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 

Abstract-- A serious problem in every complex decision 

making process is how to deal with uncertainty. In complex 

systems the uncertainty is usually addressed with the use of 

probabilistic models where information about the 

distribution of the uncertain parameters is available or 

derived. However, in many engineering problems such 

information is unknown. Evermore, quite often the decision 

is made once, rendering irrelevant the probabilistic 

framework. In this study a multicriteria methodology is used 

in order to model the clearance of the energy market. The 

proposed model deals with uncertainty as far as the desired 

energy policy and restrictions are concerned with use of 

interval analysis. This way, the robustness of the optimal 

solution for different energy policies, which is necessary in 

order to evaluate them, is studied, thus creating a decision 

support system for the market operator. 

 
Index Terms-- Energy market, energy policy, multicriteria 

decision support, robustness, interval analysis 

I.  INTRODUCTION 

HE energy markets’ structure has greatly changed due 

to their deregulation. There are many stakeholders now 

in an energy market that could possibly compete or 

cooperate in order to maximize their profits [7,9]. 

 In liberalized markets there are also independent 

organizations that are responsible for the regulation. In 

energy markets, an independent system operator (ISO) is 

responsible for the clearance of the market. The ISO 

receives the bids of the power producers and clears the 

transactions of the market at precise time intervals. This 

way, the equilibrium of the market as far as the supply and 

demand are concerned is achieved, in an attempt to 

maximize the social welfare. However, the regulation of the 

market and the best supply decision is not simple. The 

demand for renewable and sustainable energy that subjects 

to certain environmental restrictions needs to be taken into 

consideration [2,3,5,15]. Moreover, there is a great variety 

of energy resources and technologies used for power 

production that need to be regulated and evaluated. 
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 Until now, the clearance of the market is performed 

according to the financial cost of the producers’ bids. 

However, the importance of other factors such as reliability 

and environmental impact are taken into consideration in 

many recent studies [4,10,11,14]. There are various criteria 

that should be included in the supply decision process so 

that the clearance of the market corresponds to the socially 

best result [10]. 

 In order to address this multicriteria problem, the 

weighting method is used [16]. This means that the different 

criteria are incorporated into one objective function and 

each one is assigned with a weighting factor that 

corresponds to the criterion’s importance for the ISO. This 

is solved as a mixed-integer linear programming problem 

[6]. Different weight combinations lead to different optimal 

solutions that constitute the Pareto solution set. 

 The weight decision is a complex procedure since there 

are many stakeholders in a deregulated energy market and 

the ISO needs to make the optimal decision from all points 

of view. Moreover, slight modification of the ISO’s 

preferences, therefore to the weighting factors, could result 

in different optimal solutions. It is thus necessary to study 

the sensitivity of certain parameters and the robustness of 

the optimal solution obtained. 

 Parameters’ uncertainty in integer programming can be 

addressed with various methodologies such as fuzzy sets [1] 

and stochasticity [12]. In this study, interval analysis is used, 

which is suitable for engineering integer programming 

problems when some input parameters are not deterministic 

[13]. The reason that the interval analysis framework is 

suitable is that it does not require further information 

regarding the distribution information of the uncertain 

parameters. Moreover, in complex engineering problems of 

energy planning and operation, the decision maker is 

interested in the range of the potential optimal solution and 

how the decision variables interact with it and not in a 

probabilistic distribution of the possible solutions.  

Therefore, if the ISO uses intervals with upper and lower 

bounds, instead of specific values, in order to assign the 

weights to the criteria, he can obtain an interval as a solution 

to the optimization of his objective function. Furthermore, 

he can study which supplier choices are influenced within 

the weighting intervals that he sets. 

 Interval analysis has been used in many energy 

management and planning problems so as to address 

uncertainty of some parameters. The purpose of this study is 

to create a decision support tool for the ISO of an energy 

market that needs to perform the market clearance according 

to certain criteria. This tool is able to cope with the 

difficulties and uncertainties as far as the subjective 

importance of each criterion is concerned and how these 
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affect the value of the objective function and the selection of 

the potential suppliers. 

 The paper is structured as follows. In Section 2 the 

mathematical formulation of the multicriteria market 

clearance problem is derived and in Section 3 the interval 

analysis framework is described and incorporated into the 

initial problem. In Section 4, a case study is presented and 

several examples are solved. Finally, in Section 5 we present 

the conclusions and the future extensions of the research.   

II.  MATHEMATICAL FORMULATION 

The ISO seeks the optimal supplier selection based on his 

energy policy. In order to decide, he takes into account 

many different criteria in which he also assigns different 

thresholds. His objective function incorporates all these 

criteria, each one assigned with a weighting factor 

representing its importance. His objective function 

represents the social welfare. From the set of feasible 

solutions that satisfy the constraints that he imposes, the 

optimal solution is the one that maximizes the social 

welfare. 

Assuming there are n potential suppliers, each one of 

them is represented by Si,    . If xi is a binary variable that 

declares the selection or not of supplier Si, the decision of 

the ISO is a vector               . Moreover, assuming 

the ISO takes into consideration m criteria, each one 

corresponding to a cost Cj,    , the objective function and 

the constraints are based on the weights and limits imposed 

on costs Cj(Χ). 

Therefore, the optimization problem of the ISO is: 

 

 
   

 
        

 

   

 (1a) 

Subject to: 

 

                              (1b) 

         (1c) 

 
     

 

   

 (1d) 

 

 where wj the weight of criterion j in the objective function 

and Cth,j the threshold imposed on the cost Cj by the ISO.  

Attention must be given to the sign of Cj(X) in the 

objective that depends on whether the cost Cj need to be 

minimized or maximized, e.g. the cost that corresponds to 

the total quantity of energy could be considered as gain and 

needs to be as high as possible while the cost that 

corresponds to the environmental impact needs to be as low 

as possible.  

As far as the constraints are concerned, the ISO can 

impose upper or lower bounds on the costs of some or even 

all of the criteria. In case of lower bounds, the inequality in 

equation (1b) needs to be reversed. The weighting factors wj 

correspond to the importance given to each criterion. They 

can be given any positive value and then they can easily be 

reformulated so that the sum up to 1. This way, they can be 

easily interpreted as percentages declaring importance. 

If the ISO wants to eliminate a certain criterion and its 

cost from a decision, he can set its weight equal to 0. In any 

case, each combination of weights leads to different social 

welfare and the optimal solutions obtained are Pareto 

efficient. Thus, every weight combination represents a 

different energy policy which needs to be decided carefully 

since it can affect the final optimal decision of the ISO. 

The formulated problem is a binary integer programming 

problem that can be solved using various algorithms based 

on branch-and-cut approach [6]. The difficulty however, lies 

on the selection of the right energy policy that determines 

the optimal solution. There are many ways to assign values 

to the weighting factors. In any case, the ISO needs to take 

into account all the stakeholders of the energy market, 

therefore this can be a difficult and challenging task. 

III.  INTERVAL ANALYSIS 

When some of the parameters are not deterministic, 

algorithms of mixed integer programming problems may not 

be effective. Uncertain parameters can be expressed as 

intervals that correspond to the range that the values of these 

parameters can obtain. The advantage of this formulation in 

comparison with other methodologies, such as stochasticity, 

is that the distribution information of the unknown 

parameters is not required in order to solve the problem. 

This way, more realistic and general case studies can be 

solved. 

In interval analysis, an unknown parameter    is 

expressed as an interval with an upper bound    and a lower 

bound   . If the parameter is continuous it can get any 

values inside        . In case of integer parameters, the 

upper and lower limits are also integer numbers and the 

feasible values are the integers inside these limits. 

Specifically for binary parameters the only possible values 

are the lower limit 0 and the upper limit 1. 

An interval linear programming problem can be 

formulated as: 

 

            (2a) 

Subject to: 

 

         (2b) 

      (2c) 

 

where             are proper matrices, with elements 

that belong to a set of interval numbers   . 

In order to solve this problem, two submodels must be 

formulated and solved [8]. If the objective function needs to 

be maximized, a submodel corresponding to    is 

formulated and based on its solutions another submodel 

corresponding to    is then formulated and solved. If the 

goal is to minimize the objective function, the model 

corresponding to    is formulated and solved first. 

Assuming that    are positive, the first submodel is: 
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Subject to: 
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(3b) 

   
       

 
(3c) 

where   
  for          are continuous or discrete 

variables with positive cost coefficients and for      
      are continuous or discrete variables with negative 

cost coefficients. 

After solving the first submodel and obtaining the 

optimal values       
  for          and       

  for      

     , the second submodel is: 
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Subject to: 

 

 

      
 
        

    
   

  

  

   

       
 
        

    
   

  

 

      

      

(4b) 
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After solving the two submodels we obtain the final 

solutions     
      

  and       
        

             . 

IV.  CASE STUDY 

A.  Description of the problem 

In order to demonstrate the methodology a case study is 

solved. We assume that there are eight potential power 

producers in the energy market, each one representing a 

different power production technology such as oil, gas, wind 

turbine, photovoltaic, biomass etc. It is assumed that the ISO 

evaluates these producers based on six criteria and gives 

them a marking that corresponds to each criterion. These 

criteria are     for pricing per unit,     for quantity 

produced,     for CO2 emissions per unit,     for other 

emissions per unit,     for strategic characteristics (%) and 

    for social characteristics (%). The markings that 

correspond to each producer Si for every criterion Crj are 

given in Table 1. 
 

TABLE I 

PRODUCER MARKINGS 

 

 S1 S2 S3 S4 S5 S6 S7 S8 

CR1 0.17 0.5 0.24 0.39 0.3 0.15 0.22 0.14 

CR2 40 95 150 65 100 80 120 50 

CR3 1 0.4 1.3 0.5 1.1 1.2 0.8 1 

CR4 1.8 0.4 1 0.6 0.6 1.2 0.9 1.2 

CR5 90 78 95 75 70 98 92 77 

CR6 85 75 95 80 85 92 79 82 

 

Some of these criteria are quantitative but the ones that 

are qualitative are generally more difficult to be given a 

marking. However, a slight modification of a marking could 

result to a different solution, so this is another case that 

interval parameters could be used. In this study, it is 

assumed that the markings are deterministic and uncertainty 

exists in the weighting procedure and in the limits imposed 

by the ISO on the constraints of the problems. 

From these markings and criteria, the corresponding costs 

of the ISO according to his decision vector X are obtained: 
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Costs that result from financial cost and gas emissions 

should be minimized, therefore they must be incorporated in 

the objective function with a negative sign, whereas the rest 

that represent positive notions are given a positive sign. 

Therefore, the optimization problem of the ISO is: 

 

 
   

 
 
                        

                         
  (11) 

 

Subject to any constraints he wants to impose on specific 

costs. 

The problem could also include some costs that are not 

linear but then linearization techniques would be necessary 

in order to reformulate it. Finally, the problem should 

become a mixed integer linear programming problem 

(MILP) and the interval analysis framework that was 

described can be implemented. 

As mentioned, the difficulty of the ISO lies mainly in 

determining the weighting factors wj but also the thresholds 

Cth,j for some criteria. Therefore, every uncertain weight and 

threshold can be expressed as an interval parameter   
  

   
    

   and       
        

       
   respectively. 

The final optimization problem of the ISO becomes: 
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Subject to: 
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where vector       
    

    
    

    
    

    
    

   

represents the supply decision of the ISO regarding the eight 

available power producers. 

Since the weights are expressed as intervals, their 

summation is also an interval and can’t be equal to 1. 

However, this condition is not necessary in order to solve 

the problem because the weighting factors express the 

relative importance of each criterion and the initial 

assumption was used just to resemble percentages. 

The reformulated MILP problem is solved with the two 

stage method presented in the previous section that requires 

the creation of two submodels for     
  and     

 . 

B.  Example with interval weights 

In the first example, we assume that the ISO has decided 

on the exact thresholds he will impose on the costs as 

constraints, but he is uncertain about some of the weighting 

factors.   

In this example, we assume that the ISO is uncertain 

about the weights w1, w5 and has decided on the rest. 

Assuming that   
                         

       
                   and the ISO imposes the 

constraint          so that the price will not exceed a 

certain limit. The results obtained after solving the two 

subproblems are: 

 

    
                  

      
               

        

      
               

        

      
               

        

      
               

        

 

We observe that the final selection of the suppliers is 

robust and is not affected by this uncertainty. The optimal 

value of the objective function may vary within a certain 

limit since different weighting factors lead to different 

optimal values even for the same choice.  

Attention must be given to the fact that the coefficients   
  

mentioned in Section 3 do not correspond to the coefficients 

  
  of the objective function. We must first reformulate the 

objective function in order to find the coefficients of   
 ’s.  

In the previous example, all the coefficients of   
  were 

positive and the constraints deterministic, therefore the 

problem generally is expected to have robust enough 

solutions. However, large uncertainty regarding multiple 

weight parameters is expected to decrease the system’s 

robustness. 

C.  Examples with uncertainty in the constraints 

When there is uncertainty in the constraints, the solutions’ 

robustness should also be examined. Assuming that 

       and the ISO gives the same importance equal to 

0.2 to the rest of the criteria and is uncertain as far as the 

demand is concerned with            
  and      

  

         , the results are: 

 

    
                  

      
               

        

      
               

        

      
               

        

      
               

        

 

We observe that this is also a robust solution, meaning 

that this interval does not affect the optimal maximum value 

of the objective function and the optimal selection. 

If however the uncertain constraint was the price, with 

           
  and      

          , the results would be: 

    
                 

      
               

        

      
               

        

      
               

        

      
               

        

 

In this example we observe that this uncertainty in the 

constraints affects the optimal solution. The optimal value of 

the objective function has a certain range depending on the 

limit imposed, since the weight parameters are considered 

deterministic. Moreover, the selection or not of some 

suppliers is robust, whereas the selection of some other 

suppliers depends on the uncertain limit imposed. More 

precisely, suppliers S1, S4, S8 are surely selected and 

suppliers S1, S4, S8 are surely not selected. Supplier’s S2 and 

S6 selection is not robust. This could mean that if initially 

the ISO wants to be strict as far as his budget is concerned, 

they should be eliminated, but if in the end the available 

money are close to the upper bound of      
  they should be 

selected.    

D.  Examples with interval weights and uncertainty in the 

constraints 

The most difficult decision for the ISO is when he is 

uncertain about some of the weight parameters and 

regarding the thresholds of some constraints at the same 

time. However, this is a more realistic case and therefore the 

robustness of the optimal solution must be assessed. 

In the next example, we assume that the weight decisions 

of the ISO are: 

 

  
          

        

          

  
    

        
 

and the constraints he wants to set are: 

 

           
  and      

            

           
  and      

           

           
  and      

            

 

This means that he hasn’t decided exactly on the 

importance of the criteria regarding price, quantity, strategic 

and social characteristics of the suppliers and he wants to 

limit the financial cost and the CO2 emissions meeting at the 

same time the demand but he is not certain about the exact 

limits he will impose. The results are: 
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 We observe that the range of the optimal value of the 

objective function is larger since the values of the weight 

parameters are also greater and the objective function is 

scalable. As far as the robustness of the solution is 

concerned, only the selection of supplier S2 is not sure. 

 In the next example it is assumed that the degree of 

uncertainty is greater as far as the weights and constraints’ 

thresholds are concerned. Assuming that the weight 

decisions of the ISO are: 

 

  
          

        

          

  
    

        
 

and the constraints he wants to set are: 

 

           
  and      

            

           
  and      

           

           
  and      

            

  

The results are: 

 

    
                   

      
               

        

      
               

        

      
               

        

      
               

        

 

 We observe that since the lower limits of the intervals 

haven’t changed, the lower limit of the optimal objective 

function hasn’t changed a lot. However its range has 

increased a lot because the range of the intervals, therefore 

the uncertainty has increased a lot too. Moreover, we 

observe that the optimal supplier selection has also changed 

as far as which suppliers will be surely selected or not and 

the solution is less robust since the uncertainty concerns two 

suppliers, S6 and S7. Consequently, the larger the uncertainty 

as far as the number of uncertain parameters and their range 

is, the more the optimal solution is affected. 

 Therefore, the proposed methodology provides the ISO 

with the necessary information in order to study the 

robustness of the optimal solution and how his decision 

should change depending on the circumstances. If, however, 

the ISO had assumed a Gaussian distribution for the 

uncertain parameters and the problem was solved for values 

of the uncertain parameters equal to the average of their 

upper and lower limits, which would be the most probable 

scenario, the optimal decision would be: 

 

                                      

                                      

 

but the ISO wouldn’t have any other information as far as 

the robustness of the solution is concerned. In the optimistic 

scenario with loose constraints supplier S7 should also be 

selected, whether in the pessimistic scenario with strict 

constraints supplier S6 shouldn’t be selected. Therefore, the 

interval analysis framework provides a decision support tool 

much more useful for the ISO. Moreover, the advantage of 

the interval approach instead of a best and worst case 

scenarios is that the range of the optimal value of the 

objective function corresponds to a set of feasible and robust 

solutions for the decision variables respectively. Therefore, 

the different potential decisions can be better assessed and 

the decision making procedure is facilitated. 

V.  CONCLUSIONS 

The deregulation of the energy markets and the new 

requirements that need to be met by the system operators 

have created a new framework as far as energy planning and 

decision making is concerned. One of their tasks is the 

energy market clearance and the selection of the power 

producers that are going to supply energy. 

This task should nowadays be treated as multicriteria 

problem since social welfare involves low financial cost but 

other factors as well. However, the importance and desired 

limits for each of these criteria can’t always be decided 

accurately. That is why a decision support tool was created, 

based on MILP, where interval analysis is used in order to 

address uncertainty regarding these parameters which is 

practical for engineering problems since the distribution 

information of the uncertain parameters is usually not 

needed but also difficult to find. Furthermore, this approach 

is superior to finding the best and worst case scenario 

providing ISO with a set of feasible and robust solutions. 

Further research could include the use of the proposed 

model in order to study the robustness of the solutions with 

uncertain suppliers’ markings and the insertion of nonlinear 

criteria after proper reformulation.  
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