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Abstract—In this work, we study Static and Dynamic Games
on Large Networks of interacting agents, assuming that the
players have some statistical description of the interaction
graph, as well as some local information. Inspired by Statistical
Physics, we consider statistical ensembles of games and define
a Probabilistic Approximate equilibrium notion for such
ensembles. A Necessary Information Complexity notion is
introduced to quantify the minimum amount of information
needed for the existence of a Probabilistic Approximate
equilibrium. We then focus on some special classes of games for
which it is possible to derive upper and/or lower bounds for
the complexity. At first, static and dynamic games on random
graphs are studied and their complexity is determined as a
function of the graph connectivity. In the low complexity case,
we compute Probabilistic Approximate equilibrium strategies.
We then consider static games on lattices and derive upper and
lower bounds for the complexity, using contraction mapping
ideas. A LQ game on a large ring is also studied numerically.
Using a reduction technique, approximate equilibrium strategies
are computed and it turns out that the complexity is relatively
low.

Index Terms— Game Theory, Stochastic Systems, Network
Analysis and Control, Statistical Physics, Information and
Complexity

I. INTRODUCTION

In the last decade, there is a large and growing interest in
the study of static and dynamic games with a large number
of players. In this context the theory of Mean Field Games
(MFGs) [1],[2],[3] was introduced in order to study game
situations, where each individual interacts with the mass of
the other players (mean field interaction). Asymptotic Nash
equilibrium results are usually obtained under the assumption
that each player knows her own state variable, as well as the
statistical distribution of the types and state variables of the
rest of the players. This work aims to study games with a large
number of players, under more general interaction structures,
and identify cases of games in which it is possible to have an
approximate equilibrium, assuming only local and statistical
information.

In several game situations involving many agents, the
strategic interactions depend on a Large Network. An example
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is an electricity transmission grid where several entities, such
as producers, consumers or smart micro-grids are connected
in different places of the network. In this case local, as
well as global cooperation and/or competition arises (ex. [4]).
Several examples of game situations, such as the selection of
a telecommunication company, the opinion about an idea or
a product, the selection of fashion group or the engagement
in criminal behavior, involve interactions over social networks
[5], [6]. In these examples, the payoff or the cost of the choices
of each agent depends on her own preferences, as well as on
the choices of her friends. There are also several examples
of non-social interaction structures, such as the interaction
among the owners of stores for renting and the gas station
prices, where there is local, as well as global competition.
Several features characterizing Systems of Systems [7], such
as operational and managerial independence, geographical
distribution, heterogeneity of systems and networks of systems
can be also captured by Dynamic Games on Networks models.

Two kinds of approach have been mainly used to predict the
behavior of the participants in large games. The first approach
is based on equilibrium concepts and the dominant notion
in this approach is the Nash equilibrium. The knowledge
of a large amount of information is often needed in order
to be possible to determine equilibrium or approximate
equilibrium. The second kind of approach assumes limited
(bounded) rationality for the participants [8], [9] and it is based
on dynamic formulations. In particular some deterministic
or stochastic rules, describing the future actions of the
agents as a function of their current actions, are postulated
and then evaluated theoretically or experimentally. Examples
of dynamic rules include evolutionary dynamics, learning,
adaptive control laws and best response.

This second kind of approach does not require a complete
knowledge of the game. However, the dynamic rules used are
not universal, in the sense that there is no reason to believe that
all the players will follow some specified rule to determine
their future actions. Furthermore, the cheating problem [10]
may arise. That is, if a player knows dynamic/adaptation rule
of another player, she may exploit this knowledge in order to
manipulate her. Thus, the outcomes may be different from the
predicted.

Which kind of approach should be used in order to
describe/predict the behavior of the players in a large game?
The full rationality assumption for the players should depend
on the difficulty of the problem they have to solve, as well
as the informational requirements. In this work, we define
an informational complexity concept, for a certain class of
games, as the minimum amount of information needed for
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a certain form of approximate equilibrium to be achievable.
This complexity notion is studied asymptotically for large
games. If the complexity is small, then the participants of a
large game can use strategies which are in an approximate
equilibrium without assuming a lot of information. In a large
game with very high complexity, it is reasonable to assume
that the players would use a dynamic rule. In this sense,
our approach aims at the one hand to identify classes of
large games which admit approximate equilibrium solutions
assuming only a small portion of the information and on
the other hand to identify some informational limitations of
the applicability of equilibrium concepts in static or dynamic
games with a large number of players.

A. Contribution

We study Dynamic Games on Large Networks, assuming
some stochastic description of the Graph, such as Random
Graph, Grid, Small World Network, etc. The stochasticity is
divided into two parts. The first part describes the structural
stochasticity and corresponds to the lack of knowledge of
the players, while the second corresponds to the lack of
predictability of the future.

Instead of studying a single game, we consider an ensemble
(collection) of games, inspired by ideas arisen in the Statistical
Physics domain, and assume that a statistical model on that
ensemble is available to the players. Furthermore, we assume
that each player has access to the information contained in
a neighborhood of a certain order around her. As the order
of neighborhoods increases the information varies from (only)
statistical to perfect. We then use an analogy with a situation
common in Statistical Physics to define a Probabilistic
Approximate Nash (PAN) equilibrium concept, for ensembles
of games. For the ensemble of games we define a complexity
function, as the minimum amount of information needed for a
PAN equilibrium to exist. This complexity function is studied
asymptotically, as the number of the participants of the game
becomes large.

We then focus on special cases of games, where upper or
lower bounds for the complexity can be obtained. A class
of static games on Erdos-Renyi Random Graphs is shown to
be simple under some connectivity assumptions and complex
under other connectivity assumptions. We also analyze a LQ
opinion game on Erdos-Renyi Random Graphs and derive
approximate equilibrium strategies, generalizing older work
about consensus [11].

Quadratic Games on ordered interaction Structures (Grids or
Rings) are then analyzed. They are found to have polynomial
complexity functions, where the order of the polynomial
depends on the dimension of the interaction structure. We
then analyze a class of non-quadratic games on rings having
chaotic best response maps and show that they have a relatively
low complexity. The approximate equilibrium is possible due
to some cooperation among the players. Finally, a LQ game
on a ring is studied numerically. Approximate equilibrium
strategies are computed, using a reduced game and the
complexity function is found to be approximately linear in
the order of the information neighborhood.

In the special cases analyzed, we establish low complexity
results using one of the following properties: a law of large
numbers, contractivity of the best response maps, cooperation
among the players or low gains assigned to distant players.

B. Related Topics
The interest for the games with large number of players is

not new. Probably the first works dealing with games involving
a continuum of players are [12] and [13]. [12] analyzes a
market with a continuum of players and [13] studies games
with a continuum of players, called Oceanic Games and
introduces a value for such games. The Mean Field Games [1]
were recently introduced to study static and dynamic games
with large number of players. The closely related methodology
of Nash Certainty Equivalence was also developed, in order
to obtain asymptotic approximate Nash equilibrium results, as
the number of players tends to infinity [2],[3]. These works
study games, where each player interacts with the mass of the
other players, which is approximated by a continuum. [14]
presents several extensions of the Mean Field game theory on
models describing more general interactions.

Another related topic is Games with Local Interactions,
in which each player interacts with some players important
to her, on some organized structure. In [15], equilibria for
complete and incomplete information Local Interaction Games
were found, based on contraction mapping ideas. [16] studies
the dynamic game counterpart and [17] studies models with
discrete choice.

Quadratic games on networks are studied in [18], using
centrality notions. Games on networks with incomplete
information are studied in [19]. Dynamic games on evolving
state dependent graphs are studied in [20] and stochastic games
in [21]. [22] is a recent review of network games.

Dynamic rules for updating the actions of the agents on
lattices were studied in the context of Interacting Particle
Systems in [23] and [24]. In [25] several dynamic rules for
games on graphs were introduced and studied analytically
and computationally. Several sociological applications of
evolutionary games on graphs are studied in [26].

The impact of the quality of information that the agents
receive on their costs is studied in [27], in the LQG Game
framework. It is shown that, as the number of players or
the time horizon becomes large, better information becomes
beneficial for all the participants of the game. The notion of the
price of uncertainty is introduced in [28] and [29], in order
to describe the difference in the costs of the players, under
different information structures. The price of information is
introduced in [30] to describe the difference of the cost that the
players have in deterministic dynamic games under different
information patterns, i.e. feedback and open loop. Finally, [31]
studies incomplete information games where the players may
have access to additional private information and characterizes
the possible outcomes using the notion of Bayes Correlated
Equilibrium.

C. Notation
Let (Ω,F , P ) be the underlying probability space. For

a random variable X , denote by σ(X) the σ algebra
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generated by X , i.e. the coarsest σ algebra such that X is
σ(X)-measureable.

We denote by G = (V,E) a directed or undirected graph,
where V is the set of vertices and E the set of edges (ex. [32],
[33]). For a vertex v ∈ V , the neighborhood of v is defined as
Nv(G) = {v′ ∈ V : (v′, v) ∈ E} and the closed neighborhood
of v as N̄v(G) = {v}∪{v′ ∈ V : (v′, v) or (v, v′) ∈ E}. The
closed neighborhood of order n of v is defined as N̄n

v (G) =
∪j∈N̄v(G)N̄n−1

j (G), where N̄ 1
v (G) = N̄v(G) and N̄ 0

v (G) =
{v}. For a subset A of V , denote by GA = (A, {(v′, v) ∈ E :
v, v′ ∈ A}), the largest subgraph of G with set of vertices A.
With |G′| we denote the number of nodes of a graph G′.

The indeterminacy 0
0 is resolved as 0. An ordered tuple

(γ1, . . . , γN ) is denoted by (γi)i and the ordered tuple
(γ1, . . . , γi−1, γi+1, . . . , γN ) by γ−i. By [·] we denote the
integer part. The asymptotic notation will be also used. For
real functions f and g, we write f(x) ∈ O(g(x)), if there
exists a constant c > 0, such that 0 ≤ f(x) ≤ cg(x) for
large x and f(x) ∈ o(g(x)), if for every given c > 0 it holds
0 ≤ f(x) ≤ cg(x), for large x. We write f(x) ∈ ω(g(x))
if for every given c > 0 it holds 0 ≤ cg(x) ≤ f(x) for
large x and f(x) ∈ Θ(g(x)) if there exist constants c1 and c2
such that 0 ≤ c1g(x) ≤ f(x) ≤ c2g(x), for large x. Finally,
f(x) ∈ Ω(g(x)) if for some constant c, it holds f(x) ≥ cg(x),
for large x.

In what follows, we assume that all the functions involved
are measurable within appropriate measurable spaces.

II. DESCRIPTION

We first describe the general form of the structure of
interactions among the players and assign a game gS to
every interaction structure S. Then, an ensemble of interaction
structures (or equivalently an ensemble of games) E is defined,
assuming that the players have a common probabilistic
description for the interaction structures S in E .

An interaction structure consists of a set of players, their
types and a graph describing their interactions. Particularly,
there is a set of players p1, . . . , pN having types θ1, . . . θN
belonging to a set of possible types Θ ⊂ Rq . We assume
that the type of each player is constant during the game. The
interaction structure depends on a graph G = (V,E), directed
or not. Each vertex of the graph v ∈ V corresponds to a player
pv and each edge (v′, v) ∈ E to the influence of the player
pv′ to the player pv . The interaction structure is described in
compact form by:

S = (Π, G), (1)

where Π = ((p1, θ1), . . . , (pN , θN )). Let us denote by FS =
σ(S), the structural information.

For a given interaction structure S, a discrete time dynamic
game gS among the players is defined. Each player pi has
her own state variable xi taking values in a subset X of the
Euclidean space Rm. The evolution the state variable of each
player pi is affected by the state variables and actions of her

neighbours, her own control variable uik ∈ U ⊂ Rp and her
own type θi. The dynamics for the player pi is given by:

xik+1 = fθi

xik, uik, wik, ∑
j∈Ni(G)

f
θi,θj
1 (xik, x

j
k, u

i
k, u

j
k),

 ,

(2)

where wik are mutually independent random variables with
known distributions and Ni(G) is the neighbourhood of player
pi. The initial conditions xi0 are random variables, possibly
dependent on the interaction structure.

The cost function of player pi has the form:

Ji = E


T∑
k=0

ρkgθi
(
xik, u

i
k,

∑
j∈Ni(G)

g
θi,θj
1 (xik, x

j
k, u

i
k, u

j
k)
)

∣∣∣∣∣FS
}
, (3)

where the time horizon T can be finite or infinite, g ≥ 0 and
ρ ∈ (0, 1] is the discount factor.

The players do not know the interaction structure
characterizing the game they are involved. Instead, they
consider a statistical ensemble E of possible interaction
structures, i.e. a collection of mental copies of the game having
different interaction structures. With a slight abuse of notation,
the corresponding ensemble of games is also denoted by E .
We assume that all the players consider the same ensemble
and the same probability structure on that ensemble. Let us
denote by Q(·) the distribution of the random variable S in E .

Apart form the statistical model of the interaction structure
(E , Q), the players have also some local information. The
local information of a player pi consists of the structural
facts and the state variables of the players contained in a
closed neighborhood of order n of that player. Particularly,
we assume that each player knows her type and can measure
her own state variable. Furthermore, she knows the types of
the players, the subgraph and the state variables of the players
in that neighborhood. Thus, the local information available to
the player pi at time step k is:

Ii,nk = (GN̄ni (G), (θj)j∈N̄ni (G), (x
j
t )
t=0,...k
j∈N̄ni (G)

), (4)

where N̄n
i (G) (defined in Section I-C) denotes the closed

neighborhood of order n of player pi and GN̄ni (G) is the
corresponding subgraph. The total information available to
player pi at time step k is (E , Q, Ii,nk ).

Due to the fact that the players do not know which is the
actual interaction structure S, they use strategies that can be
applied in every member of the ensemble E . The strategy of
each agent can, however, depend on local information. The
strategy of player pi has the form:

uik = γik(Ii,nk ). (5)

We consider symmetric sets of strategies, where players
with the same information (and hence type) behave in the same
way. Furthermore, we focus on feedback strategies (strategies
without memory) in the form:

uik = γk(Īi,nk ), (6)
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where:

Īi,nk = (GN̄ni (G), (θj)j∈N̄ni (G), (x
j
k)j∈N̄ni (G)). (7)

The following classes of strategies will be useful in the next
section.

Strategy Classes:
(i) The class of Feedback Local Information Strategies for

player i is given by:

ΓFLIi = {γi = (γi1, γ
i
2, . . . ) : γik : Īi,nk → U , k = 1, 2, ..}.

If necessary, ΓFLIi,n will be used in the place of ΓFLIi to
indicate the order n of the information neighborhoods.

(ii) The class of Closed Loop Perfect Information Strategies
for player pi is given by:

ΓCLPI = {γi = (γi1, γ
i
2, . . . ) : γik : ICLPIk → U ,

k = 1, 2, . . . },

where ICLPIk = (G, (θj)j∈V , (x
j
t )
t≤k
j∈V ), G is the

interaction graph and V is the set of all the players. �

In the following section, we shall define an approximate
equilibrium notion for FLI strategies as a strategy profile
which is ε-optimal within the class of CLPI strategies, with
high probability.

Remark 1:
(i) The model of the ensemble of games with a commonly

known probabilistic model on the ensemble is similar
with the standard Bayesian game framework. However,
the model of the ensemble of games is more convenient
for the definition of the approximate equilibrium in the
following section.

(ii) There are two types of stochasticity presented in the
model. The first is due to the lack of predictability
and it is described by the random variables wik. The
second is the uncertainty due to the lack of information
(knowledge) and it is described the random variable S
which contains the structural features of the game. There
are some other works which divide the uncertainty into
the lack of knowledge and the lack of predictability.
For example, in [34] incomplete information is treated
using robust optimization and the stochasticity due to
the randomization of the players using the expectation.

(iii) The members of the ensemble do not necessarily have
the same number of players and the ensemble is not
necessarily finite. �

The model described borrows some ideas from Statistical
Physics and Network Science. Statistical Physics studies
systems consisting of a very large number of particles for
which we are not able to measure all the initial conditions and
solve the dynamic equations. Instead, the notion of a statistical
ensemble of systems is used [36]. A statistical ensemble is
a collection of mental copies of the system, each one of
which represents a different set of initial conditions that the
actual system may have. It turns out that several macroscopic
properties have values close to a deterministic constant for
all the systems in the ensemble, except possibly of a set
of systems with very low probability. Similar results were

also obtained in Network Science, such as the results about
Percolation, connectivity of large Random Graphs, etc [5], [6].

In the following section, we study sets of strategies which
constitute an approximate Nash equilibrium for the games
corresponding to all the interaction structures of the ensemble,
except possibly of a set of interaction structures with very low
probability. Following some ideas from Statistical Physics and
Network science, in order to study games with large number
of players, we consider a sequence of ensembles of games Eν
with increasing number of players and study the tail of that
sequence.

III. APPROXIMATE EQUILIBRIUM AND COMPLEXITY

Consider a large game in which the actions of the players
depend only on local and statistical information. Due to the
fact that the agents do not know in which game they participate
in, it is reasonable to expect that a set of strategies in the
form (6) could not typically constitute a Nash equilibrium. A
Probabilistic Approximate Nash (PAN) equilibrium concept is
thus defined, based on the concept of ε - Nash equilibrium.
We first recall the definition of the ε - Nash equilibrium for a
single game.

Definition 1: Consider a game gS with S ∈ E and the set
of dynamics and cost functions given by (2) and (3). Then a
set of strategies (γi)i with γi ∈ ΓFLIi constitutes an ε - Nash
equilibrium, if for every player pi it holds:

Ji(γ
i, γ−i)− min

γ∈ΓCLPI
{Ji(γ, γ−i)} < ε, (8)

where the minimum is considered within the class of full
information closed loop strategies. �

An approximate equilibrium concept is then defined for the
ensemble of games. We are interested to characterize a set of
strategies constituting an ε - Nash equilibrium for the games
gS that correspond to the most of the interaction structures in
S ∈ E .

Definition 2: Consider an ensemble of interaction structures
E and the set of dynamics and cost functions as before. Then
a set of strategies (γi)i with γi ∈ ΓFLIi is an ε-Probabilistic
Approximate Nash equilibrium (ε-PAN equilibrium) for that
ensemble if:

P ({S ∈ E : (γi)i is ε - Nash equilibrium of gS}) > 1− ε,
(9)

i.e. (γi)i constitutes an ε - Nash equilibrium with high
probability. The probability of the event in (9) can be
computed using the distribution Q. �

The reason for studying sets of strategies constituting an
ε-PAN equilibrium with small ε is that, with a very high
probability, no player has non-negligible benefit from changing
her strategy, even if she had access to all the available
information, at any time step. Thus, the players do not have
enough motivation to try to estimate the information they do
not possess.

Remark 2: An alternative way to express inequality (9) is
to use the Ky Fan metric among random variables (ex. [37])
defined as follows. The distance d between random variables
X1 and X2 is defined as:

d(X1, X2) = inf {ε > 0 : P (|X1 −X2| > ε) ≤ ε} . (10)
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Thus, inequality (9) can be stated equivalently as:

d(J i(γ−i, γi), inf
γ∈ΓCLPI

J i(γ−i, γ)) < ε, (11)

in terms of the Ky Fan metric. �
The following Lemma 1 considers the ε-PAN equilibria

of repeated games. Let us first define a repeated game that
corresponds to a given static game. Consider a static game
where the costs of the players are given by:

Ji = E

gθi(ui, ∑
j∈Ni(G)

g
θi,θj
1 (ui, uj)

)∣∣∣∣∣∣FS
 . (12)

The corresponding repeated game is given by:

J̃i = (1−ρ)E


∞∑
k=0

ρkgθi
(
uik,

∑
j∈Ni(G)

g
θi,θj
1 (uik, u

j
k)
)∣∣∣∣∣∣FS

 ,

(13)
with ρ ∈ (0, 1).

Lemma 1: The ε-PAN equilibrium has the following
properties:
(i) An ε - PAN equilibrium of a static game remains an ε -

PAN for the corresponding repeated game.
(ii) Consider a set of strategies (γi)i constituting an ε-PAN

equilibrium. If the players receive more information, i.e.
the information neighborhoods have order n′ > n and
Ii,n

′ ⊃ Ii,n, then the set of strategies (γi)i remains
an ε-PAN equilibrium. That is, the ε-PAN equilibrium
is insensitive to new information.

Proof : (i) It is not difficult to see that (9) holds for J̃ .
(ii) It holds γi ∈ ΓFLIi,n ⊂ ΓFLIi,n′ . Furthermore, (9) holds and

thus (γi)i is an ε-PAN equilibrium for the ensemble of games
where the players have information Ii,n

′
. �

Let us now compare the ε-PAN equilibrium with the notion
of Bayesian Nash equilibrium (see ex. [38]).

Remark 3:
(i) BNE and ε-PAN equilibrium can describe substantially

different outcomes of the game. A game where an ε-PAN
equilibrium is qualitatively different from the BNE is
described in Example 1.

(ii) It is very difficult to compute a Bayesian Nash
equilibrium even for simple dynamic games. In the
case of LQ stochastic Dynamic Games with imperfect
state feedback information, Nash equilibria have been
computed only for special information patterns [39].
[40]. In the case where the structural information is also
incomplete, the optimization problems are vey difficult
even for single person games (optimal control problems),
due to the fact that the dual control problem arises (ex.
[41]).
In the case of stochastic games with incomplete
information the computation of BNE is also a very
difficult problem. For this class of games the notion
of Empirical Evidence Equilibrium [42] was introduced
based on bounded rationality assumptions for the
participants.

(iii) In contrast to Bayesian Nash equilibrium, an ε - PAN set
of strategies satisfies the properties (i),(ii) of Lemma 1.

TABLE I
COSTS IN THE WEAK MONOPOLIST CASE

1\2 Fight Accommodate
Enter 1-b, 1 -b,0

Stay Out 0,-a 0,-a
TABLE II

COSTS IN THE TOUGH MONOPOLIST CASE

1\2 Fight Accommodate
Enter 1-b, 0 -b,1

Stay Out 0,-a 0,-a

(iv) In some examples, we may have PAN equilibrium, even
if the players have different prior probabilities on the
ensemble and each player is not sure for the exact
probabilistic models of the others. (ex. Sec. IV). �

Example 1: This example studies an ε-PAN equilibrium of
the Reputation game introduced in [43]. This game involves a
“big” player (monopolist) which plays successively the same
game with a large number N of “small” players (entrants).
The monopolist has two possible types: weak and tough. The
monopolist is tough with a very small probability δ > 0. In
each stage game, the entrant moves first and has two possible
actions: “enter” and “stay out”. If the entrant enters the game,
the monopolist has two options: “accommodate” and “fight”.
The costs for the players in each of the successive games
are given in Tables I and II. We assume that a > 1 and
that 0 < b < 1. The only difference between a weak and
a tough monopolist is that the tough monopolist prefers to
fight if the entrant enters while the weak monopolist prefers to
accommodate. We further assume that each one of the players
is able to monitor all the previous actions.

Let us first describe an ε-PAN equilibrium of the game.
Assuming that δ < ε, the entrants would ignore the possibility
of a tough monopolist. Thus, each one of the entrants would
enter the game and the (weak) monopolist has no reason to
fight them. Thus the monopoly would break.

On the other hand, if N is sufficiently large in any sequential
BNE the early entrants would stay out and the monopolist
would fight any early entrant who enters the game [43]. Thus,
the monopoly would be maintained at least for the larger part
of the game.

This example illustrates that ε-PAN equilibrium and BNE
may describe very different outcomes. �

Consider a set of strategies constituting an ε-PAN
equilibrium. Each player is interested and responds to a
different set of players and in this sense, each player is
involved in (perceives) a different game. For example, consider
the game of in Figure 1. Each player is affected by her
neighbors in the graph through the terms f1, g1. Assume
also that there is an ε-PAN equilibrium assuming information
neighbourhoods of order 1. Then, player p1 acts as if he is
involved in a game only with the players p2, p3 and p5, the
player p5 in a game with p1, p2 and p7 and so on.

If the order of the information neighborhoods of the players
is small then it is probably not possible to have an ε-PAN
equilibrium. Thus, we are interested in the following question:

Question 1: “Given a positive constant ε, what is the
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Fig. 1. The information neighborhoods of players 1 and 5 with n = 1.

minimum amount of information that the agents need to have
in order to achieve an ε-PAN set of strategies?” �

Based on the answer to this question, the Necessary
Information Complexity (NIC) function with respect to the
PAN equilibrium is defined for the ensemble of games.

Definition 3:
(i) Consider an ensemble of games as described above. Let

us define the following function:

n̄(m) = inf{n ∈ N : ∃ set of strategies (γi)i with

γi ∈ ΓFLIi,n , in the form (6) which is 2−m-PAN}, (14)

and denote by γ̄ the strategy that attains the minimum.
The Necessary Information Complexity (NIC) function
with respect to the PAN equilibrium is defined as:

C(m) = max
S∈E0,pi∈S

{|N̄ n̄(m)
i |}, (15)

where E0 is the subset of the ensemble of games for which
γ̄ is a 2−m - Nash equilibrium.

(ii) Consider a sequence of ensembles Eν with cost functions
Jνi and dynamics described by f ·,·,ν1 , f ·,·,ν2 . Denote
by Cν(·) the NIC function of the ν-th ensemble. The
Asymptotic Necessary Information Complexity (ANIC)
function with respect to the PAN equilibrium is given
by:

Ca(m) = lim sup
ν→∞

Cν(m). (16)

The sequence of ensembles will be called asymptotically
simple if the function Ca(m) is bounded and
asymptotically complex if for some m ∈ N it holds
Ca(m) =∞. �

The function n̄(m) quantifies the minimum order of the
information neighborhood that the players need to have for
the existence of a 2−m−PAN equilibrium. The NIC function
C(m) quantifies the maximum number of players in a closed
neighborhood of order n̄(m) or equivalently the maximum
number of players that is required to be observed by a single
player, in order for a 2−m − PAN equilibrium to exist.

Remark 4: A first example of asymptotically simple games
is the class of Mean Field Games [1], [2], [3]. In this
class, under some conditions, each player interacts with the
mass of the other players which behaves asymptotically
deterministically, as the number of players increases. In this

case, each player needs to know only her own type and state
variable, in order to have a nearly optimal behavior and thus
the function Ca is bounded. �

Classes of games, where it is possible to find upper and
lower bounds for the NIC and ANIC functions, are analyzed
in the following sections.

IV. GAMES ON RANDOM GRAPHS

This section studies ensembles of games involving
players interacting on large Erdos-Renyi random graphs.
The complexity of the ensemble varies, depending on the
connection probability of the random graph. In the high
connectivity regime the cumulative effect of the neighbors of
each player can be approximated by its mean value. Using this
approximation we derive appropriate consistency conditions
and characterize an an ε-PAN set of strategies, for the large
number of players case.

The first subsection considers static games and the second
Linear Quadratic games.

A. Static Games on Random Graphs

Let us first describe the game for a given interaction
structure. The players interact on a graph G. Each player has
a type θi ∈ [0, L] and the cost functions are given by:

Ji = g(θi − ui) + g

ui − 1

|Ni(G)|

N∑
j=1

diju
j

 , (17)

where g is a smooth, strictly convex function with g(0) =
g′(0) = 0 and dij = 1, if there is an edge between vertexes i
and j and zero otherwise.

In order to describe the ensemble of games, it remains to
determine a stochastic structure on the types θi and the graph
G. We assume that θi are i.i.d. random variables uniformly
distributed in [0, L]. The graph is an Erdos-Renyi random
graph with connection probability cN , i.e. each edge appears
independently of the other edges with probability cN . We
further assume that the random variables dij and θi are
mutually independent.

We first focus on strategies depending only on statistical
information, assuming no knowledge about the neighbors of
each player. The strategies under consideration have the form
ui = γ(θi).

A technique to derive strategies in this form is to
approximate the terms in the cost function by their mean
values. Specifically, we shall use the approximation:

ū ' 1

|Ni(G)|

N∑
j=1

diju
j , (18)

for all i = 1, . . . , N .
With this approximation, the cost functions depend only

on statistical information. The strategies that minimize the
approximate cost functions have the form:

ui = h(θi, ū) = arg min
u
{g(u− θi) + g(u− ū)}. (19)

The function h will be shown to be well defined.



0018-9286 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2016.2631081, IEEE
Transactions on Automatic Control

7

With the strategies given by (19), the mean value of the
actions should satisfy the following compatibility condition:

ū =
1

L

∫ L

0

h(σ, ū)dσ. (20)

The following proposition shows that if connectivity is high,
then the strategies described by (19), (20) constitute an ε-PAN
equilibrium, for large N . The following proposition uses the
asymptotic notation defined in section I-C.

Proposition 1: Under the specified assumptions it holds:

(i) Equation (20) has a unique solution.
(ii) If cN ∈ ω

(
lnN√
N

)
, then the set of strategies (19) is an

ε-PAN equilibrium, for large N .
(ii) If cN ∈ ω

(
lnN√
N

)
, then Ca(m) = 1 and the ensemble of

games is asymptotically simple.

Proof : (i) The strict convexity and the lower boundedness
of g imply that the function h is well defined. The function
h(θ, ū) can be expressed as the solution to the following
equation:

fθ(u, ū) = g′(u− ū) + g′(u− θ) = 0,

with respect to u. Thus it holds:

min{θ, ū} ≤ h(θ, ū) ≤ max{θ, ū}. (21)

Consider the mapping:

ū→ T ū =
1

L

∫ L

0

h(σ, ū)dσ.

Inequalities in (21) imply that TL ≤ L and T0 ≥ 0. Thus,
due to the intermediate value theorem, there is a ū? such that
ū? = T ū?.

The derivative of h with respect to ū can be expressed, using
the implicit function theorem as:

∂h

∂ū
= −

(
∂fθ
∂u

)−1
∂fθ
∂ū

∣∣∣∣∣
h(θ,ū),ū

=

=
g′′(h(θ, ū)− ū)

g′′(h(θ, ū)− ū) + g′′(h(θ, ū)− θ)
< 1.

Thus, the solution ū? is unique. In what follows, the unique
solution of (20) will be denoted by ū.

(ii) The functions g and h are continuous. Using the
strategies given by (19), the arguments of the functions belong
to compact intervals. In those intervals, g and h are uniformly
continuous. Thus, in order to show that the set of strategies
given by (19) constitute an ε - PAN equilibrium, for large N ,
it suffices to show that for every ε, δ > 0 it holds:

P

∃i : |ū− 1

|Ni(G)|

N∑
j=1

diju
j | > δ

 < ε,

for large N .

It holds:∣∣∣∣∣∣ū− 1

Ni(G)

N∑
j=1

diju
j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ū− 1

N

N∑
j=1

h(θj , ū)

∣∣∣∣∣∣+
+

∣∣∣∣∣∣ 1

N

N∑
j=1

h(θj , ū)− 1

NcN

N∑
j=1

diju
j

∣∣∣∣∣∣+
+

∣∣∣∣∣∣ 1

NcN

N∑
j=1

diju
j − 1

|Ni(G)|

N∑
j=1

diju
j

∣∣∣∣∣∣ . (22)

Furthermore, ū =
∫ L

0
h(σ, ū)/Ldσ. Due to the

Glivenko-Cantelli theorem [44], the empirical distribution,∑N
i=1 δθi/N converges a.s. to the uniform distribution as

N →∞. Thus, there exists an integer N01, such that:∣∣∣∣∣∣ū−
N∑
j=1

h(θj , ū)/N

∣∣∣∣∣∣ < δ/3,

with probability larger than 1− ε/3, for N ≥ N01.
For the second term of the right hand side of (22) using

(19) and Lemma 3 of Appendix A it holds:∣∣∣∣∣∣ 1

NcN

N∑
j=1

(cN − dij)h(θj , ū)

∣∣∣∣∣∣ < δ/3,

with probability larger than 1− ε/3, for N ≥ N02.
Lemma 4 of Appendix A implies that the third term of

(22) is less than δ/3 with probability larger than 1 − ε/3, if
N ≥ N03.

This completes the proof of (ii).
(iii) An immediate consequence of (ii) �
Remark 5: The proof of Proposition 1 uses only the fact that

for given i, the random variables (dij)
N
j=1 are independent.

Thus, the same result holds also for a more general class than
the Erdos-Renyi random graph. A particular example is games
on random directed graphs1. Furthermore, there is no need for
all the players to assume the same connection probability cN
or exactly the same random graph model and there is no need
for player pi to know the connection probability that the other
players assume. �

Example 2: If the function g has the form g(z) = z2, the
strategies given by (19) can be explicitly computed. It holds:

h(θ, ū) = (θ + ū)/2. (23)

Equation (20) implies that ū = L/2 and the set of strategies
given by:

ui = θi/2 + L/4, (24)

constitute an ε-PAN equilibrium for large N , if cN ∈
ω
(

lnN√
N

)
. �

The following proposition studies the case of low
connectivity.

1In [45] Proposition 1, due to a miscalculation, it is stated that an ensemble
of games on a random directed graph is simple if cN = ω

(
lnN
N

)
. The

correct is that the ensemble is asymptotically simple if cN = ω
(

lnN√
N

)
.
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Proposition 2: Consider an integer µ. If cN ∈ o
(

1
Nµ/(µ−1)

)
then Ca(m) ≤ µ and the ensemble of games is asymptotically
simple.

Proof : If cN ∈ o
(

1
Nµ/(µ−1)

)
then with probability

approaching 1, as N → ∞, the random graph has no
connected components having more than µ nodes ([46] ch.
4).

We shall show that there is a Nash equilibrium such
that each player uses only the information contained in her
connected component. Consider a player pi and the connected
component in the graph which contains i denoted by Ḡi.
Consider also the game with

∣∣Ḡi∣∣ players among the players
of Ḡi denoted by gḠi , assuming that the actions of the players
are restricted to belong to [0, L].

Each of the games gḠi , due to the convexity of the function
g(·), satisfy the conditions of Theorem 1 of [47]. Thus, it has
a Nash equilibrium. This equilibrium, due to (21), is also a
Nash equilibrium for the corresponding game with unrestricted
strategies. Thus, with probability approaching 1 as N → ∞,
there exists a Nash equilibrium of the original game such
that each player uses only the knowledge of her connected
component. Thus, Ca(m) ≤ µ and the game is asymptotically
simple. �

Remark 6: The upper bound for the complexity function
Ca(m) increases as µ increases and 1/Nµ/(µ−1) approaches
1/N . �

The following proposition deals with the intermediate
connectivity case.

Proposition 3: If cN ∈ ω
(

1
N

)
and cN ∈ o

(
lnN
N

)
then the

ensemble of games is asymptotically complex.
Proof : Due to the fact that cN ∈ ω (1/N), the maximum

degree, i.e the maximum number of edges connected to a
node, grows unbounded with N . Thus, it suffices to show that
n̄(m) ≥ 1, for some integer m. To contradict, assume that
n̄(m) = 0. For an information neighborhood of order 1, the
strategies of the players have the form ui = γ(θi).

Due to the fact that cN ∈ o (lnN/N) there exists an isolated
node with probability approaching 1 as N →∞ [46]. In fact,
the expected number of such nodes grows unbounded with N .

For such a node the optimal cost is 0. The function g(·) is
strictly convex and g(0) = g′(0) = 0. Thus, for every ε > 0
there exists a δ = δ(ε) > 0 with δ(ε) → 0 as ε → 0, such
that g(z) < ε implies |z| < δ.

The assumption n̄(m) = 0 implies that Ii = {θi} and that:

|γ(θ)− θ| < δ, (25)

if 2−m < ε.
It is not difficult to see that with probability approaching

1 as N → ∞ there exists a player pi such that θi < L/8
and

∑
j∈Ni(G) γ(θj) > L/4. For such a player if m is large

enough, a strategy satisfying (25) is not 2−m optimal. This
fact contradicts n̄(m) = 0. �

The results proved are summarized in the following
corollary. The situation is depicted graphically in Figure 2

Corollary 1: If cN ∈ o
(

1
Nµ(µ−1)

)
for some integer µ or

if cN ∈ ω
(

lnN√
N

)
the ensemble of games is asymptotically

Fig. 2. The complexity of the ensemble of games for the various connectivity
intervals.

simple. If cN ∈ ω
(

1
N

)
and cN ∈ o

(
lnN
N

)
then the ensemble

of games is asymptotically complex. �

B. LQ games on Random Graphs

This section describes an opinion dynamics game, involving
players having some amount of stubbornness, i.e. the players
tend to insist to their initial (intrinsic) opinions (ex. [48]).
A large number N of players interact on a random graph
G = (V,E) having a connection probability cN , i.e. each
link have a probability to exist equal to cN , independent of
the existence of the other links. The state variable xik of player
pi represents her opinion at time step k and the type θi is her
initial (intrinsic) opinion, i.e. xi0 = θi. The random variables
θi are i.i.d. with uniform distribution in [0, L].

Each player has the ability to influence her own opinion in
order to come closer to the mean value of her neighbors or
closer to her initial opinion. Furthermore, the state variables
are influenced by random disturbances. The dynamics is given
by:

xik+1 = xik + uik + wik, (26)

where uik is the control variable of player pi and wik are zero
mean i.i.d. Gaussian random variables with variance σ2.

The cost functions are given by:

J i = E


∞∑
k=0

ρk


xik − 1

|Ni(G)|
∑

j∈Ni(G)

xjk

2

+

+s
(
xik − θi

)2
+ r(uik)2


∣∣∣∣∣∣∣Fs

 , (27)

where ρ ∈ (0, 1) is the discount factor, s ≥ 0 the amount of
stubbornness, i.e. how much the players are interested on their
initial opinions and r a positive constant.

We then prove the existence of an ε-PAN set of strategies
assuming that each player has only statistical information,
under high connectivity assumptions. A set of approximate
optimal control problems is first stated. For player pi the
approximate optimal control problem is:
Minimize:

J i,a = E

{ ∞∑
k=0

ρk
[(
xik − θ̄

)2
+ s

(
xik − θi

)2
+ r(uik)2

]}
,

(28)
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where θ̄ = E[θj ] = L/2,
Subject to (26).

Using the change of variables:

x̃ik = xik − θi,f , (29)

where θi,f = θ̄+sθi
1+s , the optimal control problem becomes the

following LQ problem:
Minimize:

J i,a = E

{ ∞∑
k=0

ρk
[(

1 + s)(x̃ik)2 + r(uik)2
]]}

+

+
s(θ̄ − θi)2

(1 + s)(1− ρ)
, (30)

Subject to:

x̃ik+1 = x̃ik + uik + wik. (31)

The control law which minimizes the approximate optimal
control problem is given by:

uik = −ρ K

ρK + r
x̃ik, (32)

where K is the positive solution of the Riccati equation:

K = ρK − ρ2K2

ρK + r
+ (1 + s). (33)

The closed loop dynamic equation for player pi is given by:

x̃ik+1 = ax̃ik + wik, (34)

where a = 1− ρK/(ρK + r) and a ∈ (0, 1).
The following proposition identifies a class of games where

the set of strategies described by (32) is ε-PAN.
Proposition 4: Assume that cN ∈ ω( lnN√

N
). Then:

(i) The set of strategies given by (32) constitute an ε-PAN
set of strategies, for large N .

(ii) It holds Ca(m) = 1 and the sequence of the ensembles
of games is asymptotically simple.

Proof : See Appendix B �
If the stubbornness of the players is zero, then the long time

averages of the opinions of each one of the players reach a
consensus.

Proposition 5: If s = 0 and the players use the strategies
given by (32) then:

P ( lim
T→∞

1

T

T∑
k=0

xik = θ̄) = 1. (35)

Proof : See Appendix C. �

V. STATIC GAMES ON ORGANIZED STRUCTURES

A. Quadratic Games on Lattices

This section studies quadratic games on µ-dimensional
lattices. It is shown that the ANIC function is polynomial with
degree equal to µ.

Consider N = Nµ
0 players placed on a µ-dimensional

lattice (hypercube). For each node a set of coordinates
(c1, . . . , cµ) indicates the place of the node in the lattice. Each
coordinate satisfies cν ∈ {1, . . . , N0}. Each player interacts

with her immediate neighbors, i.e. a player with coordinates
(c1, . . . , cµ) interacts with every player with coordinates
(c1, . . . , cν ± 1, . . . , cµ), for ν = 1, . . . , µ. For the nodes on
the faces of the hypercube, the convention N0 +1 ≡ 1 is used.

The type θi of each player belongs to [−L,L] and the cost
of a player pi is given by:

J i = a

ui − 1

2µ

∑
j∈Ni(G)

uj

2

+
(
ui − θi

)2
, (36)

where a is a positive constant.
In order to describe the ensemble of games it remains to

determine a probability structure on the types of the players.
We assume that θi are i.i.d. random variables with uniform
distribution.

Let us consider the following iterative scheme:

zi(t+ 1) =
a

(a+ 1)2µ

∑
j∈Ni(G)

zj(t) +
1

a+ 1
θi, (37)

zi(0) = 0.

Equation (37) corresponds to the best response of player pi if
the other players use uj = zj .

The following proposition shows that the ANIC of the
ensemble is at most polynomial using the fact that the
mapping:

T : z(t) 7→ z(t+ 1), (38)

where z(t) = [z1(t), . . . , zN (t)], is a contraction (Lipschitz
with a constant less than 1).

Proposition 6: (i) For every ε > 0, there exists an n ∈ N
such that the set of strategies ui = zi(n) constitute an ε-PAN
equilibrium.

(ii) The ensemble of games has an ANIC satisfying
Ca(m) ∈ O(mµ).

Proof : (i) It holds:

Ji(z
i(t), z−i(t))−min

u
{Ji(u, z−i(t))} =

= (a+ 1)(zi(t)− zi(t+ 1))2 (39)

The mapping T : (RN , ‖·‖∞)→ (RN , ‖·‖∞) is contractive,
with a Lipschitz constant a/(a+ 1). Hence,

‖z(t+ 1)− z(t)‖ ≤ L
(

a

a+ 1

)t
.

Therefore,

(a+ 1)L2

(
a

a+ 1

)2n

< ε, (40)

implies that ui = zi(n) is ε-PAN equilibrium.
(ii) At first we prove the following claim:

Claim: If the players use the strategy given by ui = zi(n),
the actions of each player depend on information contained in
her closed neighborhood of order n.

For n = 1 the claim holds. Assume that it holds for n −
1 and consider zi(n). The value of zi(n) according to (37)
depends on θi and zj(n − 1) for j ∈ Ni(G). But according
to the induction hypothesis, each of the zj(n − 1) depends
on the information contained in the closed neighborhood of
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player j ∈ Ni(G) of order n − 1. Thus, zi(n) depends on
the information contained in the neighborhood of player i of
order n, which concludes the proof of claim.

Using (40) with ε = 2−m we have:

n̄(m) ≤ m

2 log2

(
a+1
a

) +
2 log2 L+ log2(a+ 1)

2 log2

(
a+1
a

) .

Furthermore, |N n̄
i | < (2n̄+ 1)µ. Thus, Ca(m) ∈ O(mµ). �

A polynomial lower bound can be also derived.
Proposition 7: The asymptotic complexity function Ca(m)

satisfies Ca(m) ∈ Ω(mµ).
Proof : Consider a game in the ensemble and a set of

actions (ui)i. Due to the contractivity of T , there exists a
unique Nash equilibrium of the game. Denote by z(∞) =
[u1,Nash, . . . uN,Nash]T that equilibrium.

Let us use (37) with zi(0) = ui. Due to (39), if (ui)i is an
ε-Nash equilibrium then:

‖z(1)− z(0)‖∞ <

√
ε

a+ 1
.

Thus, due to contractivity of T , it holds:

‖z(0)− z(∞)‖∞ ≤
∞∑
t=1

‖z(t)− z(t− 1)‖∞

=
∞∑
t=1

‖T t(z(1)− z(0))‖∞

≤ ‖z(1)− z(0)‖∞(a+ 1)

Thus,
max
i
{|ui − ui,Nash|} <

√
(a+ 1)ε.

The unique Nash equilibrium can be expressed as:

ui,Nash =
∑

c′1,...,c
′
µ∈Z

bc
′
1,...,c

′
µθc1+c′1,...,c

′
µ+c′µ ,

where c1, . . . , cµ are the coordinates corresponding to player
pi. It is not difficult to show that the constants b satisfy:

bc
′
1,...,c

′
µ >

1

a+ 1
λ|c
′
1|+···+|c

′
µ|,

where λ = a
(a+1)2µ .

Consider now a set of strategies in the form ui = γ(Īi,n−1).
Consider a player pi with coordinates c1, . . . , cµ. Then, with
a probability larger than 1/2 the player pj with coordinates
c1 + n, . . . , cµ has a type |θj | > L/2. Thus, with probability
larger than 1/4, it holds |ui − ui,Nash| > λn/(a+ 1).

Therefore, using an information neighborhood of order n−
1, an λ2n/(a+1)3 - PAN equilibrium is not attainable. Hence:

n̄(m) > m
ln 2

−2 lnλ
− 3 ln(a+ 1)

−2 lnλ
.

Thus, Ca(m) ∈ Ω(mµ). �
Corollary 2: The ANIC function satisfies Ca(m) ∈ Θ(mµ).
Remark 7: The properties proved do not depend on the

assumption that the hypercube has the same length N0 in all
the dimensions or on the nonlocal topological properties of
the lattice. �

Fig. 3. The plot of f1 and f2

The result about the upper bound of the ANIC function can
be generalized to ensembles of games on graphs with known
maximum degree, using exactly the same arguments.

Proposition 8: Consider an ensemble of games with cost
function (36) and interaction graphs which with probability
one have maximum degree less than µ. Then, Ca(µ) ∈
O(mµ).

Proof: The proof uses essentially the same contraction
arguments with Proposition 6. �

The bound of Proposition 6 is much sharper than the bound
of Proposition 8, when applied to a Lattice, due to the fact
that the Lattice is highly clustered.

B. A non-Quadratic Game on a Ring

In this subsection we study an example of an ensemble of
games, where a PAN equilibrium can be obtained, using some
form of cooperation among the players. The best response
maps in this example are chaotic. Let us note that the use of
chaotic maps is not unusual in the modeling of erratic behavior
in economics (ex. [49]).

There are N players interacting on a ring. The type of each
player has the form θi = (ξi, i) and ξi has two possible values
1 and 2. The cost function of each player, except player p0,
is given by:

Ji = (ui − fξi(ui−1))2. (41)

The functions f1 and f2 have the form:

f i(z) =

{
z/ai if 0 ≤ z < ai
1−z
1−ai if ai < z ≤ 1

,

where a1 = 1/3 and a2 = 2/3. The functions f1 and f2

are variants of the tent map [50] and their plots are shown in
figure 3. For the player p0 the cost is:

J0 = (u0 − fξ0(uN ))2 + (u0 − 1)2. (42)

In order to describe the ensemble it remains to determine a
stochastic structure on ξi. We assume that ξi are i.i.d. random
variables, taking values 1 and 2 with equal probabilities.

The best response map for player pi is given by ui =
fξi(ui−1). This map is not contractive. In fact it is chaotic.
However, the following proposition shows that ANIC is at
most linear.
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Proposition 9: The ANIC function of the ensemble of games
satisfies Ca(m) ∈ O(m).

Proof : The proof is constructive. It is not difficult to
show that, for every positive integer µ, every finite sequence
s1, . . . , sµ sj ∈ {1, 2} and every z ∈ [0, 1] there exists a z̄ ∈
[0, 1] such that |z− z̄| ≤ 1

2

(
2
3

)µ
and fs1 ◦ · · · ◦ fsµ(z̄) = 0.5.

Let us denote by hµ(s0, . . . , sµ, z) the minimal such point
z̄ ∈ [0, 1].

In order to construct the strategies of the players we consider
distinct cases. For a player pi, i /∈ {0, (µ− 1)[N/µ], µ[N/µ]}
such that i ≡ 0(modµ):

ui = hµ(ξi, . . . , ξi+µ−1, 0.5). (43)

For the player p(µ−1)[N/µ]:

u(µ−1)[N/µ] = hN−(µ−1)[N/µ](ξi, . . . , ξi+µ−1, 0.5). (44)

For the players pi, such that i 6≡ 0(modµ), i < (µ− 1)[N/µ]:

ui = fξi(fξi−1(. . . fµ[i/µ](0.5))). (45)

For the players p(µ−1)[N/µ]+1, . . . , pN−1:

ui = fξi(fξi−1(. . . f (µ−1)[N/µ](0.5))). (46)

For the player p0:

ui = hµ(ξ0, . . . , ξµ−1, 0.75). (47)

It is not difficult to see that the set of strategies (43)- (47)
constitute an 1

4

(
4
9

)µ
-PAN set of strategies. Thus, Ca(m) ≤ m

and the proof is complete. �
Remark 8: The game has a lot of Nash equilibria. In a Nash

equilibrium, the following equations hold:

u0 =
1

2
+
fξ0(fξN−1(. . . (fξ1(u0))))

2
(48)

ui = fξi(ui−1). (49)

Equation (48) has approximately N/2 solutions. The
strategies of the players in every Nash equilibrium are given by
(49). Thus, a full knowledge of the information is needed. The
ε-PAN set of strategies, described in the proof of Proposition
9 is not close to any one of the Nash equilibria. �

Remark 9: The ε-PAN set of strategies is in some sense
cooperative. Particularly, a player pi, i = lµ can improve her
own performance based on her own information. However,
these agents help the others have a predictable best response
with local information only and thus to behave optimally. If
such a player changes her action to the optimal response, then
she would expect that the other players would also use their
best responses. Due to the chaoticity of the maps f1, f2, we
would expect that for a long amount of time the best responses
would not converge. This would make the situation worse for
these players.

The application of the best response maps is illustrated in
the following example. �

Example 3: In this example the repeated version of the
game is studied, assuming that the players use a best response
dynamic rule and that N = 20. The actions of the players p1,
p4, p9 and p14 are shown in Figure 4. This example shows that
the dynamic rule based on best response fails to converge. �

Fig. 4. The evolution of the actions of players p1, p4, p9 and p14, in Example
3.

VI. A NUMERICAL STUDY OF A LQ GAME ON A RING

In this section we study numerically LQ games on large
rings. We assume that there are N players placed on a ring,
such that each player pi interacts with the players pi+1 and
pi−1. The convention N + 1 ≡ 1 is used as before. Each one
of the players has her own dynamic equation given by:

xik+1 = xik + λ(xi−1
k + xi+1

k ) + uik, (50)

where λ is a constant describing the coupling through the state
equation and xi0 are zero mean i.i.d. random variables with
variance equal to 1. The cost functions are given by:

Ji =
∞∑
k=1

(xik)2 + s

(
xik −

xi+1
k + xi−1

k

2

)2

+ r(uik)2

 ,
(51)

where s denotes the coupling through the cost functions.
Assume that the players have information neighborhoods of

order n. A very simple technique is used to obtain approximate
equilibrium policies:

Step 1: Each player pi considers a reduced ring game
with 2n + 1 players, i.e. the players pi−n, . . . pi+n. That is,
she assumes the existence of an edge between players pi−n
and pi+n. Figure 5 shows the reduced game that player p1

perceives in case where n = 2.
Step 2: Player pi computes a Nash equilibrium of the

reduced game. Let us denote by γi,n the Nash strategy of
the player i in the reduced (2n+ 1-player) game.

Step 3: Apply γi,n in the original N players game.
We then compare the value of the cost function when the

players use the strategies γi,n with the best response within
the class of CLPI strategies. Figures 6, 7 and 8 illustrate
the difference J i(γi,n, (γj,n)j 6=i) − minγ J

i(γ, (γj,n)j 6=i) in
logarithmic scale for different values of λ and s. The
simulation was performed with r = 1 and N = 101.

Remark 10: Figures 6-8 illustrate that the complexity
is approximately at most linear. The reason for the low
complexity in the current example is that the Nash strategies
of the reduced order games γi,n assign low gains to distant
players. Note that none of the reasons for low complexity
existing in the previous examples, is present. That is, this low
complexity is not due to a law of large numbers, the best
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Fig. 5. Player p1 considers only the players p2, p3, pN−1, pN−2 and himself
and assumes the existence of a new edge between players p3 and pN−2.

response maps are not contractive and there is no cooperation
among the players. �

VII. CONCLUSION

In this article we presented a Probabilistic Approximate
Nash equilibrium notion for the study of static and dynamic
games on Large Networks of interacting agents. We further
introduced the NIC and ANIC complexity functions to
quantify the minimum amount of information required for
the existence of a PAN equilibrium. Several special cases
of static and dynamic games on Erdos-Renyi random graphs
and Lattices were studied. In the cases analyzed, we derived
conditions for low complexity and identified classes of games
with high informational complexity. The basic techniques
to prove low complexity and find PAN equilibria were
concentration of probability, contractivity of the best response
maps, cooperation among the players and reduction to simpler
games.

Future work includes the study of games on Small World
and Scale Free networks, as well as the study of games with
special cost structures (ex. supermodularity).

APPENDIX

A. Some Probability Inequalities

The following results will be repeatedly used throughout the
proof of Propositions 1 and 4.

Theorem 1 (Bernstein Inequality): Let X1, . . . , XN be zero
mean, independent random variables such that |Xi| ≤ M .
Denoting by σ̄2 = 1

N

∑N
i=1 V ar{Xi}, for for all positive t it

holds:

P

(∣∣∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− Nt2

2σ̄2 + 2Mt/3

)
(52)

Lemma 2: For a finite or infinite sequence of events
A1, A2, . . . it holds:

P (
⋂

i=1,2,...

Ai) ≥ 1−
∑

i=1,2,...

P (Aci ).

Fig. 6. The difference Ji(γi,n, (γj,n)j 6=i)−minγ Ji(γ, (γj,n)j 6=i), as a
function of n, for λ = 0.

Fig. 7. The difference Ji(γi,n, (γj,n)j 6=i) −minγ Ji(γ, (γj,n)j 6=i) as a
function of n, for λ = 0.2.

Fig. 8. The difference Ji(γi,n, (γj,n)j 6=i) −minγ Ji(γ, (γj,n)j 6=i) as a
function of n, for λ = −0.2.

Theorem 1, called Bernstein inequality, falls into the class
of concentration inequalities [51]. Lemma 2 has an immediate
proof.

Lemma 3: Let Xij , i, j ∈ N be a set of zero mean random
variables absolutely bounded by a constant M . Assume that
Xi1, Xi2, . . . are mutually independent. Assume also that cN
satisfies cN ∈ ω(

√
lnN/N) and consider an ε1 > 0. Then, it

holds:

P

∣∣∣∣∣∣ 1

NcN

N∑
j=1

Xij

∣∣∣∣∣∣ < ε1, for every i = 1, 2, . . .

 > 1− ε1,

for large N .
Proof : Applying Bernstein inequality with t = ε1cN , we
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obtain:

P

∣∣∣∣∣∣ 1

NcN

N∑
j=1

Xij

∣∣∣∣∣∣ > ε1,

 ≤ 2 exp

(
− Nc2Nε

2
1

2M2 + 2McNε1/3

)
Applying Lemma (2) we have:

P

∣∣∣∣∣∣ 1

NcN

N∑
j=1

Xij

∣∣∣∣∣∣ < ε1, for every i = 1, 2, . . .

 ≥
≥ 1− 2N exp

(
− Nc2Nε

2
1

2M2 + 2McNε1/3

)
The fact that c2N � lnN/N completes the proof �

Lemma 4: Consider an Erdos-Renyi random graph with
connection probability cN . Let dij be a random variable with
dij = 1 if there is an edge between i and j and dij = 0
otherwise. Then, if cN ∈ ω(lnN/

√
N), for every given

δ1, ε1 > 0 it holds:

P

(∣∣∣∣ NcN
|Ni(G)|

− 1

∣∣∣∣ < δ1, for every i
)
> 1− ε1,

for large N .
Proof : For every δ1 > 0 there is an δ2 = δ2(δ1) > 0

such that:
∣∣∣ |Ni(G)|
NcN

− 1
∣∣∣ < δ2 implies

∣∣∣ NcN
|Ni(G)| − 1

∣∣∣ < δ1.
Furthermore,

|Ni(G)|
NcN

− 1 =
1

NcN

N∑
j=1

(dij − cN ).

Applying Lemma 3 with Xij = dij − cN we conclude to the
desired result. �

B. Proof of Proposition 4

(i) It holds:

J i ≤ J i,a+E


∞∑
k=0

ρk


θ̄ − 1

|Ni(G)|
∑

j∈Ni(G)

xjk

2

∣∣∣∣∣∣∣Fs


(53)

Using the triangle inequality and simple manipulations, the
second term of the right hand side of (53) is be bounded above
by the sum of the following terms:

E

 ∞∑
k=0

ρk

θ̄ − 1

N

N∑
j=1

(θj,f + akx̃j0)

2
∣∣∣∣∣∣∣Fs

 (54)

E

 ∞∑
k=0

ρk

 1

N

N∑
j=1

xjk −
1

N

N∑
j=1

(θj,f + akx̃j0)

2
∣∣∣∣∣∣∣Fs

 (55)

E

 ∞∑
k=0

ρk

 1

NcN

N∑
j=1

(dij − cN )xjk

2
∣∣∣∣∣∣∣Fs

 (56)

E

 ∞∑
k=0

ρk

( NcN
|Ni(G)|

− 1

)
1

N

N∑
j=1

xjk

2
∣∣∣∣∣∣∣Fs

 (57)

We shall show that the expressions (54) - (57) are small for
all i = 1, . . . , N with high probability, if N is large enough. In
the expressions (54) - (57), the expectation and the summation
over k are interchangeable due to Bepo Levi theorem [44]. The
terms (54) and (55) are common among the players.

1) The term (54): It holds:

θ̄ − 1

N

N∑
j=1

(θj,f + akx̃j0) =
s+ ak

1 + s

θ̄ − 1

N

N∑
j=1

θj


Thus the term (54) is bounded by:

1

1− ρ

θ̄ − 1

N

N∑
j=1

θj

2

,

which due to the weak law of large numbers ([44]) is smaller
than ε̄ with probability larger than 1− ε̄.

2) The term (55): Fixing k, it holds:

Xk =
1

N

N∑
j=1

(xjk − θ
j,f − akx̃j0) =

1

N

N∑
j=1

k∑
t=0

atwjk−t−1

Due to independence we have E[X2
k ] ≤ σ2

N(1−a) . Thus,

∞∑
k=0

E[X2
k ] ≤ σ2

N(1− a)(1− ρ)
.

Hence, term (55) is less than ε̄ for large N .
3) The term (56): It holds:

xjk = akxj0 + θj,f +
k−1∑
t=0

atwjk−t−1. (58)

Denoting by Xij =
dij−cN
NcN

, Y jk = ak(θj − θ̄)− θ̄+sθj
1+s and

ξjk =
∑k−1
t=0 a

twjk−t−1, for the term (56) we have:

∞∑
k=0

ρkE


 1

NcN

N∑
j=1

(dij − cN )xjk

2
∣∣∣∣∣∣∣Fs

 =

=
∞∑
k=0

ρkE


 N∑
j=1

Xij(Y jk + ξjk)

2
∣∣∣∣∣∣∣Fs

 (59)

The random variables Xij and Y jk are Fs measurable and
ξjk are zero mean and independent for every given fixed k.
Thus,

E


 N∑
j=1

Xij(Y jk + ξjk)

2
∣∣∣∣∣∣∣Fs

 =

=

 N∑
j=1

XijY jk

2

+
N∑
j=1

[
(Xi,j)2E

[
(ξjk)2

∣∣∣Fs]] ≤
≤

 N∑
j=1

XijY jk

2

+
σ2

1− a2

N∑
j=1

[
(Xi,j)2

]
(60)
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Given a fixed k, applying Lemma 3 to the set of random
variables NcNXijY jk with ε1 = (1− ρ)ε̄/2 we have:

P


 N∑
j=1

XijY jk

2

< ((1− ρ)ε̄/2)2 < (1− ρ)ε̄/2

 >

> 1− (1− ρ)ε̄/2 > 1− ε̄/2.

Using the fact that |NcNXij | ≤ 1 and cN ∈ ω(1/
√
N), the

last term of the right hand side of the inequality (60) is smaller
than ε̄/2 with probability 1 for large N .

Thus, due to (59), the term (56) is less than ε̄ with
probability larger than 1− ε̄.

4) The term (57): Using (58) we have:

E

 ∞∑
k=0

ρk

 1

N

N∑
j=1

xjk

2
∣∣∣∣∣∣∣Fs

 ≤ 1

1− ρ

[
4L2 +

σ2

N(1− a2)

]
.

The right hand side of the inequality is less than 5L2/(1−ρ),
for large N .

Using Lemma 4 and the fact that
(

NcN
|Ni(G)| − 1

)2

is Fs
measurable, we conclude that the term (57) is less than ε̄ with
probability larger than 1− ε̄, for large N .

The choice ε̄ = ε/4 completes the proof.
(ii) Immediate. �

C. Proof of Proposition 5

For i = 1, . . . , N , it holds θi,f = θ̄. The random variable∑T
k=0 a

kxi0/T converges to 0 almost surely. Thus, due to (58),
it remains to show that the sequence of random variables:

Xi
T =

1

T

T∑
k=1

k−1∑
t=0

atwik−t−1

converges almost surely to 0. The random variable Xi
T can be

written as:

Xi
T =

1

T

T−1∑
ν=0

(1 + a+ · · ·+ aT−1−ν)wiν .

Hence, Xi
T is zero mean and Gaussian satisfying V ar(Xi

T ) <
σ2

(1−a)
1
T = σ2

T . Thus,

P (|Xi
T | > 1/l) < exp

(
−1/(lσT )2

)
.

Denote by BT,l = {ω ∈ Ω : |Xi
T | > 1/l}. It is not difficult

to see that
∑∞
T=1 P (BT,l) < ∞. Therefore, using the 1st

Borel-Cantelli Lemma [44], we have: P (lim supT BT,l) = 0.
Hence,

P
(
{ω : Xi

T → 0}c
)

= P

(∞⋃
l=1

lim sup
T

BT,l

)
= 0.

Thus, Xi
T → 0 almost surely and the proof is completed. �
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