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Abstract. Complex interactions between stakeholders in deregulated
markets are formulated using game theory notions. This study is moti-
vated by energy markets and addresses Stackelberg games with a leader
that decides �rst his strategy and many followers, each one with his own
characteristics. A static Stackelberg game corresponding to a Voluntary
Load Curtailment (VLC) program for energy consumers is formulated.
This leads to a bilevel programming problem that is generally di�cult
to solve, due to nonlinearities, nonconvexities that arise and the large
dimensionality of the problem due to the existence of many followers.
In these problems metaheuristic algorithms become attractive. In this
study an algorithm for solving such problems is developed, using Parti-
cle Swarm Optimization (PSO) which is based on collective intelligent
behaviors in nature and has gained wide recognition the last years. Some
examples are then solved using the proposed algorithm in order to study
its e�ciency and the interactions between the players of this game.
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1 Introduction

Market deregulation has been a priority in many sectors during the last few
decades resulting in interactions among di�erent stakeholders at all levels of the
market. These interactions are modeled with use of game theory notions and
solved with various optimization methods. Therefore, deregulated markets are
complex systems that are generally di�cult to solve.
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If the modeling of a complex system contains nonlinear or nonconvex func-
tions, the use of traditional optimization methods does not guarantee conver-
gence to the optimal solution. In these cases, the use of metaheuristic algorithms
becomes attractive. One category of these algorithms is based on swarm intelli-
gence that studies the collective behavior of simple interacting agents in small
groups. PSO belongs in swarm intelligence algorithms and is stochastic [10].

This study is motivated by deregulated energy markets and the problem
addressed is the implementation of a VLC program. In a VLC program, the
power producer announces a fee that will be paid to the consumers if they don't
use an amount of energy for a certain period. According to their response, he
chooses the best VLC scheme for him. This is a Stackelberg game where the
power producer is the leader and the consumers are the followers. There are
algorithms for solving these problems under speci�c assumptions [1,3]. However
as the number of players increases and these assumptions don't hold, the problem
becomes di�cult to solve.

In this paper, a PSO algorithm is developed for solving a VLC program
model. The solutions to some simple examples are compared with these obtained
from GAMS and another example is solved in order to demonstrate the e�ciency
of the algorithm in complex problems. The paper is structured as follows: In
Section 2, the VLC model and the mathematical formulation of the problem
are presented and the di�culties in solving it are described. In Section 3, a
standard PSO algorithm is described along with the modi�cations made to it so
as to tackle this problem. In Section 4 the results are presented and compared.
Finally, in section 5, we present the conclusions and future extensions of the
research.

2 Mathematical Formulation

A Stackelberg game is formulated as a bilevel programming problem when the
leader has an optimization problem and the followers' optimization problems
are included in it as constraints. The problem to be solved can be formulated
mathematically as:
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with qs = qd and p = b1qd as joint constraints of the outer and inner problems



An Energy Market Game solved with PSO 3

Positive cost parameters c3 and c4 correspond to the quantity produced qpr and
the quantity otherwise acquired expensively qA in case of emergency or failure.
The power producer has a capacity limit qmax and M is su�ciently large so as
to prevent him from �nding energy expensively when he can produce it on his
own. The total demanded and supplied energy is qd and qs respectively and its
price is p. The energy curtailed to a consumer i is qc,i and r1 is the fee parameter
de�ned by the producer. The energy curtailed along with the parameters r1 and
m form the fee function for each consumer. The producer can also calculate the
total expected demand q∗ based on historical data. For every consumer i, there
is a comfort cost parameter c1,i that together with qc,i and ni give his comfort
cost function. The expected consumer's demand is q∗i , whereas his �nal actual
demand is qd,i. Each consumer has some basic needs that are expressed with the
lower limit qmin,i for his demand. Finally, b1 is the slope of the market's supply
function used to calculate the energy price.

In order to simplify the mathematical formulation, the equations in the con-
straints can be substituted directly into the objective functions. Nevertheless
solving this problem is di�cult because a producer's cost, a consumer's comfort
cost and the fee o�ered can be nonlinear, nonconvex or/and discontinuous func-
tions. Moreover, the followers play a generalized Nash game and they all seek to
minimize their objective functions taking into consideration the other consumers'
decisions. The main di�culty lies in solving the followers' problem. Being able
to estimate their decisions, the leader can easily optimize his objective function
and rede�ne his strategy if necessary.

3 Algorithm Description

Since the �rst variant of PSO was �rst introduced [4,6], there have been de-
veloped many modi�cations to the standard algorithm in order to improve its
behavior and convergence rate. PSO algorithms have gained wide recognition
and are being used in all kind of di�cult optimization problems [10]. In PSO, a
population of N particles is initialized in the search space and then they move
in it iteratively. Their position shift is called velocity vi and their positions xi
are candidate solutions to the problem. In this study, a variant of PSO called
Uni�ed Particle Swarm Optimization (UPSO) [8] is used. This variant modi�es
the standard PSO so that the neighborhood of each particle is also taken into
consideration. The local and global components of the velocity update, Li and
Gi respectively, are given in their vectorial form by:

Gi (t+ 1) = χ [vi (t) + c1R1 (pi (t)− xi (t)) + c2R2 (pg (t)− xi (t))] (3)

Li (t+ 1) = χ [vi (t) + c1R1 (pi (t)− xi (t)) + c2R2 (pl (t)− xi (t))] (4)

where i = 1, 2, ..., N , t the iteration counter, pg the overall best position found so
far, pl the local best position for each neighborhood, R1 and R2 random vectors
with components uniformly distributed within [0,1], c1 and c2 weighting factors
and χ is a parameter called constriction coe�cient.
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The in�uence in UPSO of the local and global velocity update, is controlled
by a parameter u called uni�cation factor. The mathematical formulation of the
updates in velocity and position are:

vi (t+ 1) = uGi (t+ 1) + (1− u)Li (t+ 1) (5)

xi (t+ 1) = xi (t) + vi (t+ 1) (6)

UPSO is a very promising variant although the selection of u in�uences its
e�ciency and depends on the problem [9].

The default PSO and UPSO algorithms optimize unconstrained problems.
In order to address this constrained problem a penalty function is used so as to
avoid infeasible solutions [7,11]. This is one of the most usual methods for solving
constrained problems since it does not require assumptions on the continuity and
di�erentiability of the objective function. If the constrained problem is:min f (x),
subject to Cj (x) ≤ 0, j = 1, 2, ..., k the penalty function is de�ned as:

F (x) = f (x) + h (t)H (x) (7)

where f(x) is the original objective function, h(t) a penalty value depending on
the iteration number and H(x) a penalty factor.

As mentioned, the followers play a Nash game where they all decide simulta-
neously, each one based on the strategies of the rest. Each consumer's optimiza-
tion problem is solved with the UPSO algorithm by adding loop iterations so as
to solve all these optimization problems simultaneously. The consumers' prob-
lems are interdependent since their decisions a�ect the demanded quantity of
energy and therefore its price. For this reason, the algorithm has been modi�ed
so that after every iteration each consumer is informed about the total requested
energy that corresponds to the others' decisions so that he can take it into con-
sideration in his next iteration. This process, which reminds of a dynamic game,
is repeated until the system becomes stable and the players' decisions do not
change signi�cantly.

4 Results

In all the examples we assume that the swarm size is 10. Since the algorithm
is stochastic, we present the average results for 20 executions. The parameters
of the UPSO are considered to be c1 = c2 = 2.05 and χ = 0.729 [2] as in the
contemporary standard PSO and the execution is performed with u = 0.5 so
that the algorithm is balanced between the global and the local component. The
neighborhood radius for each particle is assumed to be 1. The main variable is
the �nal energy demand qd,i for each consumer i. We present only the results for
these variables since the rest of the variables and the objective functions of all
players are then easy to calculate.

As far as the penalty parameters are concerned, suitable values that are
tested in various other experiments [7,11] are used.
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4.1 Examples with two consumers

It is assumed for all examples that the expected total demand is 12, 6 for each
consumer and that b1 = 10. Moreover, it is assumed that the fee is given by a
linear function som = 1. In Example 1 the parameters used are: r1 = 3, c1,1 = 2,
c1,2 = 1.5, n1 = n2 = 1, qmin,1 = 4, qmin,2 = 3.5, in Example 2 they are: r1 = 8,
c1,1 = 6, c1,2 = 5, n1 = 1, n2 = 2, qmin,1 = 4, qmin,2 = 3.5 and in Example 3
they are: r1 = 5, c1,1 = 3, c1,2 = 4, n1 = n2 = 2, qmin,1 = qmin,2 = 3. In these
simple examples linear and nonlinear comfort cost functions are tested and the
results of the algorithm are compared with these obtained from GAMS:

Example 1 Example 2 Example 3
modi�ed UPSO qd,1 = 4.0058

qd,2 = 3, 48812
qd,1 = 4.02535
qd,2 = 4.42601

qd,1 = 4.32571
qd,2 = 4.73722

GAMS qd,1 = 4
qd,2 = 3, 5

qd,1 = 4
qd,2 = 4.4

qd,1 = 4.333
qd,2 = 4.75

We observe that the algorithm converges almost to the optimal solution at
about the same time a specialized software needs to �nd it. More precisely, the
di�erences are between 0.1 and 0.6 percent. Moreover, the standard deviation
of the results for 20 experiments is small; therefore we can �nd a satisfactory
solution within 2% of the optimal with only one execution of the algorithm which
is much faster.

4.2 Example with �ve consumers

The main advantage of the algorithm is that it can solve nonconvex, large scale,
complex systems without continuity or di�erentiability assumptions for the ob-
jective functions. We now assume that there are �ve consumers, each one ex-
pecting to demand 5 units of energy. Therefore, the expected total demand is 25
and b1 is considered to be 10 again.

If r1 = 8, qmin,1 = 4.5, qmin,2 = 4, qmin,3 = 3.5, qmin,4 = 3, qmin,5 = 2.5 and

the comfort cost C of each consumer is given by: C =


4qc,i qc,i < 0.6

6 0.6 ≤ qc,i ≤ 1.1

7q2c,i qc,i > 1.1

,

the average solutions are:

qd,1 = 4.52521 qd,2 = 4.02953 qd,3 = 3.84558 qd,4 = 3.89112 qd,5 = 3.89725

In this case, the �rst two consumers are constrained by their basic needs
and the other three that are not, reduce their demand but don't accept large
curtailment because the comfort cost becomes too high in the third branch of
the comfort cost function. Similarly, cases with a lot of players can be modeled
and solved. As the number of consumers and the complexity of the problem
increases, standard deviation increases too. Therefore we can't rely on just one
execution of the algorithm. Moreover, the penalty for violation of the constraints
must be increased because in some cases they are underestimated.
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5 Conclusions

A PSO algorithm was developed for solving complex optimization problems that
result from interactions among various stakeholders in deregulated markets. The
algorithm was based on UPSO and is able to address constrained optimization
problems with many players that need to decide their strategies based on the
other players' decisions. The study was motivated by energy markets and the
test model used is a static Stackelberg game with a power producer as the leader
and many consumers as followers.

Some examples were solved and the results show that the algorithm is e�ec-
tive and can generally solve complex problems that cannot be addressed with the
traditional optimization methods. Further research could include the solution of
more realistic models, so as to study the interactions between the stakeholders
and also the con�guration of the algorithm so that the parameters' values cor-
respond to the speci�c structure of this problem rendering the algorithm even
more e�ective.
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