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Abstract The deregulation of energy markets has created a framework for policy
making, still under evolution, which is much more complex than the previous one. As
a consequence, new requirements need to be met, concerning both technical design
and financial management. This framework renders the use of multicriteria techniques
attractive. Here, the investments in suppliers, depending on the policy implemented,
are formulated as an integer programming problem, which consists of different sub-
problems according to the assumptions made and the market’s regulations. The equiv-
alent relaxed problem is a mixed integer programming problem that can represent the
clearance of the energy market by considering several criteria besides price and quan-
tity. Nonlinearities are reformulated by inserting additional binary variables so that the
solution algorithms are more effective and efficient in most realistic cases. The feasible
solutions and the optimal solution that maximizes every time the market regulator’s
gain are obtained, after imposing some thresholds on the criteria used to evaluate the
different energy technologies, thus creating a decision support system for the regulator.

Keywords Energy market · Policy · Multicriteria decision support · Optimization

1 Introduction

The structure of electricity energy markets has undergone many reforms, especially
recently. The monopolies have given their place to liberalized markets, where many
independent power producers and users can enter or exit at any time. These producers,
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acting in the energy markets as cooperators (Jia and Yokoyama 2003) or competitors
(Geerli et al. 2001), aim to maximize their financial profit. This is achieved through
their bidding strategy which can be modeled in many ways. The market’s operator
receives the bids and offers, prioritizes the producers according to the regulations and
clears the transactions of the market at precise time intervals, usually daily.

The deregulation of the energy market has created a framework for policy making,
still under development, which is much more complex than the previous one. The
demand for higher penetration of renewable energy sources and the strict environ-
mental terms, aiming at the reduction of gas emissions, have also contributed to this
complexity (Celebi and Fuller 2007, 2012; Stoft Steven 2002; Denny and Dismukes
2002; Jia and Yokoyama 2003). As a consequence, new requirements need to be met,
concerning both technical design and financial management.

In the deregulated energy market independent organisations who are responsible for
the operation and regulation of the market are necessary. The operator and the regula-
tor aim at maximum social welfare and must coordinate all types of energy production
in order to make the best supply decision for the society. As far as the resources are
concerned, there are various generation technologies available, each having its own
advantages and drawbacks. Therefore, many kinds of energy resources and produc-
ers can be assumed, using variable methodologies/technologies such as Oil, Lignite,
Natural gas, Photovoltaic cells, Wind, Hydropower, Biomass etc. Even imports from
neighbors (Bulgaria, FYROM, Albania„ Turkey, Italy for the case of Greece) can be
considered indirectly as a separate energy resource. Social welfare includes besides
the satisfaction of the energy demands per se other aims as well. An Independent
System Operator (ISO) is no longer interested in just the economic cost of energy
production, since it is not sufficient for determining socially good choices. Until now,
every decision was taken according to it; this cost however does not guarantee that the
best economic decision will be the best for the society too. Citizens and thus govern-
ments are also interested in other aspects that influence the society and people’s lives,
like the environment, that should be taken into account. Therefore, there are multiple
criteria to evaluate each resource: bidding price, quantity offered, reliability due to
physical conditions (sun, wind, gas’ pressure, international circumstances), flexibility
(of resource to entry and exit the system in order to deal with emergencies), environ-
mental impact (COx, NOx, SOx and other emissions), strategic characteristics (e.g.
resource’s importance for the country’s energy autonomy), social characteristics (e.g.
resource’s contribution to a region’s social policy, employment and growth), satura-
tion of the energy sector (taking into consideration the saturation restrictions for each
region) etc. For each above mentioned criterion, each resource is given a technically
definable value (for quantitative criteria, such as chemical substances production) or
an estimated value (for qualitative criteria) based on other considerations. These val-
ues, even if they are based on scientific methodologies, are possibly subject to slight
errors which, however, should not influence the final decision of the system operator
otherwise the impact of these errors must be assessed.

In conclusion, the regulator needs to decide which resources and producers will be
licensed, subsidized and prioritized, so that the operator can receive their bids, clear
and settle the transactions, known as market-clearing. It should also be evaluated what
the risk of these decisions is. The responsibilities of the regulator and the operator are
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so closely related that they have to cooperate in order to decide the best energy policy
for the society. For this reason, in this study it is assumed that there is one ISO who
must decide which producers should be encouraged through subsidizing, licensing
and prioritizing, and also clears the market. The suppliers must be properly selected
so that the limits the ISO imposes on some of the criteria mentioned are satisfied. It
should be taken into account that there may not exist a unique best decision; many
different choices could be suggested, accompanied by relevant evaluative scales.

In order to address this multicriteria problem, the Pareto solution set is taken into
account. To do that, weights are assigned to all these criteria and thus they can be
incorporated into a unique function that represents the total gain of the ISO from eco-
nomic, social, technical and environmental point of view according to its energy policy.
This function is then optimized with use of integer and mixed-integer programming
algorithms that guarantee convergence to the optimal solution. For different weights,
different solutions are obtained that constitute the Pareto set of solutions. To find the
best solution, algorithms based on branch-and-bound approach (Der-San Chen et al.
2010) are used. After formulating the problem using binary variables, the algorithm
searches for a binary integer feasible solution, updates the best binary integer feasible
solution found so far and verifies that no better integer feasible solution is possible.
Using binary variables is also convenient for formulating numerous real case studies
that extend our simple example as will be later discussed.

The selection of one solution among all the feasible Pareto ones, but also the impor-
tance given to each evaluation criterion (weight), rests on the system operator. Since
the ISO represents the whole society and is interested in maximizing the social welfare,
the energy policy decided becomes a political issue and thus, it could be influenced by
many factors and stakeholders. Every time the ISO sets the policy, acting as the leader
of the market, the other participants respond by playing a game among them so as to
maximize their own profits based on this policy, acting as followers. The ISO needs to
take into account these interactions, consequently the use of game theory notions and
social choice theories is crucial to obtaining a robust solution that will be universally
accepted. Such features can be incorporated to the mathematical problem treated in
the present study.

Many studies until now have addressed the energy supply criteria. Many aspects
should be taken into account except for the financial cost of the producers (Krupa
and Jones 2013; Migheli 2012). Among them the reliability (Soleymani et al. 2008)
and the environmental impacts of the energy production (Stephen and Anders 2013;
Krupa and Jones 2013) are considered very important. Most studies implement game
theory tools in order to model the interaction between suppliers and consumers
(Reeves et al. 2005; Skoulidas et al. 2010, 2002). Here, a decision support framework
for the ISO is created that includes all needed criteria in order to obtain the socially
best solution for energy investments or supply, according to the desired energy policy.
The ISO’s decision is assumed to incorporate citizens’ preferences, thus consumers do
not interact directly with the model presented but they are also affected by the energy
policy implemented.

In the next sections, various methods are described, based on which the numerous
decision scenarios can be chosen and evaluated. The motivation and formulation of
the different problems are presented in Sect. 2. Section 3 contains the methodology
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and the algorithms for solving each of the problems described. In Sect. 4, different
examples are solved in order to make some observations. In Sect. 5, the sensitivity
and robustness of the solutions are studied. Finally in Sect. 6 the conclusions are
recapitulated and some future extensions are suggested.

2 Formulation of the problem

The purpose of this study is to help an ISO of an energy market to decide on the
energy suppliers’ selection by taking into consideration different kinds of criteria and
its energy policy. The same criteria hold if the ISO is interested either in favoring
some energy technologies or in clearing the energy market with a cost that reflects all
factors considered important for the society.

First of all, the criteria that are capable of evaluating an energy resource from
all important points of view need to be decided. The ISO is interested in setting
some limits that these criteria should meet. After finding all feasible solutions of the
problem, the ISO seeks the optimal solution that maximizes its objective function,
which represents the social welfare based on its energy policy. That is why, ISO’s
energy policy is considered to be a weighting procedure. After assigning weights
representing each criterion’s importance, a unique social welfare function is created
where the thresholds demanded by the ISO are considered to be constraints to the
problem. This multicriteria decision support method is simple to be implemented and
very effective since it can converge quickly to the optimal solution, depending on the
problem’s formulation.

2.1 Introductory example

The problem is, given some energy resources which are evaluated based on some
criteria, to decide which ones of them should be selected for energy supply by the
system operator. This decision can either refer to an investment strategy, meaning the
ISO can give incentives for the allocation of energy resources, either to a clearance
of the market mechanism, meaning the ISO takes the bids of the energy producers
and settles the transactions according to the regulations. Table 1 provides an example
of such a marking with eight resources (R1, R2, R3, R4, R5, R6, R7, R8) and nine
criteria (Cr1: price per unit produced, Cr2: production capacity, Cr3: reliability, Cr4:
flexibility, Cr5: COx emissions, Cr6: NOx emissions, Cr7: strategic characteristics,
Cr8: social characteristics, Cr9: saturation). These criteria represent independent fac-
tors that influence the final decision and are at the same time sufficient and necessary
for the ISO to decide. The values represent a theoretical model, but for a particular
application, realistic values can be provided by an Independent System Operator.

Each resource is assigned with a marking column in which criteria 3, 4, 7, 8 and
9 have a maximum value of 100 (e.g. 80 stands for 80%). The value of criteria 5 and
6 stands for the produced quantity of COx and NOx respectively per unit produced
and thus has a negative meaning. So, high values of criteria 2,3,4,7 and 8 are desired,
whereas low values for criteria 1, 5, 6 and 9 are preferred. It is easily observed that
taking into account only price and quantity offered resource 4 dominates, but this
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Table 1 Resources ‘values’ table (A = (
a j,i

)
, j = 1, 2, . . . , 9, i = 1, 2, . . . , 8)

Cr\R R1 R2 R3 R4 R5 R6 R7 R8

Cr1 2 2.1 2.4 1.9 3 3.2 2.2 2.4

Cr2 115 80 90 150 20 15 110 80

Cr3 100 95 85 90 70 75 95 95

Cr4 80 90 60 80 85 80 75 70

Cr5 1 1.1 1.1 1 0.2 0.1 0.5 0.7

Cr6 1 0.8 0.9 1.2 0.3 0.5 0.2 0.3

Cr7 100 80 100 70 100 100 60 30

Cr8 70 65 85 90 75 85 65 95

Cr9 70 65 80 65 75 40 90 50

could change by introducing all the criteria. Moreover, resource 5 is better as far as
environmental criteria Cr5 and Cr6 are concerned, but is inferior regarding the other
criteria. Questions vary: Which resources should be chosen and in which way so that
the demand is satisfied, the emissions do not exceed some limits, the total reliability
is tolerable, the average consumer’s economic cost is minimized etc. Furthermore, in
any case, the expected stability or risk should be able to be determined, meaning how
would this choice change and at which point if the values of Table 1 are modified.

It is assumed that the selection of resource R1 is indicated by w1 = 1, whereas not
selecting resource R1 is indicated by w1 = 0. Similarly, the selection of resource Ri
is indicated by wi = 1 and the non-selection of resource Ri is indicated wi = 0 . This
way, the final decision is reduced to a vector w = (w1, w2, w3, w4, w5, w6, w7, w8),
where w′

i s are binary variables (value 0 or 1). Each resource is evaluated based on
criteria Crj, j ∈ R. Based on these criteria, costs Jj’s are formulated. J2 is the sum
of the products of the quantity of each resource and the corresponding wi. Similarly
we define J7 and J8. J1, J5 and J6, depend on quantities and are given by the linear
sum of products of the corresponding quantities, criteria’s values and wi. J3 and J4 are
ratios given by the quotient of a similar product divided by quantity cost J2. J9 is also
a quotient, a weighted sum of the saturacy of the selected producers.

Considering a specific vector w, the available energy is the quantity offered:

J2 (w) = 115w1 + 80w2 + 90w3 + 150w4 + 20w5 + 15w6 + 110w7 + 80w8

J2(w) =
8∑

i=1

α2,iwi

The cost of energy is derived from the price and the corresponding quantity offered:

J1 (w) = 2 ∗ 115w1 + 2.1 ∗ 80w2 + 2.4 ∗ 90w3 + 1.9 ∗ 150w4 + 3 ∗ 20w5

+3.2 ∗ 15w6 + 2.2 ∗ 110w7 + 2.4 ∗ 80w8

J1(w) =
8∑

i=1

α1,iα2,iwi

123



N. Kakogiannis et al.

The total reliability is the percentage of the reliable energy divided with the total
quantity offered:

J3 (w) =
∑8

i=1 α3,iα2,iwi
∑8

i=1 α2,iwi

Likewise, the total flexibility is:

J4 (w) =
∑8

i=1 α4,iα2,iwi
∑8

i=1 α2,iwi

In order for costs J3 and J4 to be defined, at least one resource should be selected.
If no resources are selected, then the problem is infeasible.

The total COx emissions are (given that units in assessment table are tnCOx for a
unit of quantity):

J5(w) =
8∑

i=1

α5,iα2,iwi

Similarly, the total NOx emissions are:

J6(w) =
8∑

i=1

α6,iα2,iwi

Respective strategic and social characteristics are linked to the equivalent resources’
selection, whereas saturation must also be divided by the number of resources selected
in order to be calculated as a percentage. Consequently the rest of the costs are:

J7(w) =
8∑

i=1

α7,iwi

J8(w) =
8∑

i=1

α8,iwi

J9 (w) =
∑8

i=1 α9,iwi
∑8

i=1 wi

It is evident that costs J1, J5, J6 and J9 must be minimized, so they can be given an
upper bound, whereas J2, J3, J4, J7 and J8 must be maximized (these costs can be
considered as gains), so they can be given a lower bound.

2.2 Formulation of various objectives

As already stated, the challenge is to make some of the costs Jj’s to be as large as
possible and some of them to be as small as possible. Demanding J j (w) to be large
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(small) possibly means that is should be greater (lesser) than a given J ∗
j meaning

J j (w) ≥ J ∗
j J j (w) ≤ J ∗

j . Thus, in order to select the most profitable resources, the
decision-maker, in our case a system operator, sets some thresholds, namely the min-
imum and maximum values he desires for any number of costs Jj. Such a formulation
leads to addressing a satisfiability problem:

Find w = (w1, w2, w3, w4, w5, w6, w7, w8) , wi = 0 or 1,

such that :
J j (w) ≥ J ∗

j , for some j ∈ {2, 3, 4, 7, 8}
J j (w) ≤ J ∗

j , for some j ∈ {1, 5, 6, 9} (1)

For problem (1), the values of J ∗
j are given. Such problems could have multi-

ple solutions. By changing the values of J ∗
j different solutions are found, all having

respective properties. It is probable that the demand for a large (small) J j (w) leads to
solving a maximization (minimization) problem such as:

maxw J3 (w)

subject to : J j (w) ≥ J ∗
j or J j (w) ≤ J ∗

j , for some j ∈ [1, 9] (2)

This problem addresses the maximization of a certain cost under the restriction that
some costs lay within certain admissible limits. These constraints need not include all
of our costs and the respective criteria. Moreover, a cost Jj could be given an upper
and lower bound at the same time. We have assumed that there are nine criteria and
thus nine costs also. It is thus possible that two or more costs are to be optimized. For
example:

minw {−J2 (w) , J5 (w) , J6 (w)}
subject to : J j (w) ≥ J ∗

j , for j = 3, 4, 7, 8

It should be noted that a negative or positive sign is assigned depending of the goal
of minimum or maximum J j (w). In this case, we seek the Pareto solutions, which can
be found by creating a single cost. Thus, a weighting method, part of multiobjective
mathematical programming (MMP), is used:

minw {b1 (−J2 (w)) + b2 J5 (w) + b3 J6 (w)}
subject to : J j (w) ≥ J ∗

j , j = 3, 4, 7, 8

where b1, b2, b3 ≥ 0 and for every b = (b1, b2, b3) a Pareto efficient solution exists.
The weights are a measure of the importance of each criterion. They can be given
any positive number after pair comparisons among them, but for better understanding,
after proper reformulation they should sum up to 1 implying percentages.

The system operator is enabled to customize its choice criteria depending on the
policy that is desirable at each time period. Specifically, this policy may concern the
decision that minimizes or maximizes a certain cost Jj, either linear or ratio, or the
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decision that minimizes/maximizes a combination of any number of these costs, even
all, simultaneously. Apparently, we can have a variety of J j (w)′s in the objective
function and in the constraints. Important is the general case where all J j (w)′s are in
the objective cost function. For example:

maxw

(−b1 J1 (w) + b2 J2 (w) + b3 J3 (w) + b4 J4 (w) − b5 J5 (w)

−b6 J6 (w) + b7 J7 (w) + b8 J8 (w) − b9 J9 (w)

)

b j ≥ 0,

9∑

j=1

b j = 1, j = 1, 2, . . ., 9 (3)

Any number of costs in the objective function can be achieved by setting the weighs
of the rest equal to 0. Different b = (b1, b2, b3, b4, b5, b6, b7, b8, b9) give different
solutions which are Pareto. This means that b j ’s consist a vector b defining the energy
policy of the ISO according to its preferences.

Problems (1), (2) and (3) are the three types of problems we address. By solving
them, the ISO is capable of finding all the feasible solutions satisfying its constraints
and then, based on its energy policy to find the best feasible solution or choose another
among them.

As already stated, the solution of all the described problems is a vector w =
(w1, w2, w3, w4, w5, w6, w7, w8) where w′

i s are binary variables, so we have to deal
with a binary integer programming problem (Der-San Chen et al. 2010; Wolsey and
Nemhauser 1999). In reality, the clearance of an energy market after producers’ bid-
ding is more complex since the offer or the demand of energy need not represent the
maximum installed capacity. Additional binary variables can then be used to reformu-
late more general and realistic cases. If an energy resource can be selected for particular
levels of its offered energy quantity, wi would be a discrete variable which can be eas-
ily expressed with a number of binary variables. For example, if a resource Ri can be
selected for every 25% of its maximum capacity, then wi = (0, 25x1+0, 5x2+0, 75x3)

where x1, x2, x3 are binary variables.
Additionally, discrete variables which can take any positive integer value can also

be represented by binary variables by using the powers of 2. This could be the case if a
resource represents a set of grouped producers and any number of them can be selected,
thus scaling the problem. For example, integers up to 63 can be expressed with six
binary variables, as I = x1 + 2x2 + 4x3 + 8x4 + 16x5 + 32x6, where I is an integer
in the set [0,63] and xi, i = 1, . . ., 6 are binary variables. Most algorithms can deal
with integer values in linear programming problems without needing to reformulate
them. The reformulation using binary variables, however, is crucial in linearizing the
objectives and constraints of nonlinear cost functions.

In any of these cases, after the ISO has stated the exact problem he deals with,
any integer programming problem can be transformed into a binary integer program-
ming one which is easier to be solved. Of course, the larger the sets we want to
represent or the feasible integer values, the more complex the problem becomes slow-
ing down the convergence to the solution. Moreover, this way, products of binary
variables may occur, which nevertheless can be easily substituted by single binary
variables.
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2.3 Solution assessment

It is apparent that besides problem (2) that usually has a unique solution, all other
problems addressed have multiple solutions. Thus, a methodology in order to choose
one among all the feasible solutions is needed. For problem (3) solutions depend on
the selected bj’s; this is equivalent to decide who or how bj’s are selected. There are
many ways to define and calculate the weights or choose one among the feasible
solutions originating from negotiations, game theory and multiple criteria decision-
making (MCDM). This decision rests on the system operator.

A very important question regarding any suggested solution is if this solution
changes in case some parameters are modified a lot or even slightly. It is already
stated that the values used in such a problem could be subjected to errors. Thus, if
a suggested solution is approved but a slight modification of the parameters results
in a drastically different solution, the initial solution cannot be considered reliable.
On the other hand, it is possible that such a change in the solution demonstrates the
importance of the specific parameter that caused it. In any of the two cases, it is
indispensable to study the parameters and their percentage of modification that influ-
ence the suggested solution. Another motive for studying this phenomenon has to
do with the possible intention of a producer or stakeholder managing such decisions
to influence the final result in a way not noticed by an external observer. Conse-
quently, the possibility of strategic gaming by some of the players should be stud-
ied. These considerations can be examined by an analysis of the solutions’ sensitiv-
ity.

3 Methods of solution

Here we present the basic methodologies for solving the problems delineated. We
describe briefly the theoretical algorithms used, the modifications introduced and give
appropriate references.

3.1 Problem 1: Satisfiability

First of all, a satisfiability problem is considered, which means we are interested in
finding all the feasible solutions of the problem. So all the possible decisions that
satisfy the bounds given to the criteria are examined.

To calculate all the feasible solutions, complete enumeration of all the possible
combinations is needed. This can be very demanding as far as computational resources
are concerned (Schaefer 1978), but in this case, including only eight resources and nine
criteria, it is quickly solved (milliseconds). By adding resources, the solution space
and the problem’s requirements are augmented. In order to downsize the problem and
study only the best solutions if a large scale model is to be solved, modifications to the
initial satisfiability problem can be made, like reducing the feasible solution space by
tightening the constraints’ bounds, or searching for all the feasible solutions, satisfying
these constraints, which have small divergence from a previously found or guessed
optimal solution e.g. 10 %. In any case, the satisfiability problem is very important
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because it could give the operator a first hint of the available solutions and can be used
so as he can choose a solution from the feasible set by implementing any methodology
he considers best.

3.2 Problem 2a: Linear integer programming

After solving the satisfiability problem, we address the problem of finding the solution
that minimizes or maximizes a certain cost Jj. This means that there is a binary integer
programming problem, where the objective function is linear (nonlinear functions will
be addressed using fractional programming in the next subsection) and it subjects to
a set of linear constraints. In this case, all costs are linear except for J3, J4 and J9.

Efficient algorithms that solve large scale and mixed integer programming
problems, as the ones in the next sections, use the branch-and-cut approach
(Der-San Chen et al. 2010). There are various techniques for creating a better for-
mulation of a problem and implementing cuts, which however must be used with
prudence.

The problem to be solved is:

minw f T w or maxw f T w

Subject to: A1w ≤ c1, A2w ≥ c2

where A’s and c’s vectors of constants and w a vector of binary variables as already
stated.

Constraints of the form
∑

i ai wi∑
i di wi

≤ c can easily be transformed as
∑

i (ai −cdi )wi ≤
0 since the denominators in our case study are always positive. The same hold also

for the constraints of the form
∑

i ai wi∑
i di wi

≥ c.

3.3 Problem 2b: Fractional integer programming

In the case of nonlinear costs more complex algorithms need to be used which must
be selected carefully in order to converge and be efficient at the same time. However,
nonlinear functions in this example (deriving from Cr3, Cr4 and Cr9) can be easily
reformulated using techniques of fractional programming since they are quotients
of linear functions (Charnes and Cooper 1962; Li 1993; Schaible Siegfried and Shi
Jianming 2002; Siegfried 1982).

The processing of such costs, which are ratios, in the constraints has already been
addressed. If such a cost is the objective function, then this is a single ratio problem,
which is a case of fractional programming.

Problem:

min
pi + ∑

j pi j x j

qi + ∑
j qi j x j
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Subject to:

qi +
∑

j

qi j x j > 0 i = 1, . . . , m

rk +
∑

j

rk j x j ≤ 0 k = 1, . . . , h

x j = {0, 1} j = 1, . . . , n

By letting yi equal to 1/qi + ∑
j qi j x j , the problem becomes:

min
∑

i

⎛

⎝pi yi +
∑

j

pi j yi x j

⎞

⎠

Subject to:

qi yi +
∑

j

qi j yi x j = 1 i = 1, . . . , m

rk +
∑

j

rk j x j ≤ 0 k = 1, . . . , h

x j = {0, 1} yi ≥ 0 j = 1, . . . , n

The polynomial mixed terms in the transformation z = xy can be represented by
four linear inequalities: y − z ≤ K − K x, z ≤ y, z ≤ K x, z ≥ 0 where K > y and
x is a binary variable.

Then, a mixed integer programming problem (MIP) with binary and positive con-
tinuous variables needs to be solved (Li 1993; Siegfried 1982).

A MIP solver could also be used if some of the original resources’ variables were
to be treated as binary and some others as linear, meaning that some resources should
be completely selected or not at all but some others have the possibility to offer
any percentage of their installed capacity. Here, the reformulations of discrete and
integer variables presented in Sect. 2.1 can be used. The main advantage of using this
methodology is that any given objective function that consists of linear functions and
quotients can be transformed into a linear one by inserting more constraints.

3.4 Problem 3: Multiobjective integer programming

Finally, the more general case is addressed, where the objective function consists of
multiple costs, even all of them. Multicriteria analysis for decision support in energy
markets and specifically in the clearance of the market has gained attention the last
years since energy production has expanded and new technologies must be assessed
globally.

Multiobjective mathematical programming (MMP) is an extension of traditional
mathematical programming theory. In this case, the problem to be solved is:
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Max or Min { f1 (x) , f2 (x) , . . . , fn (x)}
Subject to: x ∈ S

where x is the vector of the decision variables, f1, f2, . . . , fn are the objective func-
tions (linear or nonlinear) to be optimized and S is the set of feasible solutions.

Many objective functions need to be optimized at the same time, so there is not
an optimal solution in the usual sense, since the objective functions are conflicting.
Therefore, the goal is to find the set of efficient solutions, which contains all the solu-
tions that are not dominated by any other solutions. These are called Pareto optimal
solutions. MMP is part of the MCDP framework which is the basis for solving multi-
criteria problems and consists of various methodologies ( Doumpos and Zopounidis
2002; Zopounidis and Doumpos 2002). This framework helps the decision-maker
participate actively in the decision process and solve complex realistic problems.

The methods for solving MMP problems are classified according to when the
decision-maker expresses his preferences into three categories (Hwang and Masud
1979): a priori, interactive and generation or a posteriori methods. The weighting
method used in this study is one of the most widely used generation methods, mean-
ing the Pareto optimal solutions are generated and then the decision maker selects one
of them. For this purpose, these costs are summed and a weight factor b j is assigned
to every one of them according to its importance for the ISO. This way results the total
gain J of the ISO which is his objective function that needs to be maximized. Caution
is needed regarding the signs used, depending on minimization or maximization of the
objective function. Weight factor for each cost is very important and can influence the
optimal solution. Clearly, the more important a cost becomes, the more are favored
the resources with high (low) values of this cost if we want to maximize (minimize)
the objective function and vice versa.

The purpose of this report is to find the solution of a formulated problem, thus
arbitrary values for each b j are used and we arrive at an optimal solution. However,
there are many ways to decide on the weight factors as already stated in Sect. 2.3,
depending on the stakeholders and their influence on the ISO. If the ISO wants to
examine various combinations of weights, the different optimal solutions result into
the efficient set of Pareto optimal solutions from which he will choose one just as
for the satisfiability problem, since this set of optimal solutions is a subset of all the
feasible solutions derived from the costs’ limits.

Weights that equal 0 are not taken into consideration. In any case, weights after
proper formulation should sum up to 1 so that they are easily interpreted, but this
is not necessary. Different weights could also be assigned to each cost depending
on the resource but this would mean that we assess each resource differently raising
equality and justice issues. This case extends the previous examples, so if all the used
criteria in the objective function are linear it results into a binary integer programming
problem extending that in Sect. 4.2, whereas for every ratio in the objective function
the linearization technique described in Sect. 4.3 is used. The same hold also for the
constraints.
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4 Examples

Here, the solutions of some cases are presented so as to demonstrate the algorithms.
The introductory example consists of eight resources and nine criteria but this is not
a restriction as the scalability of the algorithms is clear.

4.1 Examples of problem 1

The tighter the limits imposed on the costs, the smaller the feasible set of solutions
satisfying them. If it is small enough, then the operator could even make a decision
intuitively. Moreover, if the limits exceed certain values there may exist no feasible
solutions and thus the problem would be infeasible. Here, three examples are cited
which differ only in the lower bound of the second criterion (the supply must always
fulfill demand).

Example 4.1.1

• For J1 < 10,000, J2 >300, J3 >30, J4>30, J5 < 10,00, J6 < 10,00, J7 >50,
J8 >50, J9 <60 the feasible solutions appear in Table 2.

Example 4.1.2

• For J1 < 10,000, J2 >400, J3 >30, J4 >30, J5 < 10,00, J6 < 10,00, J7 >50,
J8 >50, J9 < 60 the feasible solutions are in Table 3.

Table 2 Results of Example 4.1.1

w1 w2 w3 w4 w5 w6 w7 w8 J1 J2 J3 J4 J5 J6 J7 J8 J9

0 0 1 1 0 1 0 1 741 335 89.179 72.239 306.50 292.50 300 355 58.75

0 1 0 1 0 0 0 1 645 310 92.581 80.000 294.00 268.00 180 250 60.00

0 1 0 1 0 1 0 1 693 325 91.769 80.000 295.50 275.50 280 335 55.00

0 1 0 1 1 1 0 1 753 345 90.507 80.290 299.50 281.50 380 410 59.00

0 1 1 1 0 1 0 1 909 415 90.301 75.663 394.50 356.50 380 420 60.00

1 0 0 1 0 1 0 1 755 360 93.681 77.778 322.50 326.50 300 340 56.25

1 0 0 1 1 1 0 1 815 380 92.434 78.158 326.50 332.50 400 415 60.00

1 0 1 0 0 1 0 1 686 300 92.917 71.333 271.50 227.50 330 335 60.00

1 1 0 0 1 1 0 1 698 310 94.274 80.323 264.50 216.50 410 390 60.00

1 1 0 1 0 1 0 0 731 360 93.681 82.222 354.50 366.50 350 310 60.00

1 1 0 1 0 1 0 1 923 440 93.920 80.000 410.50 390.50 380 405 58.00

Table 3 Results of Example 4.1.2

w1 w2 w3 w4 w5 w6 w7 w8 J1 J2 J3 J4 J5 J6 J7 J8 J9

0 1 1 1 0 1 0 1 909 415 90.301 75.663 394.50 356.50 380 420 60.00

1 1 0 1 0 1 0 1 923 440 93.920 80.000 410.50 390.50 380 405 58.00
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Example 4.1.3

• For J1 < 10,000, J2 >500, J3 >30, J4 >30, J5 < 10,00, J6 < 10,00, J7 >50,
J8 >50, J9 < 60 there are no feasible solutions, which is also apparent from the
previous examples since the greatest value of J2 in the feasible solution set was
440, which, therefore, is the value that maximizes J2 under these constraints.

It is easily observed that, according to the constraints, some resources are selected
more often than others. Some of them may always be selected. Respectively, some
resources, like resource R7 in this case, could never be selected. This is indicative of the
stability and robustness of the solutions as well as of their sensitivity to slight changes
of the constraints. This subject will be addressed extensively in the next Section.

These observations would be made even more easily and clearly by ranking the
feasible solutions according to the cost the ISO is more interested in. For example,
ranking the solutions of Table 2 with respect to J2, results in the following Table 4:

Here, it is observed that resources R4 and R6 are more often selected, in contrast
with resources R3 and R5, for big values of J2. In conclusion, it is extracted that
the results regarding resources R4, R6, R7, R8 are more robust in comparison with
resources R3 and R5, whereas resources R1 and R2 do not have an obvious selection
pattern.

Similar observations about the stability of the ISO’s choices can be made for every
ranking that the ISO is interested in. For example, if the ISO wants to follow an
environmental friendly policy, he can make his decisions after ranking the feasible
solutions in respect to the summation of J5 and J6, which represent gas emissions. All
suppliers interact with the market and this means that the ISO’s and other producers’
decisions affect their own strategies and investments. Each supplier wants to maximize
his gains, thus the market-clearing result and his response will constantly change until
an equilibrium is achieved. For every policy followed the market will move to a
different equilibrium, since the producers compete each other based every time on the
ISO’s energy policy. Thus, the methodology followed in order to select some of the

Table 4 Results of Example 4.1.3

w1 w2 w3 w4 w5 w6 w7 w8 J1 J2 J3 J4 J5 J6 J7 J8 J9

1 1 0 1 0 1 0 1 923 440 93.920 80.000 410.50 390.50 380 405 58.00

0 1 1 1 0 1 0 1 909 415 90.301 75.663 394.50 356.50 380 420 60.00

1 0 0 1 1 1 0 1 815 380 92.434 78.158 326.50 332.50 400 415 60.00

1 0 0 1 0 1 0 1 755 360 93.681 77.778 322.50 326.50 300 340 56.25

1 1 0 1 0 1 0 0 731 360 93.681 82.222 354.50 366.50 350 310 60.00

0 1 0 1 1 1 0 1 753 345 90.507 80.290 299.50 281.50 380 410 59.00

0 0 1 1 0 1 0 1 741 335 89.179 72.239 306.50 292.50 300 355 58.75

0 1 0 1 0 1 0 1 693 325 91.769 80.000 295.50 275.50 280 335 55.00

0 1 0 1 0 0 0 1 645 310 92.581 80.000 294.00 268.00 180 250 60.00

1 1 0 0 1 1 0 1 698 310 94.274 80.323 264.50 216.50 410 390 60.00

1 0 1 0 0 1 0 1 686 300 92.917 71.333 271.50 227.50 330 335 60.00
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resources is very demanding as far as the ISO is concerned, since an energy policy
must have been decided and a game theory study of how this policy will affect the
market should be taken into consideration.

4.2 Examples of problem 2

This is the simplest form of our problem. In any case, the only things needed for
implementing the algorithm are the final linear objective function and the linear con-
straints which all depend on some binary variables. All optimization problems in this
and the next sections are solved using GAMS software. The algorithm used provides
the possibility to seek a solution close to the optimal for quicker convergence (GAMS
Development Corporation 2012). In these examples the problems are not very large
scale sized, so the optimal solution is seeked.

Example 4.2.1 In this example costs J1, J2 and J3, after proper reformulation according
to Sect. 3.3, are optimized given some limits for the other costs that act as constraints.
The results are presented in Table 5.

Apparently, the more we tighten the bounds of the costs, the more we limit the
feasible region of the objective function and its optimal value deteriorates.

4.3 Examples of Problem 3

These examples of MMP present the optimal solution if the weights are already
decided, or the efficient set of Pareto optimal solutions if the ISO wants to exam-
ine various weighting schemes. In the problem studied, costs J3, J4, J9 are nonlinear
and must be modified according to Sect. 3.3. In the end, there is a MIP problem with
binary variables wi and positive variables zij, i = 1, . . ., 8 and j = 1, 2.

Example 4.3.1 In this example, the optimal solution is seeked when the ISO has
already decided which energy policy to implement. Therefore, he has to decide only
which producers to select so as to optimize his objective function. For different con-
straints and weights’ values the results are presented in Table 6.

There is the possibility to set either upper, or lower bounds, or both to any number of
costs as constraints. There may even no bounds be imposed on these costs (set aside the

Table 5 Results of Example 4.2.1

Decision Cost optimized Criteria constraints

w1 w2 w3 w4 w5 w6 w7 w8 Jj J1 J2 J3 J4 J5 J6 J7 J8 J9

0 1 1 1 0 0 0 1 minJ1 = 861 – 400 30 30 1,000 1,000 50 50 70

1 1 0 1 0 1 1 0 maxJ2 = 470 1,000 – 30 30 1,000 1,000 50 50 70

1 0 0 1 1 0 0 0 maxJ2 = 285 600 – 30 30 1,000 1,000 50 50 70

1 1 0 0 0 0 0 1 maxJ3 = 97.091 1,000 200 – 30 1,000 1,000 50 50 70

1 1 0 0 0 1 1 1 maxJ3 = 95.688 1,000 400 – 30 1,000 1,000 50 50 70
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physical constraints of the problem). It is observed that slight changes in the weights
may change the optimal solution but some other bigger changes may leave it intact. It is
also observed that, as expected, the tighter the constraints become, the worse the value
of the objective function for the optimal solution is. Sometimes the best value may
even be negative, meaning the operator doesn’t have profit at all. This phenomenon
could happen if the values of the costs that reduce total gain (J1, J5, J6, J9) outweigh
the rest of the costs that increase total gain. All these remarks have also to do with
stability issues concerning the solutions and several examples must be solved to under-
stand how each cost, each weight and each resource assessment affects the optimal
solution.

Example 4.3.2 Here, an example of an efficient set is presented, given that J1 <

1,000, J2 > 400, J3 > 30, J4 > 30, J5 < 1,000, J6 < 1,000, J7 > 50, J8 > 50, J9 <

70. The possible weights’ combinations are of course infinite, but we assume that the
ISO considers all criteria equivalent and of low importance, except one that is the most
important among them. For such an assumption, the indicative values are considered
to be 6 and 0.05 for the most important criterion and the rest of the criteria respectively,
but other values are also possible. Perhaps the ISO hasn’t yet decided which is the
most important criterion for him. In that case, he finds a set of solutions, each of them
being optimal when the respective weight combination is selected. Results appear in
Table 7.

Solving the satisfiability problem, there are 31 feasible solutions that satisfy the
criteria limits of this example. For each combination of weights presented, we have
an optimal solution among the feasible ones. Based on these solutions, the ISO can
then choose which solution is preferable and which energy policy to implement. It
is observed that some energy resources are more often selected than others and that
some optimal solutions are the same even if the weights are different. Of course, even
in that case, the respective optimal value of profit J is different. In this example, when
the importance of costs that should be minimized (meaning they cause cost in contrast
with the rest that cause gain) is high, total profit is negative. This result could perhaps
be improved if the demand for energy was less.

Table 7 Results of Example 4.3.2

w1 w2 w3 w4 w5 w6 w7 w8 J b1 b2 b3 b4 b5 b6 b7 b8 b9

0 1 1 1 0 0 0 1 −5,147,281 6 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

1 0 0 1 0 1 1 1 2,777,506 0.05 6 0.05 0.05 0.05 0.05 0.05 0.05 0.05

1 1 0 0 0 1 1 1 561,006 0.05 0.05 6 0.05 0.05 0.05 0.05 0.05 0.05

1 1 0 0 1 1 1 1 467,395 0.05 0.05 0.05 6 0.05 0.05 0.05 0.05 0.05

1 1 0 0 0 1 1 1 −1,885,559 0.05 0.05 0.05 0.05 6 0.05 0.05 0.05 0.05

1 1 0 0 1 0 1 1 −1,384,046 0.05 0.05 0.05 0.05 0.05 6 0.05 0.05 0.05

1 1 1 0 1 1 1 0 3,207,601 0.05 0.05 0.05 0.05 0.05 0.05 6 0.05 0.05

0 1 1 1 1 1 0 1 2,934,398 0.05 0.05 0.05 0.05 0.05 0.05 0.05 6 0.05

1 1 0 1 0 1 0 1 −364,254 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 6
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5 Sensitivity/robustness

As in any optimization problem, one is very interested in the system’s robustness
and its sensitivity to changes. Sensitivity analysis considers the change of the optimal
solution depending on changes of continuous parameters of the problem. However,
integer values cannot be addressed with the classical sense of sensitivity. In an integer
programming problem, as mentioned in the end of Sect. 4.1, solutions’ robustness
results from the consistency of the selections meaning that a robust system should
generally approve or eliminate the same resources for small deviations of the value
of the objective function. The main interest is in the optimal solution, but if the satis-
fiability problem is solved, ranking and studying its solutions will help in observing
the consistency of the values of wi (example in the end of Example 4.1.2). To avoid
complexity, concentration can be limited to the ranked feasible solutions with small
divergence from the optimal one.

In this sense, it is obvious that robustness is important when assigning values to the
weights b j , since their value can be any real number (between 0 and 1 if they sum up
to 1). Moreover, the conventional indicator of sensitivity concerns the values of the
criteria Crj for each resource. Many of these values may include measurement errors
as far as quantitative criteria are concerned. It may be also difficult to quantify them
accurately if the criteria are qualitative. Sometimes they can even change unexpectedly
(for example, a power plant failure may drop the quantity offered, whereas a new
investment may raise the social characteristics of the resource). It should be studied
how slight variations may influence the optimal solution in order to conclude which
choice is the best. Naturally, some values should be more easily amenable to variations
than others.

The simplest example of our theoretical model will be examined again, that of the
maximization of a linear function, e.g. J2. At example 4.2.1, it was calculated that the
solution that maximizes J2 such that J1 < 1,000, J3 > 30, J4 > 30, J5 < 1,000, J6 <

1,000, J7 > 50, J8 > 50, J9 < 70 is:

w1 w2 w3 w4 w5 w6 w7 w8 J2

1 1 0 1 0 1 1 0 470

If resource’s R4 price (Cr1) raises from 1.9 to 2.1, the optimal solution becomes:

w1 w2 w3 w4 w5 w6 w7 w8 J2

1 0 0 1 0 0 1 1 455

However, if resource’s R4 social characteristics’ value (Cr8) drops from 90 to 60, the
optimal solution remains intact:
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w1 w2 w3 w4 w5 w6 w7 w8 J2

1 1 0 1 0 1 1 0 470

This is because the constraints we have imposed are loose as far as social characteristics
are concerned, whereas they are tight for pricing. Thus, the sensitivity of the result
depends also on the general formulation of the problem.

6 Conclusions and extensions

In the upcoming Liberalized Energy Markets, an Independent System Operator will
have to decide which energy resources are more profitable based not only on their
price, but also on many other criteria aiming at maximum social welfare. This study
provides a multicriteria approach and a decision support framework is created.

To regulate the market, the ISO needs to decide and modify when needed the
importance of these costs before including them in one function to be optimized. The
other option is to find all the feasible solutions before choosing one among them. It
is studied how this objective function and the whole problem with its constraints is
formulated and solved with use of integer programming. It is also studied how the
insertion of binary variables can reduce the complexity of the problem and also help
in solving cases where nonlinearities occur. Many more general or realistic cases can
be addressed with the methodology and formulations that are presented. A case that
should be studied is that of a resource representing an energy producer who uses many
kinds of energy technologies and for this reason his marking values are more complex
to calculate.

The results are based on the introductory example and demonstrate how the strict
bounds of the costs used, limit the feasible solution space and thus affect the optimal
solution. The evaluation of the resources by the ISO should also be as accurate as
possible because even slight modifications could alter the optimal solution depending
on the problem’s formulation.

Finally, the energy policy implemented, that is the weights of the different costs
in the objective function or the ISO’s preferences in the satisfiability problem, is
very important. This means that further study is needed on how the ISO will choose
the values of these weights and which methodology is more suitable. The existence
of many market participants, like multiple energy resources and producers, many
categories of end-users, municipality authorities and even civil society organizations,
lead also to game theory notions and methodologies.
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