2λ2 + K3B3λ3 + K4B4λ4 + K5B5λ5

Then Eqs. (11) can be written as:

Li = −R−1
i BT

i KiAc, i = 1,2, . . . ,5

Lxk = −R−1BT (KAcxk + λ)

λi = −R−1
i BT

i (KAcxk + λ), i = 1,2, . . . ,5

Substituting the λi in (11) we get:
(
I + K1B1R

−1
1 BT

1 + K2B2R
−1
2 BT

2 + K3B3R
−1
3 BT

3 + K4B4R
−1
4 BT

4 + K5B5R
−1
5 BT

5

)
λ

+
(
K1B1R

−1
1 BT

1 + K2B2R
−1
2 BT

2 + K3B3R
−1
3 BT

3 + K4B4R
−1
4 BT

4

+ K5B5R
−1
5 BT

5

)
KAcxk = 0

It is clear that the basic condition for existence of a unique solution is the invertibility of the
matrix: I + W where

W = K1B1R
−1
1 BT

1 + K2B2R
−1
2 BT

2 + K3B3R
−1
3 BT

3 + K4B4R
−1
4 BT

4 + K5B5R
−1
5 BT

5
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Therefore, if the matrix I + W is invertible, have

λ = −(I + W)−1WKAcxk

L = −R−1BT (I + W)−1KAc

In conclusion, we have the following formulae for the control gains:

Li = −R−1
i BT

i KiAc, i = 1,2, . . . ,5

L = −R−1BT (I + W)−1KAc

W = K1B1R
−1
1 BT

1 + K2B2R
−1
2 BT

2 + K3B3R
−1
3 BT

3 + K4B4R
−1
4 BT

4 + K5B5R
−1
5 BT

5(
I + BR−1BT (I + W)−1K + B1R

−1
1 BT

1 K1 + B2R
−1
2 BT

2 K2

+ B3R
−1
3 BT

3 K3 + B4R
−1
4 BT

4 K4 + B5R
−1
5 BT

5 K5
)
Ac = A

(12)

As far as the updating of the costs to go is concerned, the same methodology and formulae
hold as in (8a), (8b), which concern the Nash solution, but we have to use the new Ac of the
formula (12) above. Thus, the final formulae for finding the feedback Stackelberg solution
are:

K = Q + AT
c

(
K + KBR−1BT K

)
Ac

K5 = Q6

Ki = Qi+1 + AT
c

(
Ki+1 + Ki+1Bi+1R

−1
i+1B

T
i+1Ki+1

)
Ac, i = 0,1, . . . ,4

W = K1B1R
−1
1 BT

1 + K2B2R
−1
2 BT

2 + K3B3R
−1
3 BT

3 + K4B4R
−1
4 BT

4 + K5B5R
−1
5 BT

5(
I + BR−1BT (I + W)−1K + B1R

−1
1 BT

1 K1 + B2R
−1
2 BT

2 K2

+ B3R
−1
3 BT

3 K3 + B4R
−1
4 BT

4 K4 + B5R
−1
5 BT

5 K5
)
Ac = A

(13)

Let us formalize the above results in the form of a proposition.

Proposition 2 Let us assume that the system of (13) has a solution: K5 ≥ 0, K4 ≥ 0, K3 ≥ 0,
K2 ≥ 0, K1 ≥ 0, K0 ≥ 0, K ≥ 0, Ac that satisfy (14) and that I + W is invertible. Then the
(linear) feedback Stackelberg solution of the problem (1)–(3) is u = Lxk for the University
and ui = Lixk , i = 1,2, . . . ,5 for the Students, where (12) and (13) give the L, K , Li , Ki ,
i = 0,1,2, . . . ,5. The optimal cost of the University is J ∗ = 1

2x0Kx0 and for the Student
who starts at year k is J ∗

s [k, k + 5] = 1
2xkK0xk .

For having asymptotic stability and thus finite University it suffices:

∣∣eigenvalues(Ac)
∣∣ < 1 (14)

(If there is no University player, the closed loop matrix does not need to be asymptot-
ically stable, since then the costs of the Students, being calculated during a finite time
period, are finite). The system (13) is a system of coupled nonlinear equations similar to
the one derived for the feedback Nash solution, with the only difference being the term
BR−1BT (I +W)−1K in the formula (13) for calculating Ac instead of the BR−1BT K term
in (8b) for calculating Ac for the Nash case.
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Notice that the matrix on the left-hand side of (13) is:

I + BR−1BT (I + W)−1K + B1R
−1
1 BT

1 K1 + B2R
−1
2 BT

2 K2 + B3R
−1
3 BT

3 K3

+ B4R
−1
4 BT

4 K4 + B5R
−1
5 BT

5 K5

= I + WT + BR−1BT (I + W)−1K

=
(
I + WT

)(
I +

(
I + WT

)−1
BR−1BT (I + W)−1K

)

and with

X =
(
I + WT

)−1
BR−1BT (I + W)−1, Y = K

We have that I + XY is invertible since both X,Y are symmetric and positive semidefinite.

5 Sufficient Conditions for the Existence of Nash Solutions

We will derive some sufficient conditions for the existence of solutions to Eqs. (8a), (8b) and
(9). The reason for this derivation is to demonstrate that there are classes of problems for
which Nash solutions exist, and thus the problem at hand and the derived solutions are not
vacuous. These conditions are based on the contraction mapping and are restrictive. They do
not deprive the least from the need to study in full the geometric structure these equations.
Less stringent conditions could be derived by using Brower’s fixed-point theorem in a way
similar to the one employed in [18]. For insights into methodologies for studying such types
of coupled matrix equations appearing in games, see [1].

The system of equations that we want to be solvable is the following:

K = Q + AT
c

(
K + KBR−1BT K

)
Ac

K5 = Q6

Ki = Qi+1 + AT
c

(
Ki+1 + Ki+1Bi+1R

−1
i+1B

T
i+1Ki+1

)
Ac, i = 0,1, . . . ,4

A =
(
I + BR−1BT K + B1R

−1
1 BT

1 K1 + B2R
−1
2 BT

2 K2 + B3R
−1
3 BT

3 K3 + B4R
−1
4 BT

4 K4

+ B5R
−1
5 BT

5 K5
)
Ac

In what follows, we use the usual L2 norm of matrices. Let

s ≥ max
(∥∥BR−1BT

∥∥,
∥∥B1R

−1
1 BT

1

∥∥,
∥∥B2R

−1
2 BT

2

∥∥,
∥∥B3R

−1
3 BT

3

∥∥,
∥∥B4R

−1
4 BT

4

∥∥,
∥∥B5R

−1
5 BT

5

∥∥)

q ≥ max
(
∥Q∥,∥Q1∥,∥Q2∥,∥Q3∥,∥Q4∥,∥Q5∥

)

w ≥ max
(∥∥BR−1BT Q

∥∥,
∥∥B1R

−1
1 BT

1 Q1
∥∥,

∥∥B2R
−1
2 BT

2 Q2
∥∥,

∥∥B3R
−1
3 BT

3 Q3
∥∥,

∥∥B4R
−1
4 BT

4 Q4
∥∥,

∥∥B5R
−1
5 BT

5 Q5
∥∥)

And let us also consider that the K , Ki are sought in some neighborhood B(Q,Q1,Q2,Q3,

Q4,Q5; δ) around Q, Qi , respectively:

B(Q,Q1,Q2,Q3,Q4,Q5; δ)
=

{
(K,K1,K2,K3,K4,K5) :
δ ≥ max

(
∥K − Q∥,∥K1 − Q2∥,∥K2 − Q3∥,∥K3 − Q4∥,∥K4 − Q5∥,∥K5 − Q6∥

)}
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It holds

∥K∥ ≤ δ + q, ∥Ki∥ ≤ δ + q, i = 1,2, . . . ,5

If

6(δ + q)s < 1,

then the matrix
(
I + BR−1BT K + B1R

−1
1 BT

1 K1 + B2R
−1
2 BT

2 K2 + B3R
−1
3 BT

3 K3 + B4R
−1
4 BT

4 K4

+ B5R
−1
5 BT

5 K5
)

is invertible and
∥∥(

I + BR−1BT K + B1R
−1
1 BT

1 K1 + B2R
−1
2 BT

2 K2 + B3R
−1
3 BT

3 K3 + B4R
−1
4 BT

4 K4

+ B5R
−1
5 BT

5 K5
)−1∥∥ < 1

That this inequality holds is an immediate consequence of standard results, see p. 187 in
[24]. Clearly, then

Ac =
(
I + BR−1BT K + B1R

−1
1 BT

1 K1 + B2R
−1
2 BT

2 K2 + B3R
−1
3 BT

3 K3

+ B4R
−1
4 BT

4 K4 + B5R
−1
5 BT

5 K5
)−1

A

and

∥Ac∥ ≤
∥∥(

I + BR−1BT K + B1R
−1
1 BT

1 K1 + B2R
−1
2 BT

2 K2 + B3R
−1
3 BT

3 K3

+ B4R
−1
4 BT

4 K4 + B5R
−1
5 BT

5 K5
)−1

A
∥∥ ≤ ∥A∥

For the first equation of (8a), (8b) for K and the four equations for K1, K2, K3, K4, K5 to
be contractions it suffices:

∥Ac∥2(δ + 2sδ) < δ + 2sδ < 1

Thus, if

6(k + q)s < 1, δ + 2sδ < 1, ∥A∥ < 1

or

δ < min
(

1
1 + 2s

,
1
6s

− q

)
, and ∥A∥ < 1

We will have a contraction. Clearly, we need: 6qs < 1. Let us formalize this discussion in
the form of a proposition:

Proposition 3 Let

s ≥ max
(∥∥BR−1BT

∥∥,
∥∥B1R

−1
1 BT

1

∥∥,
∥∥B2R

−1
2 BT

2

∥∥,
∥∥B3R

−1
3 BT

3

∥∥,
∥∥B4R

−1
4 BT

4

∥∥,
∥∥B5R

−1
5 BT

5

∥∥)

q ≥ max
(
∥Q∥,∥Q1∥,∥Q2∥,∥Q3∥,∥Q4∥,∥Q5∥

)
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6qs < 1

δ < min
(

1
1 + 2s

,
1
6s

− q

)
, and ∥A∥ < 1

Then in the neighborhood B(Q,Q1,Q2,Q3,Q4,Q5; δ) of K , K1, K2, K3, K4, K5:
{
(K,K1,K2,K3,K4,K5) :

max
(
∥K − Q∥,∥K1 − Q2∥,∥K2 − Q3∥,∥K3 − Q4∥,∥K4 − Q5∥,∥K5 − Q6∥

)
< δ

}

the mapping:

K̄ = Q + AT
c

(
K + KBR−1BT K

)
Ac

K̄i = Qi+1 + AT
c

(
Ki+1 + Ki+1Bi+1R

−1
i+1B

T
i+1Ki+1

)
Ac, i = 1,2, . . . ,4

where

Ac =
(
I + BR−1BT K + B1R

−1
1 BT

1 K1 + B2R
−1
2 BT

2 K2 + B3R
−1
3 BT

3 K3 + B4R
−1
4 BT

4 K4

+ B5R
−1
5 BT

5 Q6
)−1

A

is a contraction and it has a solution in the above mentioned neighborhood, and the resulting
Ac is asymptotically stable.

The meaning of this sufficient condition for existence is that if ∥A∥ < 1 and the
∥BR−1BT ∥, ∥BiR

−1
i BT

i ∥, ∥Q∥, ∥Qi∥, i = 1,2, . . . ,5 are sufficiently small, then a Nash
equilibrium in linear Feedback strategies exists. This does not exclude the possibility of
having nonuniqueness where other solutions may and lay outside the aforementioned neigh-
borhood.

Notice that similar stringent sufficient conditions can be derived in an identical manner
for the feedback Stackelberg strategy of (13).

6 Continuous Time Analogues

6.1 Continuous Time Analogue for the Feedback Nash Solution

We start by providing a formulation for the continuous time analogue and then we present
and justify carefully the linear feedback Nash equilibrium. It leads to an interesting form of
Riccati type equations; see (17), (18), which is reminiscent of similar equations in delay or
distributed time systems. These equations are not of the usual generalized Riccati ordinary
differential equations but of the integrodifferential type, because they contain delay and
noncausal terms. In order to formulate the continuous time analogue, we have to specify
the times the successive Student players enter the game. Because the time is continuous,
the separation in the time entry of two successive student players becomes negligible and
we have to define the continuous time version as the limit of a discrete time version. To
do that, we start with a continuous time model where the Students duration of studies is a
fixed length, say T̄ which we cut into (five for example) pieces representing the length of
a year’s study. Thus a Student may enter at time 45T and be a first year student during the
period [45T ,46T ], a second year student during the period [46T ,47T ], a third year student
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during the period [47T ,48T ], a fourth year student during the period [48T ,49T ], and a fifth
year student during the period [49T ,50T ]. The whole period of studies is 5T = T̄ . We will
consider this model, and then we will take the limit by considering more periods of study,
say N instead of 5 but with total length NT = T̄ where the T̄ is fixed. (Essentially, we allow
the total period of study to be finite, i.e., T̄ and we divide this T̄ into a large number N of
periods each one of length T̄

N
. We then let N to go to infinity and T̄

N
to go to zero. We can

think of T̄
N

as the length of a “one year study” with a total of N such years.) The University
player has a permanent presence and no special discretization procedure is needed for him.
The University cost is

J = 1
2

∫ ∞

0

(
xT (t)Q0x(t) + uT (t)R0u(t)

)
dt

The cost of the Student who enters at the beginning of the year kT and his studies has
duration of 5T :

2J S[kT , kT + 5T ] = xT (tf )Qf x(tf ) +
∫ kT +T

kT

(
xT Q1x + uT

1 R1u1
)
dt

+
∫ kT +2T

kT +T

(
xT Q2x + uT

2 R2u2
)
dt +

∫ kT +3T

kT +2T

(
xT Q3x + uT

3 R3u3
)
dt

+
∫ kT +4T

kT =3T

(
xT Q4x + uT

4 R4u4
)
dt +

∫ kT +5T

kT +4T

(
xT Q5x + uT

4 R5u5
)
dt

A, Bi , Qi = QT
i ≥ 0, Ri = RT

i > 0 are constant matrices. The student who enters at the
beginning of the year kT and his studies have a duration of 5T , sees the state equation
below and acts: as first year Student with control u1(t), as second year Student with control
u2(t), as third year Student with control u3(t), as fourth year Student with control u4(t), and
as fifth year Student with control u5(t), i.e.,

dx

dt
= Ax(t) + B0u0(t) + B1u1(t) + B2u2(t) + B3u3(t) + B4u4(t) + B5u5(t)

t ∈ [kT , kT + T ]
dx

dt
= Ax(t) + B0u0(t) + B1u1(t) + B2u2(t) + B3u3(t) + B4u4(t) + B5u5(t)

t ∈ [kT + T , kT + 2T ]
dx

dt
= Ax(t) + B0u0(t) + B1u1(t) + B2u2(t) + B3u3(t) + B4u4(t) + B5u5(t)

t ∈ [kT + 2T , kT + 3T ]
dx

dt
= Ax(t) + B0u0(t) + B1u1(t) + B2u2(t) + B3u3(t) + B4u4(t) + B5u5(t)

t ∈ [kT + 3T , kT + 4T ]
dx

dt
= Ax(t) + B0u0(t) + B1u1(t) + B2u2(t) + B3u3(t) + B4u4(t) + B5u5(t)

t ∈ [kT + 4T , kT + 5T ]
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If we solve for the linear feedback Nash equilibria, the control of the University is

u0(t) = L0(t)x(t), L0(t) = −R−1
0 BT

0 K0(t)x(t)

and the controls of the Students are:

u1(t) = L1(t)x(t), L1(t) = −R−1
1 BT

1 K1(t)x(t), t ∈ [kT , kT + T ], k = 0,1,2,3, . . .

u2(t) = L2(t)x(t), L2(t) = −R−1
2 BT

2 K2(t)x(t), t ∈ [kT , kT + T ], k = 0,1,2,3, . . .

u3(t) = L3(t)x(t), L3(t) = −RT
3 BT

3 K3(t)x(t), t ∈ [kT , kT + T ], k = 0,1,2,3, . . .

u4(t) = L4(t)x(t), L4(t) = −RT
4 BT

4 K4(t)x(t), t ∈ [kT , kT + T ], k = 0,1,2,3, . . .

u5(t) = L5(t)x(t), L5(t) = −RT
5 BT

5 K5(t)x(t), t ∈ [kT , kT + T ], k = 0,1,2,3, . . .

The gains are calculated as follows:

−dK0

dt
= K0

(

A +
5∑

i=1

Li

)

+
(

A +
5∑

i=1

Li

)T

K0 + Q0 − K0B0R
−1
0 BT

0 K0

t ∈ [0, T ], K0(0) = K0(T )

−dK1

dt
= K1

(

A + B0L0 +
5∑

j=1,j≠1

BjLj

)

+
(

A + B0L0 +
5∑

j=1,j≠1

BjLj

)T

K1 + Q1

− K1B1R
−1
1 BT

1 K1, t ∈ [0, T ],K1(T ) = K2(0)

−dK2

dt
= K2

(

A + B0L0 +
5∑

j=1,j≠2

BjLj

)

+
(

A + B0L0 +
5∑

j=1,j≠2

BjLj

)T

K2 + Q2

− K2B2R
−1
2 BT

2 K2, t ∈ [0, T ],K2(T ) = K3(0)
(15)

−dK3

dt
= K3

(

A + B0L0 +
5∑

j=1,j≠3

BjLj

)

+
(

A + B0L0 +
5∑

j=1,j≠3

BjLj

)T

K3 + Q3

− K3B3R
−1
3 BT

3 K3, t ∈ [0, T ],K3(T ) = K4(0)

−dK4

dt
= K4

(

A + B0L0 +
5∑

j=1,j≠4

BjLj

)

+
(

A + B0L0 +
5∑

j=1,j≠4

BjLj

)T

K4 + Q4

− K4B4R
−1
4 BT

4 K4, t ∈ [0, T ],K4(T ) = K5(0)

−dK5

dt
= K5

(

A + B0L0 +
5∑

j=1,j≠5

BjLj

)

+
(

A + B0L0 +
5∑

j=1,j≠5

BjLj

)T

K5 + Q5

− K5B5R
−1
5 BT

5 K5, t ∈ [0, T ],K5(T ) = Qf

Notice that this system (15) is a concatenated boundary value problem. We can rewrite
Eqs. (15) as:
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− dK0

dt
= K0

(

A −
5∑

i=1

BiR
−1
i BT

i Ki

)

+
(

A −
5∑

i=1

BiR
−1
i BT

i Ki

)T

K0 + Q0

− K0B0R
−1
0 BT

0 K0, t ∈ [0, T ], K0(0) = K0(T )

− dKi

dt
= Ki

(

A − B0R
−1
0 BT

0 K0 −
5∑

i=1

BiR
−1
i BT

i Ki

)

+
(

A − B0R
−1
0 BT

0 K0 −
5∑

i=1

BiR
−1
i BT

i Ki

)T

Ki + Qi + KiBiR
−1
i BT

i Ki

t ∈ [0, T ], Ki(T ) = Ki+1(0), i = 1,2,3,4,5,K5(T ) = Qf

(16)

Let us now consider a limiting case where the duration of studies 5T = T̄ remains fixed but
the years of study are not 5 but N , so that NT = T̄ . It is as if the academic year lasts T̄

N
and

we have N such years of study. Equations (15)–(16) become:

−dK0

dt
= K0

(

A −
N∑

i=1

BiR
−1
i BT

i Ki

)

+
(

A −
N∑

i=1

BiR
−1
i BT

i Ki

)T

× K0 + Q0 − K0B0R
−1
0 BT

0 K0, t ∈
[

0,
T̄

N

]
,K0(0) = K0

(
T̄

N

)

−dKi

dt
= Ki

(

A − B0R
−1
0 BT

0 K0 −
N∑

i=1

BiR
−1
i BT

i Ki

)

+
(

A − B0R
−1
0 BT

0 K0 −
N∑

i=1

BiR
−1
i BT

i Ki

)T

Ki + Qi + KiBiR
−1
i BT

i Ki,

t ∈
[

0,
T̄

N

]
,Ki

(
T̄

N

)
= Ki+1(0), i = 1,2,3, . . . ,N − 1, KN

(
T̄

N

)
= Qf

Let us introduce the following notation:

Ki = K(is̄), s̄ = T̄

N
, i = 1,2,3, . . . ,N

Bi = s̄B(is̄), i = 1,2,3, . . . ,N

Qi = Q

(
i
T̄

N

)
, i = 1,2,3, . . . ,N

Ri(t) = s̄R(is̄), i = 1,2,3, . . . ,N

And we rewrite (16) as:

−dK(t)

dt
= K(t)

(

A − B0R
−1
0 BT

0 K0 −
N∑

i=1

s̄B(is̄)R−1(is̄)BT (is̄)K(is̄)

)

+
(

A − B0R
−1
0 BT

0 K0 −
N∑

i=1

s̄B(is̄)R−1(is̄)BT (is̄)K(is̄)

)T

K(t)
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+ Q(t) + K(t)s̄B(is)R−1(is̄)BT (is)K(t)

t ∈
[
i
T̄

N
, (i + 1)

T̄

N

]

K

(
(i + 1)

T̄

N
, is̄

)
= K

(
i
T̄

N
, (i + 1)s̄

)
,K

(
N

T̄

N

)
= Qf ,

i = 1,2,3, . . . ,N − 1

Assuming continuity and differentiability of K(t) in its arguments and taking the limits as
N → ∞(equivalently: T̄

N
= s̄ → 0), we see that this equation becomes:

−dK(t)

dt
= K(t)

(
A − B0R

−1
0 BT

0 K0 −
∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds

)

+
(

A − B0R
−1
0 BT

0 K0 −
∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds

)T

K(t) + Q(t)

t ∈ [0, T̄ ], (17)

The boundary conditions give:

K(T̄ ) = Qf

In this case, the limiting value of the Student’s cost is

2J S[kT , kT + T̄ ] = xT (tf )Qf x(tf ) +
∫ kT + ¯̄T

kT

(
xT Q(t)x + uT R(t)u

)
dt

and the state equation becomes:

dx

dt
≈ Ax(t) + B0u0(t) +

N∑

i=1

s̄B(is̄)u(t, is̄)

→ dx

dt
= Ax(t) + B0u0(t) +

∫ T̄

0
B(s)u(t, s) ds

The limiting form of the equation for the University’s gain becomes an algebraic Riccati
equation:

0 = K0

(
A −

∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds

)

+
(

A −
∫ T̄

0
B(s)R−1(s)BT (s)K(t, s) ds

)T

K0 + Q0 − K0BR−1BT K0 (18)

The control of the University is

u(t) = −R−1
0 BT

0 K0x(t) (19)

and the control of the Student who starts his studies at time t and completes them at time
t + T̄ is:

u(t + s) = −R(s)−1BT (s)K(s)x(t + s), s ∈ [0, T̄ ] (20)
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To sum-up, Eqs. (17), (18), (19) have to be solved. The resulting closed loop matrix:

Ac = A − B0R
−1
0 BT

0 K0 −
∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds (21)

has to be asymptotically stable.
Let us now state formally the continuous time analogue of the game of the linear Nash

feedback strategies solution.

Proposition 4 Consider the state equation

dx

dt
= Ax(t) + B0u0(t) +

∫ T̄

0
B(s)u(t, s) ds (22)

and the costs

J = 1
2

∫ ∞

0

(
xT (t)Q0x(t) + uT (t)R0u(t)

)
dt

J S[t, t + T̄ ] = 1
2
xT (tf )Qf x(tf ) + 1

2

∫ t+¯

t

(
xT Q1x + uT R1u

)
dt

(23)

for the University and the Students, respectively.
Consider also the system evolution equations:

dx

dt
= Ax(t) + B0u0(t) + B1u1(t) + B2u2(t) + · · · + BN−1uN−1(t) + BNuN(t)

t ∈ [kT , kT + T ]
dx

dt
= Ax(t) + B0u0(t) + B1u1(t) + B2u2(t) + B3u3(t) + · · · + BN−1uN−1(t) + BNuN(t)

t ∈ [kT + T , kT + 2T ]
dx

dt
= Ax(t) + B0u0(t) + B1u1(t) + B2u2(t) + B3u3(t) + B4u4(t) + · · · + BNuN(t)

t ∈ [kT + 2T , kT + 3T ]
...
dx

dt
= Ax(t) + B0u0(t) + B1u1(t) + B2u2(t) + · · · + BN−2uN−2(t)

+ BN−1uN−1(t) + BNuN(t)

t ∈
[
kT + NT,kT + (N − 1)T

]

dx

dt
= Ax(t) + B0u0(t) + B1u1(t) + B2u2(t) + · · · + BN−1uN−1(t) + BNuN(t)

t ∈
[
kT + (N − 1)T , kT + NT

]

(24)
and costs for the University:

J = 1
2

∫ ∞

0

(
xT (t)Q0x(t) + uT (t)R0u(t)

)
dt
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and for the Student:

2J S
kT [kT , kT + NT ] = xT (tf )Qf x(tf ) +

∫ kT +T

kT

(
xT Q1x + uT

1 R1u1
)
dt

+
∫ kT +2T

kT +T

(
xT Q2x + uT

2 R2u2
)
dt

+
∫ kT +3T

kT +2T

(
xT Q3x + uT

3 R3u3
)
dt + · · ·

+
∫ kT +NT

kT +(N−1)T

(
xT Q5x + uT

4 R5u5
)
dt (25)

We define the linear feedback solution of the game described by (22)–(23) as the limit of
the linear feedback solution of the game described by (24)–(25) as N → ∞, T = T̄

N
where

we take [kT ,NT ] = [t, t + T̄ ], assuming of course that the limiting solutions exist and the
resulting closed loop matrix:

Ac = A − B0R
−1
0 BT

0 K0 −
∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds

is asymptotically stable. (This a sufficient, not necessary condition for the finiteness of the
leader’s cost.)

This limiting solutions are given by

u(t) = −R−1
0 BT

0 K0x(t)

for the University and

u(t + s) = −R(s)−1BT (s)K(s)x(t + s), s ∈ [0, T̄ ]

for the Student who starts his studies at time t and completes them at time t + T̄ . The K0,
K are given by the equations:

0 = K0

(
A −

∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds

)

+
(

A −
∫ T̄

0
B(s)R−1(s)BT (s)K(t, s) ds

)T

K0 + Q0 − K0BR−1BT K0

−dK(t)

dt
= K(t)

(
A − B0R

−1
0 BT

0 K0 −
∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds

)

+
(

A − B0R
−1
0 BT

0 K0 −
∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds

)T

K(t) + Q(t),

t ∈ [0, T̄ ],

with boundary condition:

K(T̄ ) = Qf
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The resulting closed loop matrix is

Ac = A − B0R
−1
0 BT

0 K0 −
∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds

Notice that we avoided giving a definition of the solution directly for the continuous time
case, but we defined the solution as the limit of an appropriate discretization. This is a device
that has been used on several occasions for control and game problems; see [5, 9, 10].

6.1.1 The Time Invariant Case

The case where the matrices B(s), R(s) involved are constant can be further simplified as
follows. Let

Ac = A − B0R
−1
0 BT

0 K0 − B1R
−1BT

1 L

L =
∫ T̄

0
K(t) dt

−dK(t)

dt
= K(t)Ac + AT

c K(t) + Q, t ∈ [0, T̄ ]

−
(
K(T ) − K(0)

)
= LAc + AT

c L + QT

K(0) = LAc + AT
c L + QT + Qf

K(t) = e−AT
c (t−T )Qf e−Ac(t−T ) +

∫ t

T

e−AT
c (t−τ )(−Q)e−Ac(t−τ ) dτ

K(0) = eAT
c T Qf eAcT +

∫ T

0
eAT

c τQeAcτ dτ

LAc + AT
c L + QT + Qf − eAT

c T Qf eAcT = X

AT
c X + XAc = eAT

c T QeAcT − Q

AT
c

(
LAc + AT

c L + QT + Qf − eAT
c T Qf eAcT

)

+
(
LAc + AT

c L + QT + Qf − eAT
c T Qf eAcT

)
Ac = eAT

c T QeAcT − Q

AT
c

(
LAc + AT

c L
)
+

(
LAc + AT

c L
)
Ac + T

(
AT

c Q + QAc

)
+ AT

c Qf + Qf Ac + Q

= eAT
c T

(
Q + Qf Ac + AT

c Qf

)
eAcT

L =
∫ T̄

0
K(t) dt =

∫ T̄

0

(
e−AT

c (t−T )Qf e−Ac(t−T ) +
∫ t

T

e−AT
c (t−τ )(−Q)e−Ac(t−τ ) dτ

)
dt

After some calculations and repeated use of the formula,

∫ b

a

eCT tQeCt dt = X, CT X + XC = eCT bQeCb − eCT aQeCa

which holds if: all eigenvalues (C) < 0, or all eigenvalues (C) > 0, we obtain the equation:
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AT
c

(
AT

c L + LAc

)
+

(
AT

c L + LAc

)
Ac + T̄

(
AT

c Q + QAc

)
+

(
AT

c Qf + Qf Ac + Q
)

= eT AT
c
(
AT

c Qf + Qf Ac + Q
)
eT Ac (26)

Equation (26) is a transcendental equation for Ac , which together with:

0 = K0Ac + AcK0 + Q0 + K0B0R
−1
0 BT

0 K0

Ac = A − B0R
−1
0 BT

0 K0 − B1R
−1BT

1 L
(27)

constitute essentially a system of two equations that has to be solved for symmetric positive
semidefinite K0, L. The resulting Ac has to be asymptotically stable if we have a University
player whose infinite time cost has to be finite. Notice that Eq. (26) contains third powers
of L in the left-hand side, but also exponential terms of L in the right-hand side. Thus,
we have a system of transcendental, nonalgebraic equations. This is the price we pay for
substituting the Riccati differential equation for K(t), which essentially has a quadratic in
K(t) right-hand side, with a stationary equation, (26), for L.

6.2 Continuous Time Analogue for the Feedback Stackelberg Solution

In order to find the continuous time analogue of the feedback Stackelberg solution we can
follow a procedure similar to the one employed for the Nash case. The analogue of Propo-
sition 3 can be stated for the feedback Stackelberg solution, which again can be defined as
the limit of the appropriate discretization procedure. We will follow a different discretization
procedure which starts from the discrete problem (1)–(3) and then takes the limit. In the pro-
cedure used for the Nash case we used a mixed type of discretization procedure, where the
Students were acting in continuous time for small intervals and the state equation was not
discretized. We believe that both procedures have merit as they represent different modeling
approaches.

Consider the equations derived for the discrete time feedback Stackelberg:

K = Q + AT
c

(
K + KBR−1BT K

)
Ac

K5 = Q6

Ki = Qi+1 + AT
c

(
Ki+1 + Ki+1Bi+1R

−1
i+1B

T
i+1Ki+1

)
Ac, i = 0,1, . . . ,4

W = K1B1R
−1
1 BT

1 + K2B2R
−1
2 BT

2 + K3B3R
−1
3 BT

3 + K4B4R
−1
4 BT

4 + K5B5R
−1
5 BT

5(
I + BR−1BT (I + W)−1K + B1R

−1
1 BT

1 K1 + B2R
−1
2 BT

2 K2

+ B3R
−1
3 BT

3 K3 + B4R
−1
4 BT

4 K4 + B5R
−1
5 BT

5 K5
)
Ac = A

(28)

Let Ā, Āc , B̄ , B̄i , Q̄, R̄, R̄i be the corresponding quantities for the continuous time case.
If we consider a discretization of the continuous time problem with time step δ very small
positive number, it will be:

A ≈ I + δĀ, Ac ≈ I + δĀc, B ≈ δB̄, Bi ≈ δ2B̄i ,

Q̄ ≈ Q, Qi ≈ Q̄(iδ), R ≈ δR̄, Ri ≈ δR̄i , Ki ≈ K̄(iδ)

The summations in (13) will become integrals and instead of i = 1,2, . . . ,6 we will take
i = 1,2, . . . ,N and Nδ ≈ T̄ where T̄ is the duration of the Student’s studies. Also,
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(I + W)−1 =
(
I + K1B1R

−1
1 BT

1 + K2B2R
−1
2 BT

2 + K3B3R
−1
3 BT

3 + · · · + KNBNR−1
N BT

N

)−1

≈
(

I + δ2
N∑

i=1

KiBiR
−1
i BT

i

)−1

≈ I − δ2
N∑

i=1

KiBiR
−1
i BT

i

≈ I − δ

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt

And using it in (13)

(

I + δBR−1BT (I + W)−1K + δ

N∑

i=1

B1R
−1
1 BT

1 K1

)

Ac ≈ A

(

I + δBR−1BT

(
I −

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt

)
K + δ

N∑

i=1

B1R
−1
1 BT

1 K1

)

Ac ≈ A

(

I − δBR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt + δBR−1BT K

+ δ

N∑

i=1

B1R
−1
1 BT

1 K1

)

Ac = A

Ac ≈
(

I − δBR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt + δBR−1BT K

+
N∑

i=1

B1R
−1
1 BT

1 K1

)−1

A

Ac ≈
(

I + δBR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt − δBR−1BT K

− δ

∫ T̄

0
B(t)R−1(t)BT (t)K(t) dt

)
A

I + δĀc ≈
(

I + δBR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt − δBR−1BT K

− δ

∫ T̄

0
B(t)R−1(t)BT (t)K(t) dt

)
(I + δĀ)

I + δĀc ≈ I + δBR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt − δBR−1BT K

− δ

∫ T̄

0
B(t)R−1(t)BT (t)K(t) dt + δĀ + Order

(
δ2)

Āc ≈ BR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt − BR−1BT K

−
∫ T̄

0
B(t)R−1(t)BT (t)K(t) dt + Ā + Order

(
δ2)
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Plugging this Ac in (28), we get:

K ≈ δQ + (I + δAc)
T
(
K + δKBR−1BT K

)
(I + δAc)

K ≈ δQ + K + δKBR−1BT K + δAT
c K + δKAc + Order

(
δ2)

0 ≈ Q + KBR−1BT K + AT
c K + KAc

0 ≈ Q + KBR−1BT K +
(

BR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt − BR−1BT K

−
∫ T̄

0
B(t)R−1(t)BT (t)K(t) dt + Ā + Order

(
δ2)

)T

K

+ K

(
BR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt − BR−1BT K

−
∫ T̄

0
B(t)R−1(t)BT (t)K(t) dt + Ā + Order

(
δ2)

)

0 ≈ Q − KBR−1BT K + ĀT K + KĀ

+ K

(
BR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt −

∫ T̄

0
B(t)R−1(t)BT (t)K(t) dt

)

+
(

BR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt −

∫ T̄

0
B(t)R−1(t)BT (t)K(t) dt

)T

K

This is the steady state Riccati equation for the University’s gain.
Plugging Ac in the other equations of (24) we get:

K3 = Q4 + AT
c

(
K4 + K4B4R

−1
4 BT

4 K4
)
Ac

K3 ≈ δQ4 + (I + δĀc)
T
(
K4 + δK4B4R

−1
4 BT

4 K4
)
(I + δĀc)

K3 ≈ δQ4 + K4 + δK4B4R
−1
4 BT

4 K4 + δĀT
c

(
K4 + δK4B4R

−1
4 BT

4 K4
)

+
(
K4 + δK4B4R

−1
4 BT

4 K4
)
δĀc

K3 ≈ δQ4 + K4 + δK4B4R
−1
4 BT

4 K4 + δĀT
c K4 + K4δĀc + Order

(
δ2)

K3 ≈ δQ4 + K4 + δK4B4R
−1
4 BT

4 K4

+ δ

(
BR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt − BR−1BT K

−
∫ T̄

0
B(t)R−1(t)BT (t)K(t) dt + Ā

)T

K4

+ δK4

(
BR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt − BR−1BT K

−
∫ T̄

0
B(t)R−1(t)BT (t)K(t) dt + Ā

)
+ Order

(
δ2)
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−dK

dt
≈ Q + ĀT K + KĀ − KBR−1BT K

+ K

(
BR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt −

∫ T̄

0
B(t)R−1(t)BT (t)K(t)dt

)

+
(

BR−1BT

∫ T̄

0
K(t)B(t)R−1(t)BT (t) dt −

∫ T̄

0
B(t)R−1(t)BT (t)K(t) dt

)
K

This is the differential equation on the interval [0, T̄ ] with final condition K(T̄ ) = Qf .
Therefore, the continuous time analogue of the feedback Stackelberg strategy for the

model (1)–(3) is identical with the feedback Nash strategy. This observation is in agreement
with the result of [5, 6], for the linear quadratic game with no cross terms in the cost. It is
interesting to note that the same observation holds for the model examined here. In case we
allow cross terms where we have the state multiplying the control in the costs, we would
expect that the two solutions do not coincide. This is an easy exercise to verify, which
nonetheless has its own merit.

7 Remarks on Computational Issues

The computational solution of the equations that give the equilibrium strategies is of the
utmost importance, not only for providing the solutions, but also because any theoretical
study of their convergence is imminently related with the study of existence and uniqueness
or multiplicity of solutions. Some numerical results for the scalar case are reported in [15,
16]. Reference [14] represents the first effort formulating and studying algorithms for the
matrix case. In order to solve the system of Eqs. (8a), (8b) and (13) for the discrete time Nash
and Stackelberg solutions, respectively, we can proceed in several ways, some of which are
presented next.

A straightforward method is to consider them as a system of nonlinear equations and
use any of the general methods available, taking care to operate with symmetric positive
semidefinite updates. The solutions that yield asymptotically stable closed loop matrices are
retained.

Another way is to iterate backwards starting with given final conditions as if we had a
finite time duration and finite summation for the costs. We continue the iteration backwards
until (and if) we achieve convergence or other interesting behavior such as oscillations arise.
This procedure guarantees the symmetric positive semidefinite character of the iterates. Still
we may have nonconvergence or convergence to different solutions for different initializing
solutions. Let us recall the equations we have to solve, and let us denote them by:

X0 = K = Q + AT
c

(
K + KBR−1BT K

)
Ac = Θ0(X0,X1,X2,X3,X4)

K5 = Q6

X1 = K4 = Q5 + AT
c

(
K5 + K5B5R

−1
5 BT

5 K5
)
Ac = Θ1(X0,X1,X2,X3,X4)

X2 = K3 = Q4 + AT
c

(
K4 + K4B4R

−1
4 BT

4 K4
)
Ac = Θ2(X0,X1,X2,X3,X4)

X3 = K2 = Q3 + AT
c

(
K3 + K3B3R

−1
3 BT

3 K3
)
Ac = Θ3(X0,X1,X2,X3,X4)

X4 = K1 = Q2 + AT
c

(
K2 + K2B2R

−1
2 BT

2 K2
)
Ac = Θ4(X0,X1,X2,X3,X4)
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K0 = Q1 + AT
c

(
K1 + K1B1R

−1
1 BT

1 K1
)
Ac

A =
(
I + BR−1BT X0 + B1R

−1
1 BT

1 X4 + B2R
−1
2 BT

2 X3

+ B3R
−1
3 BT

3 X2 + B4R
−1
4 BT

4 X1 + B5R
−1
5 BT

5 Q6
)
Ac

So we have to solve the system:

Xi = Θi (X0,X1,X2,X3,X4), i = 0,1, . . . ,4

We can iterate with any initial positive semidefinite set of initial conditions for the un-
knowns. The updates of the matrix

(
I + BR−1BT X0 + B1R

−1
1 BT

1 X4 + B2R
−1
2 BT

2 X3 + B3R
−1
3 BT

3 X2

+ B4R
−1
4 BT

4 X1 + B5R
−1
5 BT

5 Q6
)

are considered to be invertible during the operation. We can also iterate asynchronously as

Xk+1
i = Θi

(
Xk

0,X
k
1,X

k
2,X

k
3,X

k
4

)
, i = 0,1, . . . ,4

which corresponds to updating the cost functions iteratively and backward for all the players.
For a limit point to be acceptable, we also need that the asymptotic stability condition (9) be
satisfied in the limit.

For the continuous time Nash solution for the case where the matrices involved are time
invariant, we have to solve the system:

AT
c

(
AT

c L + LAc

)
+

(
AT

c L + LAc

)
Ac + T̄

(
AT

c Q + QAc

)
+

(
AT

c Qf + Qf Ac + Q
)

= eT AT
c
(
AT

c Qf + Qf Ac + Q
)
eT Ac

0 = K0Ac + AcK0 + Q0 + K0B0R
−1
0 BT

0 K0

Ac = A − B0R
−1
0 BT

0 K0 − B1R
−1BT

1 L

We can iterate as follows: For Kn
0 ,Ln,An

c = A − B0R
−1
0 BT

0 Kn
0 − B1R

−1BT
1 Ln given, the

updates are:

(
An

c

)T
Mn+1 + Mn+1An

c = −
(
An

c

)T
(T Q + Qf ) − (T Q + Qf )An

c − Q

+ e(T An
c )T

((
T An

c

)T
Qf + Qf An

c + Q
)
eT An

c

(
An

c

)T
Ln+1 + Ln+1An

c = Mn+1

0 = Kn+1
0 An

c +
(
An

c

)T
Kn+1

0 + Q0 + Kn+1
0 B0R

−1
0 BT

0 Kn+1
0

An+1
c = A − B0R

−1
0 BT

0 Kn+1
0 − B1R

−1BT
1 Ln+1

The first two equations for Mn+1, Ln+1 constitute a two step procedure for finding a new
Ln+1 given the Kn, Ln. They can be actually viewed as a fixed-point iteration for the solution
of Eq. (26). The theoretical study of convergence of this iterative process is an interesting
problem.
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8 Examples

We present two scalar examples. The first explores the existence and nonuniqueness issue
for the feedback Nash solution of the discrete time formulation. The second studies the
feedback Nash solution of the continuous time formulation. In the case of absence of the
University player, both examine the interplay between the length of the Students horizon
and the stability of the closed loop matrix. (These examples pertain to the scalar case and
do not constitute examples of use of algorithms for solving the general matrix-Riccati-type
equations since the method by which we solve them relies heavily on the scalar character.)

8.1 Discrete Time

It is interesting that nonuniquness of solutions may appear in our problem, as it so often
happens in game theory. In order to demonstrate this phenomenon and at the same time gain
some insights in the possible reasons for that, and the structure of the problem, we consider
the scalar case for the Feedback Nash solution. Let

Ki = ki, K = k

B1 = B2 = B3 = B4 = B5 = B = R1 = R2 = R3 = R4 = R5 = R = 1

Q1 = Q2 = Q3 = Q4 = Q5 = qs, Q = q

Ac = ac, A = a

Notice that since all the ki , k are nonnegative both ac , a have the same sign. Let ac > 0,
a > 0 w.l.o.g. Eqs. (8a), (8b) become:

k = q + a2
c

(
k + k2)

k5 = qs

k4 = qs + a2
c

(
k5 + k2

5

)

k3 = qs + a2
c

(
k4 + k2

4

)

k2 = qs + a2
c

(
k3 + k2

3

)

k1 = qs + a2
c

(
k2 + k2

2

)

k0 = qs + a2
c

(
k1 + k2

1

)

a = (1 + k + k1 + k2 + k3 + k4 + k5)ac

Let

F(ac) = (1 + k + k1 + k2 + k3 + k4 + k5)ac

We will try to solve these equations by considering the ac as an unknown that when found,
automatically determines the ki , k (two choices for k) and this ac is acceptable if the equation
a = (1 + k + k1 + k2 + k3 + k4 + k5)ac is satisfied.

Consider a plot of F(ac) for ac ∈ [0,1]. For each value of ac , we calculate the ki recur-
sively using the above formulae. We also calculate the k from the first equation above to
get

k+ = 1 − a2
c +

√
(1 − a2

c )
2 − 4qa2

c

2a2
c

, k− = 1 − a2
c −

√
(1 − a2

c )
2 − 4qa2

c

2a2
c
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For the solution to be acceptable, we need that it is positive and real. For the reality, we
need:

(
1 − a2

c

)2 − 4qa2
c ≥ 0

i.e.,

0 ≤ ac ≤ 1
√

q + √
q + 1

Notice that for ac → 0, k+ → ∞, k− → 0. Thus, doing the plot of F(ac) for 0 ≤ ac ≤
1√

q+√
q+1 we have two branches. One starts from zero using the value k− and rises up to the

value of F(āc) that corresponds to āc = 1√
q+√

q+1 . For this branch, all of k and k1, k2, k3,
k4, k5, are increasing as ac → āc , and thus this branch is increasing. For the other branch
that uses k+, starts from the value F(āc) and for ac → 0 it goes toward ∞, we have that
k is decreasing whereas k1, k2, k3, k4, k5, are increasing as ac → āc . We will show that
this branch is not monotonic but may have rising and falling parts giving rise to nonunique
solutions. We have definitely some value of ac = āc for which the value of F(āc) = a. We
conclude that for any a, q , qs we have at least one solution for ac , k, k1, k2, k3, k4, k5. It is
easy to see that the branch that corresponds to ε = −1 is monotonically rising as ac moves
to the right. The branch that corresponds to ε = +1 that starts from ∞ and goes toward the
F(āc) value as ac moves to the right can have a dive before rising again toward F(āc), and
this can happen if qs ≫ 0 as the following argument shows:

(In what follows, by P1(a
2
c ), P2(a

2
c ), we denote polynomial functions of their arguments

whose coefficients are easily calculated although not needed explicitly in our discussion.)

kε = 1 − a2
c +

√
(1 − a2

c )
2 − 4qa2

c

2a2
c

And

k1 + k2 + k3 + k4 + k5 = 5qs + a2
cP1

(
a2

c

)

F(ac) =
[

1 + 5qs + a2
cP1

(
a2

c

)
+ 1 − a2

c +
√

(1 − a2
c )

2 − 4qa2
c

2a2
c

]
ac

= F1(ac) + F2(ac)

F1(ac) =
(

1
2

+ 5qs + a2
cP1

(
a2

c

))
ac

F2(ac) = 1
2ac

+
√(

1 − a2
c

2ac

)2

− q

Also:

F2(āc) = 1 − ā2
c

2āc

= 1
2

(√
q +

√
q + 1 − 1

√
q + √

q + 1

)

d

dac

F2(ac) = 1
2ac

+
√(

1 − a2
c

2ac

)2

− q
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= − 1
2a2

c

+ 1
2

2(
1−a2

c
2ac

)(− 1
2a2

c
− 1

2 )
√

( 1−a2
c

2ac
)2 − q

= −
(

1
2a2

c

+ (1 − a4
c )

4a3
c

√
( 1−a2

c
2ac

)2 − q

)
< 0

d

dac

F1(ac) = 1
2

+ 5qs + a2
cP2

(
a2

c

)
> 0

It is easy to see that if we take an âc < āc , we will have d
dac

F2(âc) < 0 and for qs sufficiently
big d

dac
F1(âc) > − d

dac
F2(âc) and thus d

dac
F (âc) = d

dac
F1(âc)+ d

dac
F2(âc) > 0, which means

that the branch that starts from infinity for ac close to zero, ends up at the value F(āc)
for ac = āc not decreasing all the time but increasing around âc . This means that there are
values of a for which the parallel at height a cut the curve F(ac) at least three points,
and thus we have at least three solutions. (Notice that the polynomials P1(a

2
c ), P2(a

2
c ) have

positive coefficients which are positive sums of powers of qs .) Thus, we can conclude that
nonuniquness appears when there is a large discrepancy between the state penalizations
between the University’s and the Student’s costs.

A case of interest, which we will also consider for the continuous time example that
follows, is when there is no University player present. Since the University player has an
infinite time duration cost, we needed that for the resulting ac it holds: |ac| < 1. In the
absence of the University player, the closed loop system may be unstable. In addition, we
do not need the condition: 0 ≤ ac ≤ 1√

q+√
q+1 , which has to do with the existence of a real

control gain k− (or k+) for the University. Thus, if no University player is present and we
do not care to have a stable closed loop system we always have a solution as the plot of
F(ac) = (1 + k1 + k2 + k3 + k4 + k5)ac for ac ∈ [0,∞) is monotonically increasing and
always meets the value a. On the other hand, if we want the resulting ac to satisfy |ac| < 1,
we need a < F(1) = 1 + k1(1) + k2(1) + k3(1) + k4(1) + k5(1), whereby ki(1) we mean
the values: k5(1) = qs , k4(1) = qs + k5(1) + k5(1)2, . . . , k1(1) = qs + k2(1) + k2(1)2. This
means a bound on a, which depends on qs . If |a| < 1 the bound is automatically satisfied.

8.2 Continuous Time Feedback Nash Strategy

As an example, let us consider the scalar case where there is no University (b0 = r0 = q0 =
0), with b = r = 1, q = constant, the scalar solution for K(t) is

k(t) =
(

qf + q

2a

)
e2(a−l)(tf −t) − q

2a

And (22)

AT
c

(
LAc + AT

c L + QT + Qf

)
+

(
LAc + AT

c L + QT + Qf

)
Ac + Q

= eAT
c T

(
Q + Qf Ac + AT

c Qf

)
eAcT

results in

l = − q

2(a − l)
T − 1

2(a − l)

(
qf + q

2(a − l)

)
+ 1

2(a − l)

(
qf + q

2(a − l)

)
e2(a−l)T

This equation has to be solved for l, and the solution has to satisfy a − l < 0. Setting x =
−2T (a − l), we have to solve the equivalent:

ex = f (x) = qT 2 − qf T x

qT 2 − (qf T + qT 2)x + ax2 + 1
2T

x3
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for x > 0. We calculate: f (0) = 0, d
dx

f (0) = 1, d2

dx2 f (0) = −2 a
qT 2 + 2 qf

qT
+ 2. In order to

have that the plot of f (x) cuts the plot of ex for some x > 0, it suffices to have d2

dx2 f (0) =
−2 a

qT 2 + 2 qf

qT
+ 2 > 1 (or else the graph of the right-hand side is below the graph of ex for

x > 0). This condition means that a solution of the Nash games, which makes the closed
loop system stable, exists if a is appropriately small, and this smallness depends on the
length of the Students studies and the penalties on the state. (Recall a similar bound derived
for the discrete time example.) If a < 0, the condition is always fulfilled. But if a > 0—(i.e.
the system is unstable on its own and the University player/regulator is not existent)—then
the stabilizing solutions will not necessarily exist. For that we need:

T > −qf

q
+

√(
qf

q

)2

+ 2
a

q
=

2 a
q

qf

q
+

√
(

qf

q
)2 + 2 a

q

Thus, for a > 0, the intertemporal coordinating role of the long term player can be substi-
tuted by a continuous overlapping succession of small players, if their duration T (inter-
preted as memory, experience, and life span presence) is sufficiently long.

For a ≫ (qf )2

2q
, we have the sufficient condition: T >

√
2a
q

. (The possibility of having a
Nash solution which yields an unstable closed loop system, i.e., x = −2T (a − l) < 0 and
ex = f (x) is still possible under the appropriate existence conditions.)

That the essence of this result can be extended to the matrix case can be supported by the
following argument: Since the University is not present, we look at the equation:

−dK(t)

dt
= K(t)

(
A −

∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds

)

+
(

A −
∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds

)T

K(t) + Q(t), t ∈ [0, T̄ ],

with boundary condition:

K(T̄ ) = Qf

For T very small, we have K(t) ≈ Qf and the closed loop matrix is

A −
∫ T̄

0
B(s)R−1(s)BT (s)K(s) ds ≈ A − BR−1BT Qf T ≈ A

which is not necessarily stable except if A is stable. For T sufficiently large, if K(t) has
converged to some constant value L, this L will satisfy

0 = L
(
A − BR−1BT LT

)
+

(
A − BR−1BT LT

)T
L + Q

Or equivalently:

0 = LA + AT L + Q − 2LBR−1BT LT

and the closed loop matrix will be:

A − BR−1BT LT

Clearly, this closed loop matrix is stable if the pair (A,B) is controllable.
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Let us now consider the case where the University is also present. Let b0 = b = r = r0 =
1, q, q0 constants. The equations we have to solve are

0 = 2k0(a − l) + q0 − k2
0

−dk(t)

dt
= 2k(t)(a − k0 − l) + q, t ∈ [0, T̄ ], k(T̄ ) = qf

l =
∫ T̄

0
k(s) ds

The resulting closed loop matrix has to be stable (or else the University’s cost is infinite):

ac = a − k0 − l < 0

We have:

k0 = a − l +
√

(a − l)2 + q0

ac = −
√

(a − l)2 + q0 < 0

which always holds.

−dk(t)

dt
= 2k(t)

(√
(a − l)2 + q0

)
+ q, t ∈ [0, T̄ ], k(T̄ ) = qf

dk(t)

dt
= 2ack(t) − q, t ∈ [0, T̄ ], k(T̄ ) = qf

k(t) =
(

qf + q

2ac

)
e2ac(tf −t) − q

2ac

Calculating the integral l =
∫ T̄

0 k(s) ds, we get

l = − q

2ac

T − 1
2ac

(
qf + q

2ac

)
+ 1

2ac

(
qf + q

2ac

)
e2acT

Let
√

(a − l)2 + q0 = √
q0 + x

l =
(
a + ε

√
x2 + 2x

√
q0

)
, ε = ±1

We can rewrite the equation for l:

(
a + ε

√
x2 + 2x

√
q0

)

= q

2
√

q0 + x
T + 1

2
√

q0 + x

(
qf − q

2
√

q0 + x

)

− 1
2
√

q0 + x

(
qf − q

2
√

q0 + x

)
e−2

√
q0T e−2xT
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As x → +∞, the right-hand side goes to zero and the left-hand side goes to +∞ if ε = +1
and to −∞ if ε = −1. Let f (0) be the value of the right-hand side at x = 0. If

a < f (0) = q

2
√

q0
T + 1

2
√

q0

(
qf − q

2
√

q0

)
− 1

2
√

q0

(
qf − q

2
√

q0

)
e−2

√
q0T

we take ε = +1 and the plot of the left-hand side will necessarily cut the plot of the right-
hand side for some x > 0. If a > f (0), we take ε = −1 and the plot of the left-hand side
will necessarily cut the plot of the right-hand side for some x > 0.

We conclude that a solution for some x and, therefore, for some l, k, k0 always exists.
So in the presence of a University player the Students can complete their studies within any
finite time period T , of course multiplicity of solutions is not excluded.

9 Conclusions

We have provided the formulation of an interesting class of game problems, which besides
having important applications on their own, they lead even for the Linear Quadratic case
to some novel conditions beyond the quadratic Riccati type equations encountered so far in
the literature for LQ Games. Further study could address among other issues: existence of
solutions, uniqueness or multiplicity of solutions, computational procedures, and stochastic
variants.
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