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Abstract This work studies dynamic game situations with incomplete structural informa-
tion, motivated by problems arising in electricity market modeling. Some adaptive/learning
strategies are considered as an expression of the bounded rationality of the participants of
the game. The adaptive strategies are typically not in Nash equilibrium. Thus, the possibility
of manipulation appears. That is, a player may use the dynamic rule of the opponent in order
to manipulate her. We focus on a smaller class of manipulating strategies, called pretending
strategies, where each player acts as if she had different, not real, preferences. It turns out
that under certain technical conditions, if only one player pretends, she can achieve the same
cost as if she were the Stackelberg leader. The situation where all the players are pretending
is then considered, and an auxiliary game, called pretenders’ game, is introduced. A class of
quadratic games is then studied, and several relations among pretending and Stackelberg lead-
ership are derived. A linear quadratic environmental game is also studied.We then study some
competitive electricity market models. Particularly, a supply function model and the market
mechanism described in Rasouli and Teneketzis (electricity pooling markets with strategic
producers possessing asymmetric information ii: inelastic demand, arXiv: 1404.5539, 2014)
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are considered. It turns out that pretending may increase competition or cooperation and in
some cases pretending may cause behaviors making the system not working at all.

Keywords Dynamic Games with Incomplete Information · Learning/Adaptation in Games ·
Manipulation · Pretending · Electricity Markets

1 Introduction

In a number of actual interactive decision situations (game situations) there are a number of
decision makers that interact strategically over time, but each one of them has only a partial
knowledge of the intentions of the others. A particular example is an electricity market where
several production firms are competing repeatedly over time and each firm knows its own
costs but not the costs of the other firms [17,42]. Such strategic interactions over time can
be described by dynamic games with incomplete structural information.

Quite often it is very difficult to find a Nash equilibrium for dynamic or repeated games
with incomplete information. Two difficult problemsmay arise; the first is due to the “Witsen-
hausen effect” [44], i.e., the current action of each player affects the future state or parameter
estimation of the other players. The second is due to the “dual control effect” [13], i.e., that
the current action of a player affects the quality of his own future parameter estimation. The
latter difficulty makes the optimization problems involved very difficult. Even in the degen-
erate game case (one player game) the optimal control problem with unknown parameters
has not been solved analytically, except only for a few special cases [45].

In this context, it has been proposed that the players (instead of trying to find the equilib-
rium strategies) use some simple deterministic or stochastic dynamic rules which determine
the future actions of the players based on their past actions. The use of such rules, usually,
reflects the bounded rationality [38,41] of the participants of the game, i.e., their inability to
solve very difficult problems. These rules can be models of learning, adaptation, evolution
or imitation [16,40,47] ch. 7, [10,27,31]. Most of the research on dynamic rules focuses on
convergence issues. However, a set of such strategies, typically, is not in Nash equilibrium.

A set of dynamic rules often converges to an equilibrium or a correlated equilibrium of a
simplified game. For example, in repeated finite games no regret learning rules converge to
a correlated equilibrium of the static full information game ([21]) and in the same class of
games a set of uncoupled stochastic rules converges probabilistically to a Nash equilibrium of
the corresponding static game [14]. Such results are often used to justify (or as an alibi for) the
use of the equilibrium notions of the simplified games (for example, static full information)
to the repeated or dynamic incomplete information game situation.

Are these adaptive/learning strategies a reasonable prediction for the evolution of the
game? Particularly, if the players knew that they are going to implement those strategies,
would they stick to them? When a player is implementing an adaptive control law, she may
be viewed by another player as a system under control. That is, the other player may try to
use the knowledge of the adaptation law of the first player to manipulate her. The topic of this
work is to study phenomena occurring when the players are trying to manipulate one another
and the implications that manipulation may have to the costs of the participants of the game.

1.1 Contribution

At first, a general form of adaptive/learning strategies is presented and an optimal control
problem for strategic manipulation is stated. Then a smaller class of manipulating strategies
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is considered, called the “pretender’s” strategies. The manipulating player implements her
learning/adaptation rule as if she had a different, not real type (preferences). Outcomes
alternative to the Nash equilibrium are proposed for the cases in which one player pretends
and all the players pretend. Under some technical conditions, if only one player pretends, she
may achieve the same outcome as if she were a Stackelberg leader. We then study the case
in which all the players are pretending, and some possible limit points are identified, using
an auxiliary game called the “pretenders’ game.”

In order to gain some intuition, the notions described are applied to a very simple class
of repeated quadratic opinion games, where analytical results are possible. At first, games
with two players are analyzed and relationships of pretending and Stackelberg leadership are
derived. It turns out that pretending enhances competition among the players. In the case of
a repeated Stackelberg interaction, it turns out that if the Stackelberg follower is pretending,
the follower can achieve approximately the same cost as if she were acting on the Stackelberg
leader’s behalf.

The cases of repeated quadratic opinion games with many players having symmetric and
asymmetric interactions are then analyzed. In the symmetric case, it turns out that when the
number of players increases, the motivation to pretend decreases, the value of pretending
decreases, and the outcome approaches the Nash equilibrium.

In the asymmetric influence case, the motivation of each player to pretend depends on a
measure of the centrality of her position in the network of interactions. In the case where
there is one influential player and many players each one of which has a rather small influ-
ence, only the influential player has a non-negligible motivation to pretend and the outcome
approaches the Stackelberg equilibrium with the influential player as the leader. Thus, a
“natural” Stackelberg leadership appears.

A linear quadratic game with two players is then analyzed. The game describes the inter-
action of two countries emitting pollutants. In this example, each player has a motivation to
pretend to have a lower discount factor, i.e., to pretend that she cares less about the future.
The outcome of the game when the players are pretending is to emit more and have a more
polluted environment. In all the examples of quadratic and linear quadratic games analyzed,
pretending is not a cooperative action.

Two competitive electricity market models are then studied. At first, a linear supply func-
tion model is considered. In this game situation, the players have a motivation to pretend
to have a larger production cost in order to increase the price. Pretending in this model is
a cooperative action, i.e., the pretending of the one player is beneficial to the other. The
outcome when all the players pretend, is that the players produce less, the price is higher,
and their profit increases, compared to the Nash case.

In the second electricity market model a mechanism from the literature is considered [34].
The mechanism is designed in order to work optimally in the Nash equilibrium. However,
each one of the participants has a motivation to pretend. Furthermore, if all the participants
pretend the prices diverge and the system is not working at all.

1.2 Related Literature

A related topic is the literature on reputation effects [15,26,28]. These models consider a
long-run, patient player and many short-lived or not patient opponents. Assuming that there
is a possibility (even with small probability) that the patient player has a “committed type”
(or tough type), the patient player may gain in equilibrium a strategic advantage, similar to
the Stackelberg leadership. A model of two-sided reputation was studied in [3], resembling
a war of attrition situation. The basic difference of the current work with the theory of
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reputation games, is that in reputation games the roles of the players are asymmetric and a
priori specified.

A very interesting related stream of research is the theory of indirect evolution ([12,18,19,
22,23,25]). These models assume rational players the preferences of which are affected by
evolutionary forces. The evolution of preferences may explain phenomena such as altruism,
spite, overconfidence, fairness, and reciprocity ([23]). In [1] it is shown that if both the
preferences (or the perceptions) and the actions are evolving, the players would behave in
an effectively rational way. The basic differences of the current work from the theory of
indirect evolution are that the current work studies dynamic games, as well as repeated, and
does not assume a full rationality for the participants. Another related research area is the
theory of coevolutionary games [33,43]. In coevolutionary games in addition to the players’
strategies, other properties such as the structure of the network describing the interactions
or the players payoffs evolve, leading to different outcomes from the evolutionary games.
An interesting class of telecommunication games is studied in [2,4,5]. In these examples,
the players are better of, if instead of optimizing against their own preferences, they have an
amount of altruism, i.e., optimize against a weighted sum of the payoffs of all the players.
This effect is called “Paradox in Cooperation.”

A closely related topic is the theory of strategic delegation [39]. This theory studies
situations where the acting party delegates its decision to another party having different
interests.

Another related topic is the control of dynamic rules and strategic teaching. In [35], the
optimal control of the best reply is studied and in [36] it is shown that in all the uncoupled
learning rules the players have an incentive to deviate. Furthermore, in [37] it is shown that
in a mixed population of myopic best response and mimic players, the imitators are better
off. The difference of the current work with the theory of strategic teaching is that first it does
not assign different roles to the players a priori and second that it suggests some alternative
outcomes for the game.

In this work, we study the relationship among pretending and Stackelberg leadership.
Endogenous models for Stackelberg leadership were studied in [7,20].

1.3 Organization

The rest of this paper is organized as follows: In Sect. 2, the game and learning models are
described. The pretenders’ strategies are studied in Sect. 3. The opinion quadratic games
are studied in Sect. 4. Section 5 studies the LQ environmental game. Section 6 studies
some electricity market games. Particularly, Sect. 6.1 studies a supply function model and
Sect. 6.2 a mechanism presented in [34]. Finally, Sect. 7 summarizes the main contributions
and proposes some future work.

2 Game Description and Adaptive Strategies

Let us start describing an N -player game. The players have types θ1, . . . , θN . Each player
knows her own type θi , and θ1, . . . , θN are part of a random vector θ̄ = [θ1 . . . θN θ ]T ∈
Θ̄ = Θ1 × · · · × ΘN × Θ which follows a commonly known distribution.

The dynamics has the form:

xk+1 = f
(
xk, θ̄ , u1k, . . . , u

N
k , wk

)
, (1)
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where u1k, . . . , u
N
k are the action variables of the players andwk is a random disturbance with

a commonly known distribution.
The cost functions have the form:

Ji = E

[
T∑

k=0

ρk
θi
Li

(
xk, θi , u

1
k, . . . , u

N
k

)]
, (2)

where ρθi ∈ (0, 1] is a discount parameter and T can have a finite or an infinite value. An
alternative formula for the costs is:

Ji = lim
T→∞ E

[
1

T

T∑
k=0

Li

(
xk, θi , u

1
k, . . . , u

N
k

)]
. (3)

Equations (1), (2) or (1), (3) can describe dynamic games as well as repeated static games.
Each player receives at each time step an information vector according to one of the

following information structures:
Information Structure 1:

Ī i,newk =
(
xk, u

i
k−1

)
or (4)

Information Structure 2:

Ī i,newk =
(
xk, u

i
k−1, u

−i
k−1

)
, (5)

where the u−i stands for (u1, . . . , ui−1, ui+1, . . . , uN ). The information that each player

possesses at time step k has the form I ik =
(
Ī i,new0 , . . . , Ī i,newk

)
.

The strategies of the players are given by si = (γ i
1 , γ

i
2 , . . . ), i = 1, . . . , N , where γ i

k is a
function having the form:

γ i
k : (x0, x1, . . . , xk, θi ) �→ uik ∈ Ui .

We will focus on “state feedback” strategies, where all the previous information is used
only for “adaptation.” Specifically,

uik = γ i
k

(
xk, θi , θ̂

i
k

)
, (6)

where θ̂ ik is the adapted parameter of Player i . We assume that the adapted parameter evolves
according to a dynamic equation:

θ̂ ik+1 = φi
(
θ̂ ik, Ī

i,new
k+1 , θi

)
. (7)

For infinite horizon games, the following property, which holds true for several learning
rules, is quite interesting (see for example [46]):

Property 1: The adapted parameters θ̂1k , . . . , θ̂N
k converge to some limits θ̂1∞, . . . , θ̂N∞

such that the feedback (no memory) strategies γ i
k (xk, θi , θ̂

i∞), i = 1, 2 constitute a strongly
time consistent Nash equilibrium ([8]) for the corresponding complete information game.

Most of the research in adaptive/learning rules focuses on convergence issues, and several
converging learning rules have been proposed. Consider such a set of adaptive/learning rules
in form (6), (7), and focus on Player i’s perspective. Player i faces a stochastic control
problem with dynamics having state variable (xk, θ̂

−i
k ) and incomplete state observation

yk = xk . Furthermore, she has only a probabilistic description of the unknown parameters
θ, θ−i . Thus, Player i can use the information available in order to try to manipulate the
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overall system. However, the control problem described is, in general, very difficult. In the
following section, we restrict ourselves to a simpler class of manipulating strategies.

3 Pretending Strategies

In this section we focus on a special class of manipulation strategies called the pretender’s
strategies. Particularly, the manipulating player pretends to have a false type, probably in
a response to the other players’ actions. For simplicity, we assume that the value of θ is
commonly known, i.e., Θ = {θ}. In what follows, only games with infinite horizon will be
considered.

The general form of a pretender’s strategy that corresponds to (6), (7) is:

θ̂ ik+1 = φi
(
θ̂ ik, Ī

i,new
k+1 , θ

i,pr
k

)
, (8)

uik = γ i
k

(
xk, θ

i,pr
k , θ̂ ik

)
, (9)

where the pretended type θ
i,pr
k is given as an output of a system:

zik+1 = φi,pr
(
zik, Ī

i,new
k+1 , θi

)
, (10)

θ
i,pr
k = ψ i

(
θi , z

i
k

)
. (11)

Equations (8)–(11) represent a manipulating player who pretends to have a type that depends
on her real type and a new, probably augmented, adapted parameter zik . That is, in order to
pretend adequately, it is probably useful to accumulate more information.

In what follows, we consider the stationary cases where one, some or all the players are
pretending. These stationary outcomes are possible limit points of learning/adaptation rules,
when the players are pretending.

3.1 Optimal Stationary Pretending

We consider the possible limit points of the pretending strategies, assuming games with
infinite horizon and long-run average cost. We assume that only Player i0 is pretending.
In the spirit of Property 1, we analyze the following situation. Player i0 has discovered
all the useful information for θ−i0 , and the pretended type of Player i0 has converged to

θ
i0,pr∞ . The rest of the players (−i0) react to a player of type θ

i0,pr∞ . Furthermore, the set of
strategies γ i0(xk, θ

i0,pr∞ , θ̂
i0∞), γ j (xk, θ j , θ̂

j∞), j �= i0 constitute a strongly time consistent

Nash equilibrium for the corresponding game with full information and types θ
i0,pr∞ , θ−i0 .

In order to define the optimal stationary pretending, the following assumption is made:

Assumption 1 For any set of types θ1, . . . , θN , there exists a unique a strongly time con-
sistent Nash equilibrium of the corresponding full information game. Let us denote by
γ
i,N
θ1,...,θN

(xk), i = 1, . . . , N the set of strategies constituting the Nash equilibrium. Fur-

thermore, fixing any subset of strategies, γ i for i ∈ I0 ⊂ {1, . . . , N } there is a unique set of
strategies (γ j ) j /∈I0 such that each γ j is a best response (B.R.) to γ 1, . . . , γ j−1, γ j+1 . . . ,

γ N . �
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The optimal stationary pretending for Player i0 is given by:

θ
i0,pr∞ = argmin

θ̃i0∈Θi0

Ji0

(
γ
i0,N
θ̃i0 ,θ−i0

, γ
−i0,N
θ̃i0 ,θ−i0

)
. (12)

It is interesting to compare the cost that the pretending player i0 attains with the cost
of the full information game having Player i0 as Stackelberg leader. Let us first recall the
Stackelberg equilibrium notion under Assumption 1 (see for example [8]).

Definition 1 Consider a set of strategies (γ
i0,S
θi0 ,θ−i0

, γ
−i0,S
θi0 ,θi0

)within the feedback (nomemory)
class of strategies. This set constitutes a Stackelberg equilibrium with Player i0 as the leader
if:

γ
i0,S
θ1,...,θN

∈ argmin
γ i0

{
Ji0(γ

i0 , γ −i0) : for all j �= i0, γ
j is a B.R. to γ − j

}
. (13)

and for all j �= i0, γ
j,S

θi0 ,θ−i0
is a best response to γ − j . �.

We will use the term Stackelberg games, for games in which one player called the Stack-
elberg leader announces her strategy and sticks to it, while the other player or players decide
their actions taking into account leader’s announcements.

Proposition 1 If Player i0 pretends optimally, then:

Ji0
(
γ
i0,S
θi0 ,θ−i0

, γ
−i0,S
θi0 ,θ−i0

)
≤ J1

(
γ
i0,N

θ
i0,pr
∞ ,θ−i0

, γ
i0,N

θ
i0,pr
∞ ,θ−i0

)
. (14)

An equality is attained is there exist a θ̃i0 ∈ Θi0 such that γ
i0,S
θi0 ,θ−i0

= γ
i0,N
θ̃i0 ,θ−i0

.

Proof The strategy class {γ i0,N
θ̃i0 ,θ−i0

: θ̃i0 ∈ Θi0} is a subclass of the feedback (no memory)

strategy class. Furthermore, using Assumption 1, there is a unique set of strategies (γ
−i0,N
θ̃i0 ,θ−i0

)

such that the strategy of all the players except i0 be a best response to the strategies of the
others. Hence, the minimum in (13) is less than or equal to the minimum in (12). �

Remark 1 Proposition 1 says that if there is enough uncertainty and only one player pretends,
then this player attains the same cost, as if she were a Stackelberg leader. �

3.2 The Pretenders’ Game

In this subsection, we study the case where two or more players are pretending. Under
Assumption 1, an auxiliary game, called the pretenders’ game, can be defined.

Definition 2 For the game described by (1), (3), under Assumption 1, the corresponding
pretenders’ game involves the same players, the action of Player i is θ i,pr ∈ Θi and the cost
is given by:

J̄i (θ
i,pr , θ−i,pr ) = Ji

(
γ
i,N
θ i,pr ,θ−i,pr , γ

−i,N
θ i,pr ,θ−i,pr , θi

)
, (15)

where θi is the actual type. Let us also introduce the I0-constrained pretenders’ game as the
corresponding game where the actions of a set of players are constrained to coincide with
the true value of the players’ types, i.e., θ i,pr = θi , for i ∈ I0.
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An interesting point is the Nash equilibrium of the pretenders’ game. This point can serve
as an alternative prediction of the outcome of the original game.

Definition 3 For the game described by (1), (3), under Assumption 1, a Nash pretenders’
outcome is the set of strategies (γ

1,N

θ
1,pr∞ ,...,θ

N ,pr∞
, . . . , γ

N ,N

θ
1,pr∞ ,...,θ

N ,pr∞
), where (θ

1,pr∞ , . . . , θ
N ,pr∞ )

is an equilibrium of the corresponding pretenders’ game. The constrained Nash pretenders’
outcome is defined similarly assuming that (θ1,pr∞ , . . . , θ

N ,pr∞ ) is an equilibrium of the con-
strained pretenders’ game.

TheNash pretenders’ outcome is interesting as a possible limit point of a learning/adaptive
algorithm, where each of the players pretends dynamically to have a false type.

Remark 2 The pretending outcomes described, i.e., the optimal stationary pretending for one
player and the Nash pretenders’ outcome when all the players are pretending, are at least as
reasonable as the application of the original dynamic rules, due to the fact that each player
may have a motivation to pretend.

Let us note that there are also other works studying deviations from best response. For
example, in smooth fictitious play, for repeated finite games (ex. Ch 4 of [16]), the players are
slightly deviating from their best response toward a randomized policy. This is different from
pretending policies, due to the fact that in the later case the deviations from best response are
used to induce a desired behavior for the other players. �

Remark 3 Let us comment on the relationship with the work in [4]. This work identifies
an interesting phenomenon in routing games with partially altruistic players: In some cases
“When a user increases its degree of cooperation while other users keep their degree of
cooperation unchanged, leads to performance improvement of that user.” To be more precise,
if Ji is the “selfish” cost of Player i , [4] considers the case where the players are partially
altruistic, that is each player tries to minimize:

J̃i = (1 − ai )Ji + ai J−i , (16)

where ai is the degree of cooperation. It is then shown numerically that, when the players
apply strategies constituting a Nash equilibrium of the game described by (16), it is possible
that Ji decreases, as ai increases. This phenomenon is called the “Paradox in cooperation.”
In this context the notion of the price of unilateral altruism was introduced [5].

Consider a situation where the degree of cooperation of Player 2 is commonly known,
whereas the degree of cooperation of Player 1 is known only to Player 1 and there is a
“Paradox in cooperation.” Then, Player 1 has an incentive to pretend to be more altruistic
than she actually is. Furthermore, even if Player 2 knew the actual degree of cooperation of
Player 1, she would have an incentive to accept that Player 1 is more altruistic; otherwise,
she would induce a less altruistic behavior to Player 1 and thus hurt herself. Finally, Player
2 cannot distinguish between the case that Player 1 is altruistic and tries to reach a Nash
equilibrium (of the corresponding full information game) and the case that Player 1 is not
altruistic and pretends. �

4 Quadratic Opinion Games

In this section, a simple class of repeated, quadratic games is analyzed. In this class of
games, exact results can be obtained.Wefirst analyze a two-player simultaneousmove (Nash)
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repeated game and then a sequential move (Stackelberg) repeated game. We then move to
symmetric and asymmetric games with many players. The results of this section help us to
get some intuition on the relationships of pretending and strategic leadership. Throughout
this section we assume long-time average costs.

4.1 A Two-Player Simultaneous Move Game

A two-player repeated opinion game in strategic form is studied. The cost function is given
by (3) and the instantaneous costs by:

L1 = (u1 − θ1)
2 + (u1 − u2)2, (17)

L2 = (u2 − θ2)
2 + (u2 − u1)2, (18)

where (θ1, θ2) ∈ R
2. We assume an information structure given by (5). The full information

(static) game has a unique Nash equilibrium:

ui,N = 2

3
θi + 1

3
θ−i , i = 1, 2. (19)

Several adaptive (iterative) techniques were studied in [32]. Probably, the simplest one is
the best response map:

uik =
(
θi + θ̂ ik

)
/2, (20)

θ̂ ik = u−i
k−1. (21)

If both players follow their best response maps, their actions will converge to the Nash
equilibrium of the full information static game.

Let us then study the case where Player 1 tries to manipulate Player 2 and Player 2 follows
(20), (21). Due to the fact that the map θ1 �→ u1,N in (19) is onto, Proposition 1 applies.
Thus, the feedback Stackelberg cost for Player 1 is feasible through pretending.

The optimal pretending for Player 1 is given by:

θ
1,pr∞ = 6

5
θ1 − 1

5
θ2. (22)

Player 1 can use several ways to learn θ2 in order to implement her pretending policy. One
way is to use only the last iteration. Particularly:

z1,1k+1 = z1,2k , (23)

z1,2k+1 = u1k, (24)

θ
1,pr
k = 6

5
θ1 − 1

5

(
2u2k−1 − z1,1k

)
. (25)

Figure 1 shows the action trajectories when no player, one player and both players are
pretending. The parameters are θ1 = 1 and θ2 = −1.3. If no player is pretending, then the
dynamic rules lead to the Nash equilibrium. If a single player is pretending, the dynamic rule
converges to the Stackelberg equilibrium having the pretending player as a leader. Finally, in
the casewhere both players are pretending the dynamic rule converges to theNash pretenders’
outcome.
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Fig. 1 The solid line corresponds to the best response with no pretending players, the dashed line line to
Player 1 pretending, the dash-dot line line to Player 2 do so and the dotted line to the case in which both
players pretend. It turns out that the outcomes in the several cases studied are widely different

4.2 Two-Player Sequential Move Games

We then study a dynamic game which represents the repeated version of a static Stackelberg
game (or equivalently a repeated extensive form game). Particularly, Player 1 acts at time
instants 1, 3, 5, . . . andPlayer 2 at 2, 4, 6, . . . . The feedbackNash equilibriumof the dynamic
game corresponds to the Stackelberg equilibrium of the static game.

The instantaneous costs are given by:

L1(k) =
{

(xk − 1)2 + θ1
(
xk − u2k

)2
, k = 2, 4, ..

0 otherwise
(26)

L2(k) =
{(

u2k − 2
)2 + θ2

(
xk − u2k

)2
, k = 2, 4, ..

0 otherwise
(27)

and the state equation by:

xk+1 =
{
u1k if k = 1, 3, 5, . . .

∅ if k = 2, 4, 6
(28)

It is not difficult to prove that the Nash equilibrium (which coincides with the Stackelberg
equilibrium of the corresponding static game) is given by:

u1k = (1+θ2)
2+2θ1

(1+θ2)
2+θ1

, k = 1, 3, 5 . . . (29)

u2k = 2+θ2xk
1+θ2

, k = 2, 4, 6 . . . (30)

To prove this fact, observe that (30) represents a best response for Player 2 at time step
k = 2ν, given the action of Player 1 at time step 2ν −1, where xk = u1k−1. Then, substituting
(30) into (26) and minimizing for xk = u1k−1, we get (29).
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A simple dynamic rule that leads to the Nash equilibrium is given by:

u11 = 1, (31)

u1k =
(
1 + θ̂1

)2 + 2θ1
(
1 + θ̂1

)2 + θ1

, k = 3, 5, 7 . . . (32)

u2k = 2 + θ2xk
1 + θ2

, k = 2, 4, 6 . . . (33)

where θ̂1 is the least squares estimate of θ2 based on (30). To see that (31)–(33) converge to
the Nash equilibrium in a finite number of steps, first observe that at time step k = 3, Player
1 will know the value of θ2 and that for θ̂1 = θ2 (32),(33) coincide with (29), (30).

A very simple manipulation rule for Player 2 is to use (33) with θ
2,pr
k = (ε − 1) in place

of θ2, where ε is a small positive constant. Using these rules, after two time steps, the actions
of the players will converge to:

u1 = ε2 + 2θ1
ε2 + θ1

, (34)

u2 = ε2 + ε + 2θ1
ε2 + θ1

. (35)

As ε decreases and approaches 0, actions of both of players approach the value 2. In this
case, the cost of Player 2 approaches 0.

Remark 4 The Stackelberg leader (Player 1) behaves approximately as the follower wants
her to behave. The situation is quite similar to an inverse Stackelberg game with Player 2 as
the leader [24]. Thus, Player 2 can achieve a very strong form of leadership and in this sense,
we may conclude that:
“At least in some cases, regarding leadership, the best use of the information available is
much more important than the commitment or the timing of the game.”

Remark 5 Player 2 can achieve approximately the same cost, as if she was acting on Player
1’ behalf. An interesting question arises: “In which sense does this outcome express the ‘free
will’ of Player 1”?

4.3 Many Player Symmetric Games

We then move to a slightly more general case, where there are N symmetrically interacting
players. The instantaneous costs have the form:

Li = (ui − θi )
2 +

⎛
⎝ui − 1

N − 1

∑
j �=i

u j

⎞
⎠

2

. (36)

The corresponding full information game has a unique feedback Nash equilibrium. It is
not difficult to show that the equilibrium is given by:

ui = Nθi +∑ j �=i θ j

2N − 1
. (37)
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We then consider the pretenders’ game. Using θ i,pr in the place of θ i in (37) and substi-
tuting back in (36) we get the costs in the corresponding pretenders’ game:

J̄i = 1

(2N − 1)2

⎡
⎢⎣
⎛
⎝Nθ i,pr +

∑
j �=i

θ j,pr − (2N − 1)θ i

⎞
⎠

2

+
⎛
⎝(N − 1)θ i,pr −

∑
j �=i

θ j,pr

⎞
⎠

2
⎤
⎥⎦ . (38)

Considering the partial derivative of J̄i with respect to θ i,pr and solving for θ i,pr we obtain
the following characterization of the equilibrium of the pretenders’ game:

θ i,pr = 2N 2 − N

2N 2 − 2N + 1
θ i − 1

2N 2 − 2N + 1

∑
j �=i

θ j,pr . (39)

Hence, the equilibrium of the pretenders’ game is given by:

θ i,pr =
(
1 + 1

2N

)
θ i − 1

2N (N − 1)

∑
j �=i

θ j . (40)

Remark 6 Equation (40) shows that when the interactions are symmetric, the players tend
to pretend less as the number of the players increases. Furthermore, the value of pretending
decreases and the Nash pretenders’ outcome approaches the Nash equilibrium, as the number
of players increases.

4.4 Many Player Asymmetric Games

We then consider a quadratic game with N players having asymmetric interactions. The
instantaneous cost of each player is given by:

Li =
(
ui − θi

)2 +
⎛
⎝ui −

N∑
j=1

ai j u
j

⎞
⎠

2

, (41)

where ai j represents the influence of the actions of Player j to Player i or, in the opinion game
setting, how much Player i is interested in Player j’s opinion. We assume that

∑N
j=1 ai j = 1

and that aii = 0, for any i = 1, . . . , N . The matrix A = [ai j ] will be used. We further
assume that θi ∈ [−M, M].

The Nash equilibrium is characterized by:

u = 1

2
θ + 1

2
Au, (42)

where θ = [θ1, . . . , θN ]T and u = [u1, . . . , uN ]T . There exists a unique Nash equilibrium:

u = 1

2
(I − 1

2
A)−1θ = 1

2
A+θ, (43)

where A+ = I + 1
2 A + 1

4 A
2 + . . . . The series in A+ converges due to the fact that A is a

stochastic matrix.
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For each Player i , let us introduce the following quantity:

Ci = eTi

( ∞∑
t=2

At/2t
)
ei . (44)

WecallCi the “centrality of Player i .” The optimal pretending of each playerwill be expressed
in terms of Ci .

Remark 7 The quantity Ci has some similarities with the Bonacich centrality measures [9]
and the PageRank index [30]. The centrality Ci may have the following representation:
Assume that the matrix A stands for the transition probabilities of a Markov chain. Consider
a random walk on a graph, each node of which represents a player. At each time step, the
random walk with probability 1/2 stops and with probability 1/2 jumps probabilistically to
a new node according to A. Then, Ci is the expected number of times that a random walk
started at the node of Player i will visit that node again. �

Let us focus on a certain Player i . Consider a profile of (real or pretended) types θ̃ =
[θ̃1, . . . , θ̃i−1, θi , θ̃i+1, . . . , θ̃N ]T . The pretended type of Player i can be written as θ i,pr =
θi + δi . The cost of Player i in the pretenders’ game is given by:

J̄i =
(
1

2
eTi A+θ̃ − θi + 1

2
eTi A+eiδi

)2

+
(
1

2
eTi A+θ̃ + 1

2
eTi A+eiδi − 1

2
eTi AA+θ̃ − 1

2
eTi AA+eiδi

)2

.

Observing that eTi A+ei = 1 + Ci , that eTi AA+ei = 2Ci and that

α = 1

2
eTi A+θ̃ − θi = −

[
1

2
eTi A+θ̃ − 1

2
eTi AA+θ̃

]
,

the cost is written as:

J̃i =
(
1 + Ci

2
δi + α

)2

+
(
1 − Ci

2
δi − α

)2

. (45)

Hence, the optimal pretending is given by:

δ
i ,� = 2Ci

1 + C2
i

α = 2Ci

1 + C2
i

[
1

2
eTi A+θ̃ − θi

]
. (46)

Proposition 2 There exists an equilibrium in the pretenders’ game.

Proof Consider the set B = [−2M, 2M]N . The following claim will be used:
Claim: If θ̃ ∈ B, then it holds θi + δi,� ∈ [−2M, 2M], for each player i . 
�

To prove the claim, observe thatCi ∈ [0, 1] and thus 2Ci/(1+C2
i ) ∈ [0, 1]. Furthermore,

1
2e

T
i A+θ̃ ∈ [−2M, 2M]. Hence,

θi + δ
i ,� =

(
2Ci

1 + C2
i

)
1

2
eTi A+θ̃ +

(
1 − 2Ci

1 + C2
i

)
θi .

The fact that θi + δ
i ,� is a convex combination of two quantities in [−2M, 2M] completes

the proof of the claim.
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Fig. 2 The plot of the function f (Ci ) = 2Ci
1+C2

i

The claim shows that the best response maps B into B. Furthermore, B is compact and
convex and the map is continuous. Thus, Brouwer fixed point theorem applies and the pre-
tenders’ game has an equilibrium. �

Equation (46) shows that the pretending of each player depends on its centrality Ci . The
plot of the function f (Ci ) = 2Ci/(1 + C2

i ) is shown in Fig. 2. Furthermore, α is bounded:
|α| ≤ 2M . Thus, a player with low centrality tends to pretend less and the value of pretending
is small.

In the following example, a game involving an influential player and many less influential
players is analyzed.

Example 1 Consider a game with N +1 players. The instantaneous cost for Player 0 is given
by:

L0 = (u0 − θ0)
2 +

⎛
⎝u0 − 1

N

N∑
j=1

u j

⎞
⎠

2

. (47)

The instantaneous cost for each one of the players i = 1, . . . , N is given by:

Li = (ui − θi )
2 +

⎛
⎝ui − au0 − 1 − a

N − 1

∑
j /∈{0,i}

u j

⎞
⎠

2

. (48)

The matrix A has the form:

A =
[
0 1

N 1T

a1 1−a
N−1 (11

T − I )

]
.

Figure 3 illustrates the centrality C0 of the influential player 0 and the centrality Ci of any
other player i , as the number of players increases. The centrality computations were made
for a = 0.5.
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Fig. 3 The centrality of the influential player C0 and the centrality Ci of another player in Example 1

As the number of players increases, only the influential player has a non-negligible moti-
vation to pretend. Furthermore, the Nash pretenders’ outcome approaches the Stackelberg
equilibrium with the influential player as the leader. 
�

Remark 8 In Example 1, the players do not have differences in timing, commitment or the
processing of the available information. However, the Nash pretenders’ outcome approaches
the Stackelberg equilibrium as the number of players increases. This Stackelberg leader-
ship appears intrinsically, without assuming different roles for the players a priori. Thus,
pretending may serve as a natural Stackelberg leadership explanation.

Another way to understand, why when there is only one influential player she may acquire
a leader role, is using the centrality measure Ci . A high value for Ci means that there are
some players who are affected by Player i’s pretended type, while at the same time Player i
is interested in the actions of those same players. A small player is less able to affect through
pretending the actions of the players which in turn affect her.

5 An LQ Non-Cooperative Pollution Control Game

In this section, we consider a very simple linear quadratic pollution control game with two
players. The full information, continuous-time analogue of this model was analyzed in [11].
Each Player i = 1, 2 stands for a country. The dynamics is given by:

xk+1 = axk + u1k + u2k . (49)

The state variable xk represents the pollution stock, and the actions of the players u1k and u
2
k

stand for the emissions of the two countries. The pollution stock of the environment decreases
naturally with a rate 0 < a < 1.
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The cost functions of the players are given by:

Ji =
∞∑
k=0

ρk
i

[
qx2k +

(
uik

)2 − uik

]
. (50)

Cost (50) comprises the effects of two factors. The economic part is expressed by the
difference (uik)

2 − uik , whereas the term qx2k corresponds to the environmental cost.
We assume that both players care the same about pollution, i.e., the parameter q > 0 is

common among the players and that they have the same economic loss from reducing their
emissions. However, they may have a different discount factor ρi ∈ [0.9, 0.99]. We assume
that the players know the parameters q and a and each player knows its own discount factor.
We assume, however, that each player is not aware of the discount factor of the other player.

Consider a pair of strategies u1k = K 1
1 xk + K 1

2 , u
2
k = K 2

1 xk + K 2
2 constituting a Nash

equilibrium of the corresponding full information game. Then, this pair is characterized by:

pi = q + ρi pi

1 + ρi pi
(āi )2, (51)

ci1 = ρi āi
(
2pivi + ci1

)

1 + ρi pi
, (52)

K i
1 = − ρi āi pi

1 + ρi pi
, (53)

K i
2 = 1

2
− ρi

2pivi + ci1
2(1 + ρi pi )

, (54)

where āi = a+K−i
1 and vi = K−i

2 +1/2 and p1, p2 > 0. The details of the optimal control
problems are given in “Appendix sections A and B.”

Proposition 3 If 0 < a < 1, there exists a solution of (51)–(54) with p1, p2 > 0. Thus,
there exists a Nash equilibrium.

Proof See “Appendix C.” 
�
Assuming that each player is not aware of the discount factor of the other player, a simple
adaptive rule, based on an estimation ρ̂−i of the opponent’s discount factor, may be used.
The rule for Player i is described in Algorithm 1.

Algorithm 1:
1: At step 0, use Ki

1(0), K
i
2(0) which is a best response to u−i

k ≡ 0.
2: At time step k ≥ 1, find a value for ρ̂−i that minimizes the following criterion:

ρ̂−i ∈ argmin
ρ∈[0.9,0.99]

[(
u−i
k − K−i,ρ,�

1 xk−1 + K−i,ρ,�
2

)2]
, (55)

where (K−i,ρ,�
1 , K−i,ρ,�

2 ) is the best response of a player with discount factor ρ to a

strategy (Ki
1(k − 1), Ki

2(k − 1)).

3: Apply a strategy Ki
1(k), K

i
2(k) which is the best response to an opponent policy

given by K
−i,ρ̂−i ,�
1 and K

−i,ρ̂−i ,�
1 .

4: Move to the next step k + 1 and jump to Step 2.
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Remark 9 Step 2 of Algorithm 1 (also Step 2 of Algorithm 2) estimates the discount factor
of the opponent based only on her last action. Of course several alternatives are available,
but (55) is probably the simplest one. �

A simple pretending strategy for Player i is given in Algorithm 2. In Algorithm 2, Player
i uses the estimated discount factor of her opponent in order to pretend optimally.

Algorithm 2:
1: At step 0, use Ki

1(0), K
i
2(0) which is a best response to u−i

k ≡ 0.
2: At time step k ≥ 1, find ρ̂−i according to (55) and fix an “assumed” opponent

strategy K
−i,ρ̂−i ,�
1 and K

−i,ρ̂−i ,�
1 , as in Algorithm 1.

3: Find a pretended discount ρi,pr that solves:

minimize
ρ

Ji (γ
i , F(γ i , ρ̂−i )) (56)

s.t. γ i = F(K
−i,ρ̂−i ,�
1 , K

−i,ρ̂−i ,�
2 , ρ)

0.9 ≤ ρ ≤ 0.99

where F(K1, K2, ρ) or F(γ, ρ) is the best response of a player with discount factor ρ

to an opponent with strategy given by K1, K2 or γ . The computation of Ji (γ
i , γ −i )

is given in Section 1 of Appendix.

4: Use the strategy F(K
−i,ρ̂−i ,�
1 , K

−i,ρ̂−i ,�
2 , ρi,pr ).

5: Move to the next step k + 1 and jump to Step 2.

Example 2 In this example we consider two players with discount factors 0.95. Furthermore,
we assume that the parameters have values q = 0.1 and a = 0.8.

At first, no player is pretending. After time step 20, Player 1 pretends applying Algorithm
2 and after time step 40 both players apply Algorithm 2.1 For comparison, the trajectories
of the players’ actions and state variable for the Nash equilibrium of the full information
game are also presented. In Fig. 4 the actions of the players are presented. Fig. 5 shows the
evolution of the pollution stock and Fig. 6 presents the evolution of the instantaneous cost
for both players.

Remark 10 The numerical simulations show that the application of the dynamic rule
described inAlgorithm1 has very similar results to theNash equilibriumof the corresponding
full information game. In the case of pretending, the manipulating player has the motivation
to pretend that she has a lower discount factor (i.e., she cares less about the future) and relies
to the other player to reduce its emissions. If one or both players pretend, the pollution stock
increases. The non-pretending player needs to reduce its emissions, and there is also a larger
pollution. Thus, pretending in this example is not a cooperative action.

6 Electricity Market Models

In this section two competitivemarketmodels are analyzed. The first considers a linear supply
function duopoly model. A simple pretending algorithm is proposed, and the numerical

1 The reason we do not assume that none, one or both players pretend from the beginning is to use a single
pair of figures to illustrate the results.
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Fig. 4 The evolution of players’ actions in Example 2. In the first period of time, in which no one pretends
the emissions of the players are identical and their value is very close to the full information Nash equilibrium.
After time step 20, Player 1 pretends to be shortsighted and her pollution emissions increase. This fact makes
Player 2 to reduce her emissions. After time step 40, both players pretend to be shortsighted. Now, Player 2
increases her emissions and makes Player 1 to decrease them. In this case, the total emissions are larger than
the case where no one pretends

Fig. 5 The evolution of the pollution stock in Example 2. The pollution stock increases after time step 20 and
increases further after time step 40, where both players pretend to have a lower discount factor. In both cases
pollution stock increases, despite the fact that only one player is increasing her emissions, while the other is
decreasing

simulation results show that pretending is a cooperative action, i.e., it increases the firms’
profits, while the price also increases. The second example considers a mechanism from the
literature [34]. It is shown numerically that the attempt of the players to manipulate may
make the mechanism not working at all.
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Fig. 6 The instantaneous costs of the players in Example 2. In the first part of the simulation, where both
the players follow their adaptive rules with no pretending, the instantaneous costs are very close to their Nash
values. After time step 20, Player 1 attains a lower cost, but Player 2 is bound to emit less and also have a more
polluted environment. Thus, the instantaneous cost of Player 2 is larger than its Nash value and this difference
is larger than the improvement for Player 1’s cost. After time step 40, the instantaneous cost is improved for
Player 2, but remains worse than the Nash cost for both the players

6.1 Linear Supply Function Model

In this subsection, we assume that there are two competing production firms. Each one of
them proposes a linear supply function [6] that is at each price level produces an energy
quantity proportional to that price. We also consider linear demand of the form q = A− Bp,
where q is the total energy demand and p the price. The instantaneous cost of each player is
given by:

Li = ciq
2
i − pqi , (57)

where qi is the amount of energy produced by Player i , the quantity ciq2i represents the
production cost and pqi the revenues for Player i .

Each player chooses the constant ui of the linear supply function, that is the quantity
produced depends on the price according to the linear relation qi = ui p. We assume that
each player knows her own production cost but not the production cost of her opponent.

Simple manipulations show that the price and the instantaneous cost of the players depend
on u1, u2 according to:

p = A

u1 + u2 + B
, (58)

and
Li = A2 ci u2i − ui

(u1 + u2 + B)2
. (59)

The best response maps are given by:

u+
1 = B + u2

2c1u2 + 2c1B + 1
, (60)

u+
2 = B + u1

2c2u1 + 2c2B + 1
. (61)
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Fig. 7 The pretended production costs c1,pr , c2,pr in Example 3. Player 1 implements Algorithm 3 from
the beginning, but the steps 6 and 7 are used for the first time at k = 78. Both of the players have an interest
to pretend that they have a larger production cost compared to their actual. After time 200, where Player 2
is using Algorithm 3 and moves to her pretending strategy, the motivation for Player 1 to pretend is slightly
reduced and thus the next time she reviews her pretended cost, i.e., at time step k = 253, she moves slightly
toward her real cost

It is easy to see that the best response map is contractive with respect to the infinity norm.
Thus, if the players use repeatedly (60), (61) the system will approach the Nash equilibrium
of the static full information game.

A simple pretending strategy for Player 1 is described in Algorithm 3.

Algorithm 3:

1: Choose c1,pr0 = c1.

2: At time step k choose u1 according to (60) with c1,prk in the place of c1.
3: Estimate c2 from the last M measurements according to (61) using least squares.

4: Set c1,prk+1 = c1,prk
5: For some small constant ε, with probability 1 − ε, jump to step 2.
6: Implement repeatedly (60), (61) with the estimated value of c2 on a grid of several
c1 values.

7: Choose c1,prk+1 the value of c1 which minimizes the actual cost and jump to Step 2.

A similar pretending algorithm may be used also by Player 2.

Example 3 Assume that A = 1, B = 0.5, c1 = 1, c2 = 1.2. Player 1 implements Algorithm
3, from the time step k = 1, and Player 2 uses the best response until time step k = 200
and Algorithm 3 afterward. For both players, we assume that Algorithm 3 is implemented
with ε = 0.01. Figure 7 shows the evolution of pretended production costs, Fig. 8 presents
the evolution of prices, and Fig. 9 shows the evolution of the player instantaneous profits
(negative total costs).
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Fig. 8 The time evolution of the price in Example 3. Price increases, compared to the Nash equilibrium price
as players pretend to have a higher cost. The price is slightly reduced at time step k = 253, following Player
2’s pretended cost reduction

Fig. 9 The time evolution the profits (−Li ) in Example 3. The profits of both players compared to the Nash
equilibrium increase. At the first adjustment of pretended cost of Player 1, she increases her profits after
two time steps, while the profits for Player 2 increase immediately. The profits of Player 1 have this transient
response, due to the fact that steps 6 and 7 ofAlgorithm 3make computations for the corresponding equilibrium
and not the dynamic response. The interesting feature of this figure is that the non-pretending player benefits
more from pretending than the pretender. Thus, pretending in this case is a cooperative action

Remark 11 In this example it happens that the Nash pretenders’ outcome induces lower costs
(higher value) for both players, compared to the Nash equilibrium of the corresponding static
full information game. Furthermore, each player has a motivation to pretend that she has
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a higher production cost, in order to drive the prices higher. This in turn benefits the other
player, for two different reasons. First, she is going to acquire a larger market share and
second she is going to sell this larger amount of energy at a higher price. Thus, pretend-
ing is a cooperative action, i.e., each player prefers the other player to pretend than not to
pretend. �

6.2 The Rasouli–Teneketzis Mechanism

In this subsection we analyze an example of an electricity market having many competing
production firms. At first, we briefly review a market mechanism described in [34]. An
algorithm to approximate the Nash equilibrium is then proposed and tested numerically. The
ability of the participants to manipulate the rules of their opponents is then studied.

There are N energy producers P1, . . . , PN . Each one of them produces a quantity of
energy qi and proposes a price pi that is the action of a player is given by ui = [qi pi ]T .
Let us denote the total demand by D0 > 0. The production cost for Player Pi is given by
Ci (qi ) = ci (qi )2. The instantaneous cost of each player is given by:

Li (q
i , t i ) = Ci (q

i ) − t i , (62)

where t i is the payment to the producer i made by the system operator. The payment t i is
given by: t i = pi+1qi − (pi − pi+1)2 − 2piζ 2, (63)

where pN+1 ≡ p1 and
ζ =

N∑
i=1

qi − D0, (64)

is the power surplus (or deficit if it is negative).
[34] studies the non-trivial Nash equilibria of the game, i.e., the Nash equilibria such

that it does not hold q1 = · · · = qN = 0. It is shown that in any such equilibrium the
total production coincides with the demand, the proposed prices are identical, and the total
energy is produced with the smallest total cost (the sum of Ci is minimum). Furthermore, a
non-trivial Nash equilibrium always exists. In this sense, the non-trivial Nash equilibria of
the game produce “socially optimal” outcomes.

We then propose a very simple algorithm (Algorithm 4). This algorithm is found numer-
ically to converge asymptotically to a non-trivial Nash equilibrium of the game.

Algorithm 4:
1: Initialize the proposed prices to a small positive constant pi0 = ε.
2: At time step k the energy production is the best response:

qik = argmin
q ′ {Ci (q

′) − pi+1
k−1q

′}. (65)

3: If ζ < 0 (i.e., there is a power deficit) increase the prices by a constant step δ1, i.e.,

pik+1 = pik + δ1, (66)

where δ1 is a small positive scalar.
4: If ζ ≥ 0, the new values of the proposed prices move toward the best responses:

pk+1
i = (1 − δ2)p

k
i + δ2argmin

p′ {(p′ − pki+1)
2 + 2p′(ζ k )2}, (67)

where δ2 ∈ (0, 1).
5: Move to the time step k + 1 and jump to Step 2.
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Fig. 10 The evolution of the prices in Example 4. Until approximately k = 20, the power produced does not
meet the demand, and thus, the prices are increased according to (66). After k = 20, the prices are adjusted
according to (67). After a transient phase, all the prices converge to the same limit

Fig. 11 The evolution of the produced quantities in Example 4. Until approximately k = 20, due to the
increasing prices the energy quantities following (65) are also increasing linearly. After k = 20 the quantities
converge rather quickly to their equilibrium values

Lemma 1 If Algorithm 4 converges, then the limit point is a non-trivial Nash equilibrium of
the game.

Proof First, assume that the dynamics described by Algorithm 4 converges to a fixed point,
(p∞

i , q∞
i )Ni=1. For this fixed point, it holds ζ ≥ 0, due to the fact that if ζ < 0, we would have

pik+1 = pik + δ1, for each i and (p∞
i , q∞

i )Ni=1 would not be a fixed point. Thus, using (65),
we conclude that q∞

i is a best response to the actions of the others. Furthermore, the prices
p∞
i are fixed if they correspond to a best response of the actions of the other players. Thus

any fixed point of (65) and (67) corresponds to a Nash equilibrium of the game. Observe
that the trivial Nash equilibrium is not a fixed point. Thus, any fixed point of the dynamics
is a non-trivial Nash equilibrium. It remains to show that the limit of the dynamics is a fixed
point. For the proof see “Appendix E.” 
�
Example 4 In this example there are four production firms with production costs c1 =
0.5, c2 = 2, c3 = 3, c4 = 10. Figures 10 and 11 show the evolution of the energy production
and the proposed prices assuming that the players follow Algorithm 4. 
�
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Fig. 12 The evolution of the prices in Example 5. Only Player 1 is pretending. Only Player 1 is pretending.
The pretending of a single player is sufficient to increase the prices for all the players. Thus, the pretending of
a player is beneficial to the others

Avery simplemanipulating strategy is thendescribed.AmanipulatingPlayer i implements
Algorithm 4 as if she had a different (not real) production cost ci,pr . The pretended type is
updated rarely but periodically according to the rule:

ci,pr (k + 1) = ci,pr (k), if k + 1 �= tT,

ci,pr ((t + 1)T ) = ci,pr (tT ) − ρ sat[−M,M](
Li (tT + T − 1) − Li (tT − 1)

ci,pr (tT + T − 1) − ci,pr (tT − 1)

)
, (68)

where ρ is a positive constant, T is the time interval, and sat[−M,M](·) is the saturation
function:

sat[−M,M](z) =

⎧⎪⎨
⎪⎩

M if z > M

z, if |z| ≤ M

−M if z < −M

Remark 12 Pretending rule (68) does not estimate the production cost of the other players.
Instead, it uses a gradient decent like rule to minimize the cost with respect to the pretended
cost. A learning scheme very much related to (68) is directional learning [29]. Particularly,
in [29] a player increases the probability of contributing to a game of public goods, if a
previous round switch from non-contributing to contributing increased her payoff or a switch
from contributing to non-contributing reduced her payoff. Similarly, a player reduces her
probability of contributing if a previous round switch from contributing to non-contributing
increased her payoff or a switch from non-contributing to contributing reduced her payoff. 
�

Example 5 In this example there are eight production firms. We assume that only Player 1
(having the smaller production cost) is pretending implementing (68). Figure 12 illustrates
the evolution of the prices, and Fig. 13 the evolution of production quantities. It turns out
that the prices proposed by the several players converge to identical values. Furthermore, the
pretending of Player 1 reduces her market share but increases the prices. Thus, pretending is
slightly beneficial for Player 1, whereas it is more beneficial for the other players which sell
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Fig. 13 The evolution of energy production in Example 5. Only Player 1 is pretending. We may observe that
the market share of Player 1 is reduced. However, the prices are increased and the production cost is reduced.
This makes the pretending player slightly better off. From the point of view of the other players, both the
prices and the market share are increasing. Thus, pretending of Player 1 makes them significantly better off

Fig. 14 The evolution of the prices in Example 6. All the players are pretending. Each player has a motivation
to pretend that she has a production cost larger than her actual. Furthermore, pretending of the other players
generates the incentive for a player to pretend that she has an even larger production cost. This dynamics leads
to a price divergence

energy at higher prices and also get larger market shares. Thus, in this case pretending is a
cooperative behavior. 
�
Example 6 This example continues Example 5 assuming that all the players are pretending.
Figure 14 shows the evolution of the prices, and Fig. 15 the evolution of quantities. In this
example, price grows unbounded. The reason is that the optimal pretended production cost
for each player increases when the pretended costs of the others increase. This dynamics
leads to price divergence. Therefore, the mechanism in this case is not working at all. 
�

Remark 13 The mechanism was designed in order to have a “socially optimal” behavior in
the Nash equilibrium. However, each one of the players has a motivation to pretend. If all
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Fig. 15 The evolution of the energy production in Example 6. All the players are pretending. As the prices
increase, the differences in actual production cost become less important and the production quantities approach
one another

the players pretend, the system is not working at all, as illustrated in the last example where
the prices diverge. 
�

7 Conclusion

We studied the possibility of manipulation in game situations where the players are using a
dynamic rule to determine their future actions. Some alternative outcomes were proposed,
and the results were applied in opinion quadratic games, a linear quadratic environmental
game and two electricity market models.

Several relationships among pretending and leadership were identified in the repeated
quadratic games examples. Particularly, in the two-player simultaneous move repeated game
the pretender has the same cost as if she were Stackelberg leader, in the repeated Stackelberg
game if the follower pretends she may achieve the same cost as if she were the leader in the
corresponding inverse Stackelberg game and in the case where there is an influential player
and many players of low influence the Nash pretenders’ outcome approaches the Stackelberg
equilibrium as the number of players increases.

In the environmental game example pretending leads to a less cooperative behavior and
more pollution. In the electricity market games, pretending may enhance the cooperation
among the players, increase the prices or even make the system not working at all.

The alternative outcomes proposed are by no means the only reasonable ones, and further
work is needed. For example, how would a player react knowing that her opponent tries to
manipulate her? Another direction of future research is the generalization of the results about
centrality to dynamic game situations. Furthermore, it would be interesting to study how to
design the network of interactions such that the motivation to manipulate is not large.

Appendix A: Scalar LQ Optimal Control With an Additive term

Consider the scalar system:
xk+1 = āxk + ūk + v, (69)

where v is a constant. Consider also the quadratic criterion:
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J =
∞∑
k=0

ρk (qx2k + ū2k
)
. (70)

Simple manipulations show that the optimal cost is given by:

J �(x) = px2 + c1x + c2, (71)

and the constants p and c1 satisfy:

p = q + ρā2 p − ρ2ā2 p2

1+ρp = q + ρp
1+ρp ā

2, (72)

c1 = ρā(2pv + c1) − ρ2ā p(2pv+c1)
1+ρp = ρā(2pv+c1)

1+ρp . (73)

Furthermore, the optimal controller is given by:

ūk = − ρā p

1 + ρp
xk − ρ

2pv + c1
2(1 + ρp)

. (74)

Appendix B: The Optimal Control Problems of Section 5

The optimal control problems of Sect. 5 are then reduced to a pair of problems in the form
which was studied in Subsection A.

Without loss of generality let us state the optimal control problem of Player 1. Assume
that Player 2 uses a control policy in the form u2k = K 2

1 xk +K 2
2 . Then the cost function given

by (50) is written as:

J1 =
∞∑
k=0

ρk
1

[
qx2k + (u1k − 1/2)2

]− 1

4(1 − ρ)
.

Ignoring the constant term, and setting ā = a + K 2
1 , ūk = u1k − 1/2 and v = K 2

2 + 1/2, the
problem reduces to the minimization of (70) subject to (69). The optimal controller is given
by:

u1k = ūk + 1/2. (75)

Appendix C: Proof of Proposition 3

Let us first observe that (51), (53) do not depend on (52), (54). Thus, let us first show the
existence of a solution of(51), (53). Consider the compact and convex domain D ⊂ R

4 with:

D = [0, a] × [0, a] × [0, q + 1] × [0, q + 1]. (76)

Consider also the mapping f : D → R
4, with:

f ([ā1, ā2, p1, p2]T ) �→ [ā1,+, ā2,+, p1,+, p2,+]T , (77)

where pi,+ is the unique positive solution of:

pi,+ = q + ρi pi,+

1 + ρi pi,+
(āi )2, (78)

and

āi,+ = a − ρ−i ā−i p−i

1 + ρ−i p−i
. (79)



Dyn Games Appl

It is not difficult to see that f maps D into D. For, observe that pi,+ > 0 and pi,+ < q+1
and that āi,+ ∈ (0, a). Applying Brouwer’s fixed point theorem, we conclude that there exists
a solution of (51), (53).

Then, assume pi , K i
1, i = 1, 2 is a solution of (51), (53). Equation (52) is equivalent to:

ci1 = 2ρi pi āi

1 + ρi pi − ρi āi
vi = λiv

i . (80)

Using (54) and v−i = K i
2 + 1/2, we obtain:

ρi
2pi + λi

2(1 + ρi pi )
vi + v−i = 1. (81)

It is not difficult to see that ρi
2pi+λi

2(1+ρi pi )
< 1. For, observe that this inequality is equivalent

to ρiλi < 2, which can be written as:

ρ2
i p

i āi < (1 + ρi p
i − ρi ā

i ),

which is trivially true, due to the fact that āi < 1 and ρi < 1.
Hence, the pair of equations obtained by (81) substituting i = 1 and i = 2 has a unique

solution. Substituting to (80) and (54) a solution of equations (51)–(54) is obtained.

Appendix D: Cost Computations

Some computations, needed to implement Algorithm 2, are then presented. Particularly, the
value of the cost function:

J =
∞∑
k=0

ρk [qx2k + u2k − uk
]
,

is computed under the dynamics:

xk+1 = āxk + uk + v, (82)

and the control law uk = K1xk + K2.
The equilibrium point of the dynamics is given by x̄ = v̄/(1− ã), where ã = ā + K1 and

v̄ = v + K2. The computation is simplified using the quantity zk = xk − x̄ which evolves
according to zk+1 = āzk .

Simple manipulations show that J can be written as:

J =
∞∑
k=0

ρk [s1z2k + s2zk + s3
]
,

where s1 = q+K 2
1 , s2 = qx̄+K 2

1 x̄+K1K2−K1/2 and s3 = qx̄2+(K1 x̄+K2)
2−K1 x̄−K2.

Thus, assuming that ã < 1, it holds:

J = s1z20
1 − ρã2

+ s2z0
1 − ρã

+ s3
1 − ρ

. (83)

To compute Ji (γ i , γ −i ) with γ j (xk) = K j
1 xk + K j

2 and j = 1, 2, set v = K−i
2 and

ā = a + K−i
1 . The rest of the computations are performed with K1 = K i

1, K2 = K i
2.
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Appendix E: Proof of Lemma

It remains to show that the limit of the sequence is a fixed point. Assume that the sequence
(pki , q

k
i )Ni=1 obtained by iterations of Algorithm 4 converges to a limit (p∞

i , q∞
i )Ni=1. Then,

there exists an k0 such that for any k ≥ k0 it holds ζk ≥ 0. Indeed, otherwise Step 3
of the algorithm would be used infinitely often and we would have ‖(pk+1

i , qk+1
i )Ni=1 −

(pki , q
k
i )Ni=1‖ ≥ δ1 for an infinite number of k. Thus, the sequence would not converge.

Therefore, after k0 the terms of the sequence satisfy (65) and (67).
Observe that the function:

F

((
qik, p

k
i

)N
i=1

)
=
(
pk+1
i , qk+1

i

)N
i=1

,

where pk+1
i , qk+1

i are given by (65) and (67) is continuous. Thus,

F
((

p∞
i , q∞

i

)N
i=1

)
= (p∞

i , q∞
i

)N
i=1 ,

which completes the proof.
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