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Abstract

Let éx; be a measure of the relative stability of a sta-
ble dynamical system Y. Let 74(x) be a measure of
the computational efficiency of a particular algorithm
A which verifies the stability property of ¥. For two
representative cases of X, we demonstrate the exis-
tence of particular measure dy, and algorithm .4 such
that,
dnTam) =c¢

where ¢ depends possibly on the dimension of the sys-
tem Y. and parameters specific to the algorithm A,
but independent of any other system characteristics.
In particular, given ¥ and A, one can determine dy
by measuring T4(s).
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1. Introduction

The field of control and system theory on one hand,
and computational complexity on the other, are gen-
erally not considered by the researcher of either field
to have much in common. Recently, some control
and system theorists have begun a serious study of
control problems from the computational complex-
ity point of view, e.g., classifying control problems in
terms of the complexity class which they belong to [3],
[9], [11], [14], [15]. This line of research is concerned
with problems of determining whether a control prob-
lem 1s for example NP-complete, etc. These studies
in principle convey the idea that the corresponding
system problem, whether it is analysis or synthesis,
is computationally difficult. One major issue which
we believe has not been considered in this direction
1s the role that the theoretical studies of the compu-
tational efficiency of algorithms can play in analyz-
ing systems problems that can be solved efficiently.
Given a control or system problem that we can solve
by means of an algorithm in a reasonable time (for
example in time which is proportional to a polyno-
mial of the dimension of the system), what does the
running time of the algorithm disclose about some of
the characteristics of the system under study. In this

avenue, suppose that one wants to examine the sta-
bility properties of a certain dynamical system and
we use an algorithm to check whether the system is
stable or not. Thus we use an algorithm which ac-
cepts as input, a description of the system (e.g., in
terms of matrices), and produces as an output “yes”
or “no,” indicating respectively, whether the system
is stable or not stable. Suppose furthermore that the
time required for the termination of this algorithm
is proportional to the dimension of the system and
another parameter denoted by &. We like to show
that for certain particular problems in systems and
control theory, there exist algorithms for which the
corresponding & can be viewed as a certain measure
of robustness, e.g., stability margins or the amount of
relative stability.

The major obstacle for the realization of this pro-
gram is that up to very recently, our understand-
ing of the total effort required by an algorithm to
solve continuous optimization problems was rather
limited. Since many control and system problems
can be formulated in terms of optimization problems,
our knowledge of the total computational effort of the
algorithms that we have used to solve these prob-
lems was also insufficient for the development of the
above approach. The advent of the interior point
methods [6], [10], [13], and their precise complex-
ity analysis for a wide array of convex optimization
problems, including the linear matrix inequalities, has
opened up a very promising avenue for the realization
of the afro-mentioned program. The purpose of the
present paper is to demonstrate that the computa-
tional efficiency of the conjugate gradient and interior
point methods depend on, and can convey informa-
tion about, the robustness properties of two impor-
tant problems in system stability.

The paper is organized as follows. First, certain
basic facts pertaining to the conjugate gradient and
the interior point methods are provided in Section 2
which have direct relevance to our subsequent presen-
tation. In Section 3, we demonstrate that the conju-
gate gradient method not only solves the Lyapunov
equation in order to verify the stability property of a
linear time invariant system, but also its running time



depends on a suitable notion of relative stability. In
Section 4, the same idea is elaborated on, this time
using the interior point method for cases pertaining
to the absolute stability problem. In Sections 3 and
4, we do not suggest that the algorithms that we use
to solve the corresponding problems are in any sense
optimal. For example, optimality does not hold in
regards to the conjugate gradient method for solving
the Lyapunov equation, since much more efficient al-
gorithms are presently available for this purpose. The
paper is then concluded with a brief after-thought on
the motivations and the implications of the results
presented in the paper.

First, a few words on the notation. We use ® to
denote Kronecker product, vec to indicate the op-
eration on the matrices which stacks up the column
of the matrix from left to right (and makes a long
vector out of the matrix). Amin (A) and Apax(A4) are
used to designate eigenvalues of A with the minimum
and the maximum real part, respectively (in the case
where more than one eigenvalue is a candidate for
the minimum and the maximum, any one of them is
chosen arbitrarily); |A|min(A) and [A|max(A) serve the
similar purpose for the minimum and maximum of
the eigenvalues of A in absolute value. The notation
herm(A) denotes the hermitian part of the matrix A,
le., A‘;AI, and for two symmetric matrices A and B,
A > B, indicates that A — B is positive definite. As
noted previously, TAS) designates the running time

of the algorithm A that verifies the stability proper-
ties of the dynamical system X; when the latter task
is done only approximately, e.g., the the solution of
the Lyapunov equation is found within an ¢ approx-
imation, then we still use TA) instead of a more

accurate notation TA(E)(E) to represent the termina-
tion time. Finally, f(n) = O(g(n)) (f(n) = Q(g(n)))
indicates that there exist positive constants ¢ and m
such that 0 < f(n) < ¢g(n) (0 < eg(n) < f(n)), for
all n > m.

2. IPMs and CGMs

In this section, we briefly provide some basic facts re-
garding the numerical algorithms which are the cor-
nerstones of the two main theorems of the paper: the
conjugate gradient method (cgm), and the interior
point method (ipm). Although there are many vari-
ants of the ipms discussed in the literature, we shall
focus mainly on the barrier method as presented by
Renegar [13], and we shall use “ipm” synonymously
with the “barrier method” as discussed in that ref-
erence. Qur very brief discussion of the conjugate
gradient algorithm also follows what is presented in
another paper of Renegar [12], restricted to the n-

dimensional Euclidean space.

Given a positive definite (symmetric) matrix A €
R" ™ a vector b € R™, an initial point xy, in order
to find the solution of z* of the equation Az = b, the
cgm produces the iterates {z;};>1, where z; is the
optimal solution of the problem:

min|jz* —zl|la  (2.1)
st. & —xo € Span {Aeg, A%e,..., Aleg} (2.2)

where e = x* — xg, and ||y|la = (¥ Ay)"/? for all
y € R”,i.e., ||.||a is the norm induced by A.

As noted in [12], one can prove that if 0 < e < 1,
the iterates of the cgm satisfy

lo* = ailla < ella” — woll (2.3
within 5
Op(VA) log, ) (2.4)

where p(\/Z) = /\max(\/Z)//\min(\/Z). This on the
other hand implies that if i = Q(p(v/Alog, 2), then
[|e* — 2;i||la < €||#* — xo]|a. In other words, in order
to obtain a (relative) e-approximation of the solution
z* in terms of the norm induced by A, the cgm termi-
nates in time which is proportional to the condition

number p(\/Z)

In the case that the matrix A 1s not positive defi-
nite and A’ A is not singular, one can consider solving
A’ Az = A’b and the above statements still hold with
A replaced by A’A.

In Section 3 we shall use the property (2.3)-(2.4)
of the cgm for solving a system of linear equation, to
demonstrate that its running time is inversely propor-
tional to certain measure of relative stability, when
used for solving the Lyapunov equation.

Our discussion of the ipm that follows is also very
brief. We shall use few terms which might not be fa-
miliar to readers who do not follow the ipm literature.
Since a complete treatment of the subject will take us
too far from the main idea of the paper, we refer the
reader to the references [10] and [13] for much more
information on the ipms.

Given an n X n symmetric matrix ' and a real
number v, the ipm that is considered in this paper
can be applied to problems of the form: find X such
that,

Trace CX =v (2.5)
XeDNL+W (2.6)

That is, given the matrix C' and the real number
v, the method produces as an output the matrix X



which belongs to D; N L + W, where,

1. Dy is an open, convex subset of the symmet-
ric matrices, which 1s the domain of a “non-
degenerate self-concordant barrier” with param-
eter K. The set of such functions is denoted by
F(K). What makes the functions in F(K) spe-
cial in the ipm theory 1s that the complexity of
the ipm for solving problems of the form (2.5)-
(2.6) can be shown to depend interestingly on
K. K on the other hand, is only depended on
the dimension of the space where the problem
is formulated 1n.

2. L is a closed subspace of the space of symmetric
matrices.

3. We Dy.

Let vinr and vgyp denote the infimum and the supre-
mum of the Trace {C'X} subject to the constraint
that X € Dy N L+ W. Then it can be shown that
if Vinr < ¥ < Vgup, and we use the barrier method
to solve (2.5)—(2.6), it produces the iterates {X;}i>1
such that after

. - - Vsup — Vinf

=0(K1 24 K P 2.
i =O(Klogy (24 K+ min{Vsup — ¥, ¥ — Ving ) 27
iterations, Trace{C'X;} = v. In other words, the so-
lution of the problem (2.5)-(2.6) is at hand in time
which is bounded by (2.7).

Each iteration of the barrier method considered
above involves solving a linear equation, which for
the purpose of our discussion, 1s considered to de-
pend only on the dimension of the system n (we use
for example Gaussian elimination for solving these
equations). Thus conclude in order to solve problems
of the form (2.5)-(2.6), for any particular value of
v, the computational efficiency of the barrier method
discussed in [13] is of the order of the magnitude of K
(which depends on the dimension of the system), and
some particular combination of vg,p, v, and vinr. As
it becomes evident in Section 4, using a careful refor-
mulation of the original systems and control problem,
Vsup and vins can in fact be used to reveal information
about the relative stability of the corresponding sys-
tems problem.

3. Stability of Linear Systems

Our first example comes from a most basic stability
question in systems and control theory; studying the
stability property of a linear time invariant system.
Given a matrix A € R"*" determine whether the ori-
gin is the globally asymptotically stable equilibrium

point of Xq:
Y1 rz=Azx (3.1)

In particular, one is interested to know whether the
trajectories of 31 goes back to the origin if it is dis-
turbed by any non-zero initial condition. This prop-
erty on the other hand is equivalent to the matrix A
being Hurwitz, i.e., all eigenvalues of A should have
negative real parts [4].

As it is well known, Lyapunov [7] proved in 1892
that the origin is the global asymptotically stable
equilibrium point of the (3.1) if and only if, given
a matrix ) > 0, there exists a matrix P > 0 such
that,

AP+ PA=-Q (3.2)

Suppose that the matrix A is in fact Hurwitz and
consider solving (3.2) using Kronecker products, as
first proposed by Bellman [2]. Our goal is to demon-
strate that the running time of the conjugate gradient
method for solving the Lyapunov equation conveys an
estimate of the relative stability of A.

Let us rewrite (3.2) as
B (vec P) = —vec Q (3.3)
where .
B=I@A+Aole R

Each eigenvalue of B is the sum of a pair of the eigen-
values of A. Consequently |A|max(B) = 2|Re{Amin(A)}]
and |Amin(B) = 2|Re{Amax(A)}|. We also note that
Amax(B) and Apin (B) are real numbers. In partic-
ular, [Almax(B) = |Almax(A + A") and |[A|min(B) =
Nlin (4 4 A').

In order to use the cgm we consider solving the
system of linear equation

B'B(vec P) = —B'(vec Q)
As noted in [12], since the origin is not in the spec-
trum of B’B (A is assumed to be Hurwitz), if
2
i=Q(elog —)
€

then,
|P* = Pllpp < €||P"— Pollps
where,
0 = Amax(VB'B)/Anin(VB'B)
[Almax(A + A")/[Almin (A + A7) (3.4)

More specifically, in order to obtain an e-approximation
of the certificate of stability P* in the B’ B norm, the



computational efficiency of the cgm is in the order of
the magnitude of g. Hence,

Tegm(z,) /e =c

where ¢ s a constant.

A closer look at the quantity 1/¢ reveals that it
can be viewed as a measure of the relative stability
of the system X, that is if

oz, :=1/e
then,
% = [Almin (A+A") /M max(A+A") = 2| A /|| A+A"| |2
where
A= {infA € R: A+ Al is not Hurwitz}. (3.5)

Consequently we have proved the following theorem.

Theorem 3.1 Given the system X1, there is an algo-
rithm A and a measure of relative stability dx, , such
that

6217—./4(21) =c

for some constant c.

4. Absolute Stability Problem

Our second example comes from another fundamen-
tal stability problem, this time from nonlinear sys-
tems theory; studying the absolute stability problem
of the Lur’e type systems [8], [16]. Given the matrices
Ae R Be R (C € RP*" and D € RP*™,
determine whether the origin is the globally asymp-
totically stable equilibrium of X,:

pITR t=Ax+Bu (4.1)
y=Cx+ Du (4.2)

where 1t 1s know that:

1. u = —®(y), for some & belonging to the sector
[0,1/k], for some real number k, i.e., ¥ ®(y) <
k(| (y)[?, for all y [16].

2. The pairs (A, B) and (A, ) are controllable

and observable, respectively.

3. The matrix A is Hurwitz. As it is known, via
the Positive Real (PR) Lemma [1], [5], [8], [17],
one 1s able to prove that the system X5 1s abso-
lutely stable if|

%(H(jw) + H*(jw)) + kI >0 Yuw €[00
(4.3)

or equivalently if,

(7 ) (& s rous

P>0(4.5)

1s a feasible set of linear matrix inequalities.
Suppose that the system X5 is in fact absolutely
stable and that one wants to verify this by uti-
lizing a numerical algorithm. Before we state
that main result, let us define two measures of
relative stability for X,.

The first measure of relative stability is in fact
a lower bound on the gain margin of ¥4, defined
by the following semi-definite program:

b3, :=sup A (4.6)
such that,
—-P 0 A B
herm{( 0 I ) ( C ARI+D )}>0
P>0

That 1s, (5% 1s the maximum factor by which

the constant 1/k (recall that the nonlinearity
belongs to the sector [0, 1/k]) can be increased
such that ¥, is guaranteed to remain stable.

A B
Define F := ( c D ) Our next measure of
the relative stability of X5 1s defined as follows:
55, = inf A[l/]1 2] (4.7)

such that there does not exist a matrix P that
satisfies the following set of linear matrix in-
equalities,

herm{( 0 ) (E+A)}>0  (4.8)

P>0  (49)

In other words, (5% is the minimum relative

perturbation of the the quadruple (4, B, C, D),
such that for a given constant %, the dynamical
system Yo can not be shown to be absolutely
stable via the PR, Lemma.

We now present the main result of this section,
and then provide an sketch of its proof. The
complete proof can be found in the journal ver-
sion of this paper.

Theorem 4.1 Given the system Yo, there is
an algorithm A such that for the relative stabil-
ity measures 5L, and (5% ,

2 2

6%}2 TA(EQ) =a



and
6%2 TA(EQ) =C2

for some constants ¢y and cs.

Proof: The main idea of the proof is to apply
the barrier method, whose properties were dis-
cussed in Section 2, to a careful reformulation of
the feasibility problem (4.4)—(4.5). In this case,
one constructs the linear map T on the space
of symmetric matrices, such that (4.4)-(4.5) is
feasible if and only if,

T(X) <0 (4.10)
X >0 (4.11)

is feasible. Then the following semi-definite pro-
gram is considered

inf ¢ ( )

st Y(X) < t(T(X)+ 1) (4.13)
X>0 (4.14)

X[ <1 (4.15)

—1<t<? (4.16)

where X > 0 is chosen a-priori. It is then
shown that if ¢ = 0, then (4.10)—(4.11) is fea-
sible, which implies that (4.4)—(4.5) is feasible.
In view of the property (2.7) it can be demon-
strated that the computational efficiency of the
barrier method is proportional to k and the
value of #in¢ in the semi-definite program (4.12)-
(4.16). This value on the other hand can easily
be shown to be inversely proportional to 1/4d3 .

and 1/(5% , and hence,

TAS,O, =O(K) =¢; i=12 (4.17)
O

5. Conclusion

The main thesis of this paper is that there i1s a
very close relationship between stability analy-
sis of dynamical systems on one hand, and the
theoretical studies on the efficiency of certain
numerical algorithms. In particular, we have
demonstrated that for two basic, but very im-
portant stability problems, the efficiency of the
conjugate gradient and the interior point meth-
ods, can convey certain information about the
relative stability of the corresponding systems.

This phenomena can in principle be used to give
an algorithmic definition of the relative stabil-
ity of a dynamical system. The objection to this
approach would be that the stability properties
of a system 1is in principle coordinate free, and
thus, should not depend on a particular algo-
rithm. Nevertheless, since at the present time,
we are far from obtaining optimal algorithms
for solving stability problems (e.g., linear ma-
trix inequalities), a machine independent theory
of stability 1s far from its realization. More-
over, in order to check the stability of a dynam-
ical system, an algorithm has to be introduced
(on some particular model of computation), and
thereby, one can argue, that stability properties
can be viewed with the running time of that al-
gorithm as our frame of reference. The contri-
bution of the paper is thus to demonstrate that
the above approach can in fact be adopted for
two very important problems in systems analy-
sis. their relative stability.
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