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LQ Nash Games With Random Entrance:
An Infinite Horizon Major Player and

Minor Players of Finite Horizons
Ioannis Kordonis, Member, IEEE, and George P. Papavassilopoulos, Senior Member, IEEE

Abstract—We study Dynamic Games with randomly entering
players, staying in the game for different lengths of time. Partic-
ularly, a class of Discrete Time Linear Quadratic (LQ) Games,
involving a major player who has an infinite time horizon and
a random number of minor players is considered. The number
of the new minor players, entering at some instant of time, is
random and it is described by a Markov chain. The problem of
the characterization of a Nash equilibrium, consisting of Linear
Feedback Strategies, is reformulated as a set of coupled finite and
infinite horizon LQ optimal control problems for Markov Jump
Linear Systems (MJLS). Sufficient conditions characterizing Nash
equilibrium are then derived. The problem of Games involving a
large number of minor players is then addressed using a Mean
Field (MF) approach and asymptotic ε—Nash equilibrium results
are derived. Sufficient conditions for the existence of a MF Nash
equilibrium are finally stated.

Index Terms—Game theory, Markov jump linear systems
(MJLS), random entrance, stochastic optimal control.

I. INTRODUCTION

FOR the most of the dynamic game models, the time
interval during which the players are involved in the game,

as well as the number of players that participate in the game
at each instant of time are quite structured. For example, in
finite or infinite horizon dynamic games (e.x. [1], [2]) all the
players participate in the game for identical time intervals. In
overlapping generation games ([3]–[5]), a known number of
players of a new generation enters into the game at each time
step and stays for a certain period of time. Several attempts
to impose less structure on the players’ time intervals or on
the number of players that participate in the game have been
made. For example, in games with population uncertainty or
in Poisson games [6] the number of players that participate in
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the game is not known a priori. Games with random horizon
have been studied in a repeated game setting in [7] and in
a differential game setting in [8]. In this class of games, the
time intervals in which the players are involved in the game
are identical; however, the duration of the game is random.
In [9], a game with overlapping generations involving players
which remain in the game for two time steps is considered. The
number of players of each generation is however random.

The current work studies games with random entrance in
a LQ setting and imposes less structure on the time intervals
during which the players participate in the game, as well as on
the number of the active players at each time step. In particular
we, consider a player with infinite time horizon, called the
major player and many players with finite time horizons, called
minor players. The number of new players entering the game
at any time step is a random variable that has a distribution
which depends only on the number of active players at that
moment. The random entrance is, thus, described by a Markov
chain. The problem considered here is the characterization of
the Perfect Nash equilibria. After that, we study the case where
the number of minor players is very large. A Mean Field
(MF) approximation is used to characterize strategies, which
are asymptotically optimal as the number of new minor players
in each step tends to infinity. The equations derived using MF
approximation are often much easier.

The structure proposed for the participation of the minor
players in the game is not unusual in practice. There are several
examples of game situations where there is a long living agent
or institution which, at each time step, interacts with a number
of agents and the interaction with each agent is maintained for
a certain, rather small amount of time. For instance, a bank
that gives loans to households may be considered as a major
player with an infinite horizon and each person that assumes a
loan as a minor player with a finite pre-specified time horizon.
Another example is a liberalized energy market in which there
is a public power corporation with an infinite time horizon and
many renewable energy producers that have a permission to
enter the system for a certain amount of time [10]. A third
example is University-Student Games [11], where the students
of each semester stand for the minor players and the university
as a major player. Cases involving players with different time
horizons were studied also in [12], [13]. Other examples involve
the study of repeated games with long-run and short run-players
[14], such as the chain store game and the study of reputation
effects (ex. [15], [16]).

The interest for the games with large number of players is
not new. In [17], games with a continuum of players, called
oceanic games, were introduced and a value for such games
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was defined. Models with a continuum of players were also
studied in [18] (see also [19], Ch. X). Dynamic Games with a
continuum of players in discrete time were studied in [20] and
[21], under the name Anonymous Sequential Games and in [22]
a Mean Field approximation in Discrete Time Dynamic Games
was used and the Oblivious Equilibrium notion was defined.
Recently, the Mean Field approach in the study of games with
large number of players was introduced [23], [24]. The closely
related methodology of Nash Certainty Equivalence was re-
cently developed in order to derive asymptotic Nash equilib-
rium results as the number of players tends to infinity [25], [26].
Linear Quadratic Games with large number of players were
studied in [27]–[29]. Risk Sensitive and Robust Mean Field
Games were analyzed in [30] and [31]. A quite general setting is
analyzed in [32] using Operator Theoretic techniques. An LQG
game involving a major player and a large number of minor
players of infinite time horizon is considered in [33] where
asymptotically optimal decentralized feedback strategies are
characterized. Connections among the discrete and continuous
time, as well as several generalizations are studied in [34].

In the current work, the problem of random entrance is
reduced to the study of coupled finite and infinite horizon LQ
problems for Markov Jump Linear Systems (MJLS). Thus, the
Nash equilibria are characterized using appropriate coupled
Riccati type equations. There are two types of coupling; the
first corresponds to the Markov Jump character of the optimal
control problems and the second to the LQ Game coupling. In
the case of a large number of players, the Mean Field approach
involves the statement of approximate optimal control problems
assuming an infinity of players. In that case, ε—equilibrium re-
sults are proved. The method used to prove the ε—equilibrium
results is based on some results connecting the stability and the
LQ control of MJLS with the convergence of a sequence of
Markov chains. These results are proved in the Appendix and
are also of independent interest.

The rest of the paper is organized as follows: In Section II,
the dynamics and the cost functions of major and minor players
are defined. In Section III, the optimal control problems that
the participants of the game face are reformulated as a set of
coupled finite and infinite horizon LQ problems for MJLS.
In Section IV, sufficient conditions on a set of linear feed-
back strategies to constitute a Nash equilibrium are derived.
In Section V, the problem with a large number of players is
approximated using a Mean Field model. Then some ε—Nash
equilibrium results are obtained. In Section VI, an algorithm
for computing a Nash equilibrium is stated and it is shown to
converge under certain conditions. Furthermore, some numer-
ical examples are studied. In Section VII, we conclude. The
proofs of some results in the text are relegated to the Appendix.
The notation used in the main text is, also, summarized in the
Appendix.

Notation: The transpose of a matrix is denoted by ·T . In
all the text, except Section VI-B, ‖ · ‖ denotes the usual 2-norm.
The underlying probability space is denoted by (Ω,F , P r) and
the spectral radius of a matrix or an operator by r(·). The
Borelian subsets of a set D are denoted by B(D). The notion
of a stochastic kernel is also used to describe the evolution of
a Markov chain. Particularly, for a Markov chain yk with state
space D, we denote by K̄(·, ·) : D × B(D) → R the stochastic
kernel, i.e., K̄(y,B) = Pr(yk+1 ∈ B|yk = y), for y ∈ D and

B ∈ B(D). The fact that the random variable y has probability
distribution F is denoted by y ∼ F and the weak convergence
of probability measures is denoted by “⇒.” The Kronecker
delta δij is also used, where δij = 1 if i = j and δij = 0
otherwise. A matrix function A : D → R

n×n is called strictly
positive definite if there exists a positive constant c such that
A(y) > cI for any y ∈ D. Finally, the i, j element of a matrix
A is denoted by Ai,j . The dependence of a function on the
Markov chain state variable yk will be omitted, in several points
in the text.

II. DESCRIPTION OF THE GAME

At first, the random entrance of the minor players is de-
scribed. The minor players have time horizon T , i.e., each one
of them stays in the game for T time steps. Consider a countably
infinite set of minor players Δ = {1, 2, . . .}. For any minor
player i ∈ Δ, let ti : Ω → N be a stopping time describing the
time step at which the player i enters the game. At the time step
k, the number of the minor players that participate in the game
may be described by the vector

yk =
(
N0

k , . . . , N
T−1
k

)
/sc (1)

where N l
k = #I lk and I lk is the set of players with entrance time

k − l and and sc, which will be called the “scale variable,” is
the maximum possible number of active players. Let us finally
denote by Ik, the set of active players at time step k.

The number of new minor players that enter the game at
the time step k + 1 is a random variable with a distribution
depending on yk. Thus, the random entrance is modeled by the
Markov chain yk having a finite state space. Let 1, 2, . . . ,M be
an enumeration of the state space and Π = [pij ] the transition
matrix of the Markov chain. We shall use the vector form (1)
and the enumeration interchangeably.

Each player participating in the game has its own dynamic
equation. The evolution of the state vector of each player
depends on the state vectors of the currently active players in
a symmetric manner. The dynamic equation of the major player
is given by

xM (k + 1) = AMxM (k) +
1

sc

∑
i∈Ik

FMxi(k)

+ BMuM (k) + wM (k) (2)

where xM and xi are the state vectors of the major player
and minor player i respectively. The stochastic disturbances
wM (k) are zero mean, finite variance, i.i.d. random variables,
independent of the state vectors. The initial condition for the
major player is given by xM (0) = wM (−1).

The dynamics of the minor player i is described by

xi(k + 1) = Axi(k) +
∑
j∈Ik

Fxj(k)/sc

+ GxM (k) +Bui(k) + wi(k) (3)

where the stochastic disturbances wi(k) are zero mean finite
variance random variables, independent of the state vectors
xM (k) and xi(k), i ∈ Ik. The initial values of the state vectors
of the minor players are given by xi(ti) = wi(ti − 1). The
dependence of wi(k) with wj(k), i �= j is not disallowed.
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In order to define the cost functions of the players, let us
introduce the mean field quantities zl(k) =

∑
i∈Il

k
xi(k)/sc

and the vector of the mean field quantities

z̃(k) =
[
z0, . . . , zT−1

]
.

The cost function of the major player is given by

JM = E

{ ∞∑
k=0

ak
[[(

xM (k)
)T

z̃T (k)
]
QM (yk)

·
[(
xM (k)

)T
z̃T (k)

]T
+ (uM (k))TRMuM (k)

]}
(4)

where QM (y), y ∈ {1, . . . ,M} and RM are positive semidef-
inite and positive definite matrices of appropriate dimensions
respectively and a ∈ (0, 1) a discount factor.

For the minor player i, the cost function is given by

J i = E

{
N∑

k=0

a(x̃i(ti + T ))TQf (yti+T )x̃
i(ti + T )

+

ti+T−1∑
k=ti

(x̃i(k))TQ(yk)x̃
i(k) + (ui(k))TRui(k)

}
(5)

where x̃i = [(xM )T z̃T (xi)T ]T , Qf (y) and Q(y) positive
semidefinite matrices of appropriate dimensions for any y ∈
{1, . . . ,M} and R positive definite matrix of appropriate di-
mensions.

The problem considered here is the characterization of a
Nash equilibrium that satisfies the Dynamic Programming
(Perfect equilibrium [35]). We shall focus on Linear Feedback
Strategies (i.e., strategies with no memory; see [2, Def. 5.2]).
Furthermore, due to the symmetry of the dynamic equations
and cost functions, we shall further concentrate to strategies in
the following form:

ui = L1M (k − ti, yk)x
M +

Tj−1∑
l=0

L(l, k − ti, yk)z
l

+ L̄(k − ti, yk)x
i(k) (6)

and

uM = LMM (yk)x
M +

T−1∑
l=0

LM (l, yk)z
l. (7)

The equations (6) and (7) serve only as a general form of
the feedback strategies. Equations characterizing the gains
L1M , L, L̄, LMM , and LM are determined in the next sections.

For the compactness of the presentation, the following nota-
tion will be used:

L̃M (y) = [LMM (y)LM (0, y) . . . LM (T − 1, y)] (8)

L̂k(y) = [L1M (k, y)L(0, k, y) . . . L(T − 1, k, y)L̄(k, y)]

L̃(y) = [L̂0(y), . . . , L̂T−1(y)] (9)

Remark 1: A set of strategies in the form (6), (7) has two
types of symmetries. At first, the feedback gains are the same

for all the minor players. Consider a strategy in that form.
Then the control values depend on the mean field quantities
zl. Thus, the feedback gains corresponding to the players of
the same entrance time are the same, which is a second form
of symmetry. These symmetry assumptions are justified by the
structure of the dynamics and the cost functions. �

Remark 2: Although we know that for Linear Quadratic
games, closed loop Nash equilibria in nonlinear strategies may
also exist, it is only the linear ones that survive if we introduce
noise in the state equation or the measurements [36]. This is the
reason due to which we restrict our attention to Linear Feedback
Nash equilibria. �

Remark 3: An interesting extension is to study games in-
volving minor players with different time horizons.1 This does
not make the problem more difficult and all the results in this
work can be immediately generalized to that case.

Remark 4: The major player may be viewed as a coordinator
helping the stabilization of the overall system. An interesting
alternative is to see the major player as a common adversary
of all the minor players in the spirit of [31].2 The techniques
used in the current work should, however, be adapted in order
to study this alternative.

Remark 5: An interesting extension would involve the con-
tinuous time analog of the current formulation. This can be
done either by taking the limit of the discrete problems as the
discretization time tends to zero in the spirit of [37] or by stating
the corresponding problem in continuous time directly.

Remark 6: The study of Stackelberg equilibria with the
major player as a leader is a related interesting problem. The
same techniques can be used in order to characterize feedback
Stackelberg equilibria.

Remark 7: The only necessary measurements for a player
to implement a strategy in the form of (6) or (7) are the value
of the state vector of the major player xM , the mean field
quantities z̃(k), the value of its own state vector and the value
of the Markov chain state variable yk. Thus, we shall make the
following assumption:

Assumption 1: All the players have access to the current
values of xM , z̃, and yk. Furthermore, each player can measure
its own state vector. �

III. OPTIMAL CONTROL PROBLEMS

The problem of the Nash equilibrium characterization for LQ
games with random entrance is converted to the problem of
finding a solution to a set of coupled LQ control problems for
MJLS. Particularly, the optimal control problems are stated in
spaces of smaller dimensions and the random entrance problem
is transformed to a random coefficients problem of a linear
dynamic equation, depending on the Markov chain given by
(1). This reduction is possible, due to the symmetric form of the
dynamic equations, the cost functions and the control strategies.
We shall assume that the players follow strategies in the general
form (6), (7).

1In fact, the first version of this work involved several types of minor players
having different time horizons. However, for simplicity and clarity of the
presentation reasons, after reviewers’ recommendation, we restrict ourselves
to the case where all the minor players have the same time horizon.

2This alternative was proposed by an anonymous reviewer.
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A. Optimal Control Problem for the Major Player

The evolution of the state vector of xM and the cost function
JM depend only on xM , z̃ and uM . Assuming that the minor
players use the strategies in the general form (6), the evolution
of the components zlk of z̃ depend only on and xM and z̃, as
well. Hence, symmetry implies that the the evolution of the
quantities in the cost function (4) can be described by a state
vector of smaller dimension: [(xM )T , z̃T ]T . The dynamics,
after straightforward manipulations, is given by[
xM (k + 1)
z̃(k + 1)

]
= ÃM (yk)

[
xM (k)
z̃(k)

]

+

[
BM

0

]
uM (k) +WM (k) (10)

where

ÃM (yk) =

⎡
⎢⎢⎢⎣
ÃM

xMxM ÃM
xMz1,0 . . . ÃM

xMzp,T̄

ÃM
z0xM ÃM

z0z0 . . . ÃM
z0zT̄

...
...

. . .
...

ÃM
zT̄ xM ÃM

zT̄ z0 . . . ÃM
zT̄ zT̄

⎤
⎥⎥⎥⎦

T̄ = T − 1. The entries of the first row of the matrix are
given by: ÃM

xMxM = AM and ÃM
xMzl = FM . The second row

consists of zeros. For the rest of the entries it holds

ÃM
zl+1xM =

N l
k

sc
(G+BL1M (l, yk)), and

ÃM
zl+1zl′ =

N l
k

sc
(F +BL(l′, l, yk)) + δl,l′(A+BL̄(l, yk)).

The matrix ÃM depends on yk through the terms N l
k/sc.

Thus, the study of the optimal control problem of the major
player, under the random entrance of the minor players is re-
duced to the study of the following infinite horizon LQ control
problem for a MJLS.

OC Problem 1: “Minimize the cost function (4) subject to
the dynamics (10) and (1).” �

B. Optimal Control Problem for the Minor Players

For the minor players, a similar reasoning applies. Consider
a minor player i0 with entrance time ti0 . Assume that the other
players use the feedback strategies in the general form (6) and
(7). The evolution of the state vector and the cost of the player
i0 depend only on the quantities: xM , xi0 , z̃, and y. Thus, the
cost function of player i0 can be described using the state vector
x̃i0 = [(xM )T z̃T (xi0)T ]T , which evolves according to

x̃i0(k + 1) = Ã(k − ti0 , yk)x̃
i0(k)

+ B̃(k − ti0 , yk)u
i0 +W i0(k) (11)

where

Ã(k − ti0 , yk) =

⎡
⎢⎢⎢⎢⎣
ÃxMxM ÃxMz0 . . . ÃxMzT̄ ÃxMxi0

Ãz0xM Ãz0z0 . . . Ãz0zT̄ Az0xi0

...
...

. . .
...

...
ÃzT̄ xM ÃzT̄ z0 . . . ÃzT̄ zT̄ AzT̄ xi0

Ãxi0xM Ãxi0z0 . . . Ãxi0zT̄ Axi0xi0

⎤
⎥⎥⎥⎥⎦

T̄ = T − 1. The entries of the matrix are computed by simple
but lengthy calculations. For the first row, it holds

ÃxMxM =AM +BMLMM (yk),

ÃxMzl =FM +BMLM (l, yk).

The entries of the second row are zero. For the rest of the
rows except the last one, the entries are given by

Ãzl+1xM =
N l

k

sc
(G+BL1M (l, yk))−

δl,k−ti0

sc
BL1M (l, yk)

Ãzl+1zl′ = δl,l′

(
A+

N l
k

sc
BL̄(l, yk)

)

+
N l

k

sc
(F+BL(l′, l, yk))−BL(l′, l, yk)δl,k−ti0

/sc

Ãzl+1xi0 = −
δl,k−ti0

sc
BL̄(l, yk).

The entries of the last row are determined by (3). Thus,
Ãxi0xM = G, Ãxi0zl = F and Ãxi0xi0 = A.

The B̃ matrix is given by

B̃(k − ti0 , yk) =
[
0 B̃T

z0 . . . B̃T
zT−1 BT

]T

where B̃zl+1 = δl,k−ti0
B/sc.

The matrix Ã is time varying and depends on the Markov
chain through the terms N l

k/sc. Hence, the random entrance
problem is transformed to a MJLS problem for the minor
players, as well. The optimal control problem that a minor
player faces is the following finite LQ control problem for a
MJLS:

OC Problem 2: “Minimize the cost function (5) subject to
the dynamics (11) and (1).” �

Remark 8: The state vectors of the dynamics of the major
and minor players (10) and (11) have a much smaller dimen-
tion than the state vector consisting of all the active players.
Furthermore, the dimensions of the state vectors do not depend
on the number of players. �

Remark 9: The Markov jump character of the OC problems
has two origins. The first is the random entrance and affects
several terms such as AM

zl+1xM , through the factor N l
k/sc. The

second is the dependence of the Q matrices on yk. Hence, the
dependence of the Q matrices on yk, does not make the problem
more difficult. �

IV. OPTIMALITY CONDITIONS AND NASH EQUILIBRIUM

The optimality conditions for the OC Problems 1 and 2 are
derived and then used to characterize a perfect Nash equi-
librium. The general form of the solutions of the finite and
infinite horizon discounted LQ control problems for MJLS can
be found in [38].

For the infinite horizon OC Problem 1, the optimality con-
ditions are given in terms of a set of coupled Riccati type
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equations. Particularly, let us consider a set of matrices K(y),
Λ(y), for y = 1, . . . ,M such that

KM (y) = QM + (ÃM )T
[
aΛM − aΛM B̃M

·
(
RM/a+ (B̃M )TΛM B̃M

)−1

(B̃M )TΛM

]
ÃM (12)

ΛM (y) = E[KM (yk+1)|yk = y] =

M∑
j=1

pyjK
M (j). (13)

Let us also consider the control law given by

uM (k) = L̃M,�(yk)
[(
xM (k)

)T
z̃T (k)

]T
(14)

where

L̃M,�(y) = −
(
(B̃M )TΛM B̃M +RM/a

)−1

ΛM ÃM . (15)

The control law given by (14) is optimal, provided that it
makes the cost function (4) finite. The criterion for the finiteness
of the cost function (4) is given in terms of the closed loop
matrix

ÃM
cl = ÃM − B̃M L̃M,�. (16)

The finiteness criterion is based on the existence of a positive
definite solution to a set of coupled Lyapunov equations (see
Appendix A, (51)).

Finiteness Criterion 1: There exist positive definite matrices
S(i), i = 1, . . . ,M that solve the following set of coupled
Lyapunov equations:

S(i)−
M∑
j=1

apij(Ã
M
cl (i))

TS(j)ÃM
cl (i) = I (17)

for i = 1, . . . ,M . �
The optimality conditions for a minor player i0 are given in

terms of the solution of the following set of coupled Riccati
type difference equations:

KT (y) =Qf (y) (18)
Λk+1(y) =E

[
Kk+1(yk+1+ti0

)|yk+ti0

]
=

M∑
j=0

pyjKk+1(j) (19)

Kk(y) =Q+
(
Ã(k)

)T [
Λk+1 − Λk+1B̃

· (R+ B̃TΛk+1B̃)−1B̃TΛk+1

]
Ã (20)

for k = T − 1, . . . , 0. The optimal control law is then given by

ui0(k + ti0) = L̂�
kx̃

i0(k + ti0) (21)

where

L̂�
k(y) = −(R+ B̃TΛk+1B̃)−1Λk+1Ã (22)

We are interested in Nash equilibria, i.e., a set of strategies,
each of which is optimal given the others. Therefore, we define
the notion of a consistent set of strategies.

Definition 1: Consider a set of strategies in the general form
(6), (7), with gains L̃ and L̃M and the set of matrices ÃM (y)

and Ã(k, y) for k = 0, . . . , T and y = 1, . . . ,M . Then, the set
of strategies is called consistent if:

(i) There exists a set of matrices KM (y), ΛM (y) for y =
1, . . . ,M that satisfies (12), (13). Moreover, it holds

L̃M (y) = LM,�(y) (23)

for any y = 1, . . . ,M .
(ii) The Finiteness Criterion 1 is satisfyied.

(iii) It holds

L̃(y) =
[
L̂�
0(y) . . . L̂

�
T−1(y)

]
(24)

for any y = 1, . . . ,M . �
It is not difficult to show that a consistent set of strategies

constitutes a perfect Nash equilibrium.
Proposition 1: Consider a consistent set of strategies in the

general form (6) and (7). Then it constitutes a Perfect Nash
equilibrium.

Proof: The strategies of the minor players are optimal.
Using equation (51) of the Appendix, with

√
aAM

cl in the place
of the A matrix, we conclude that equation (17) implies the
finiteness of the total cost of the Major player and thus the opti-
mality of the control law (14). Thus, the strategy of each player
is optimal and the consistent set of strategies constitutes a Nash
equilibrium. Furthermore, the strategies of the players satisfy
the Dynamic Programming and thus the Nash equilibrium is
perfect. �

Sufficient conditions for the existence of a Nash equilibrium
are given in Section VI, for a special case. They are expressed
as sufficient conditions for the convergence of an algorithm
approximating the Nash equilibrium.

Remark 10: The optimality conditions given by the equa-
tions (12)–(15) and (18)–(22) are Riccati type equations with
two kinds of coupling. The first is due to the involvement of the
gains in the Ã matrices and has the same nature as the coupled
Riccati equations of the LQ games [1], [39]. The second kind of
coupling is through the Λ matrices and it has the same nature as
the interconnected Riccati equations in the study of LQ control
of MJLS [40]. �

V. LARGE NUMBER OF PLAYERS CASE

In this section we use a Mean Field approximation in order to
study games with a very large number of players. This approach
assumes a continuum of players. A set of optimal control prob-
lems that correspond to the limit of those in Section III, as the
scale variable tends to infinity, is then stated. The Markov chain
with a large number of states is approximated by a Markov
chain with a continuum of states and thus a notion of conver-
gence of Markov chains is first recalled in the Section V-A.
Then the solution of the approximate optimal control problems
for the major and minor players is characterized by appropriate
Riccati integral equations and consistency conditions analogous
of those of Section IV are stated. Finally, it is proved that a set
of feedback strategies satisfying those consistency conditions
constitutes an ε—Nash equilibrium, for a game with a very
large number of players.
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Another motivation for the use of the continuous approxi-
mation is computational. The state space of the Markov chain
that describes the random entrance grows fast as the maximum
number of players increases. For example if the minor players
have a time horizon 5 and the new minor players in each
step belong to the set 1, 2, . . . ,N then the state space of the
Markov chain describing the entrance has N5 points. Thus, the
equations characterizing a Nash equilibrium depend on many
parameters and therfore, they are very complicated. On the
other hand, in several cases the situation is much simplified
using the continuous approximation.

A. Convergence of Markov Chains

In this section the vector representation of yk will be used.
The state space of the Markov chain is contained in the set

D =

{
(y0, . . . , yT−1) ∈ RT :

T−1∑
i=0

yi ≤ 1, yi ≥ 0,

}
. (25)

The continuous approximation will be defined on the set D.
A Markov chain could be described using the notion of the

stochastic kernel.
Definition 2: Let D′ = {d1, . . . , dM} ⊂ D and P = [pij ] be

an M ×M stochastic matrix. The stochastic kernel that corre-
sponds to the Markov chain with state space D′ and transition
matrix P is defined as

K̄(y,B) = Pr(yk+1 ∈ B|yk = y) =
∑

j:dj∈B
pij (26)

where i = min{argminl{‖y − d‖ : d ∈ D′}}, y ∈ D and B a
Borel subset of D. �

Let us then recall a notion of convergence of stochastic
kernels from [41] and a notion of continuity from [42].

Definition 3:

(i) We shall say that a sequence of stochastic kernels K̄ν

converges weakly to a stochastic kernel K̄ if for any
sequence yν of elements of D converging to an element
y of D and any (bounded) continuous function g, it holds∫

D

g(y′)K̄ν(yν , y
′) →

∫
D

g(y′)K̄(y, y′) (27)

(ii) A stochastic kernel K̄ is called Feller continuous if
K̄(yν , ·) ⇒ K̄(y, ·) when yk → y. �

Let us turn back to games described by the relationships
(2)–(5) and a large number of minor players. To do so, we
consider a sequence gν of games with increasing number of
minor players; i.e., for the scale variable we assume sc → ∞ as
ν → ∞. The state of the Markov chain describing the entrance
is denoted by yνk , the number of states of the Markov chain by
Mν and the corresponding stochastic kernel is denoted by K̄ν .

Conclusions about the final part of this sequence of games are
obtained under the assumption that the sequence of stochastic
kernels K̄ν converges weakly to a Feller continuous stochastic
kernel K̄. The stochastic kernel K̄, hence, approximates the
final part of the sequence of Markov chains. We finally assume
that the matrix functions QM (·), Qf (·), Q(·) are continuous.

The following example shows that the continuum approx-
imation often simplifies a lot the description of the random
entrance.

Example 1: Consider games involving only one type of
minor players of time horizon 2. At each time step each one of ν
players enters the game with probability p. Thus, the number of
new minor players at each step follows a binomial distribution.
The entrance dynamics is thus described by the Markov chain
yνk = [N0,ν

k N1,ν
k ]/sνc , sc = 2ν and

Pr(Nν,0
k+1 = i) =

(
ν

i

)
pi(1− p)ν−i.

The random variable Nν,0
k /sc converges weakly to the deter-

ministic constant p/2. Thus, the Markov chain with large ν may
be approximated by a Markov chain with continuous state space
and a stochastic kernel given by K̄((y1, y2), ·) = δ(p/2, y1),
where δ denotes the Dirac measure. Thus, for a large number
of players, the approximate description of the Markov chain is
much simpler than the original. �

B. Approximate Optimal Control Problems

The approximate optimal control problems are then stated.
These problems correspond to the limits of the OC Problems 1
and 2 of Section III as the scale variable tends to infinity.

The reduced order dynamics for the major player, given by
(10), remains unchanged under the limiting procedure. Thus,
the limit optimal control problem for the major player is stated
as follows:

OC Problem 3: “Minimize the cost function (4) subject to
the dynamics (10) and yk+1 ∼ K̄(yk, ·).” �

The solution of the optimal control Problem 3 depends on the
solution of a Riccati integral equation given by

KM (y)=QM+(ÃM )T
[
aΛM−aΛM B̃M

·
(
RM/a+(B̃M )TΛM B̃M

)−1

(B̃M )TΛM

]
ÃM (28)

ΛM (y)=E[KM (yk+1)|yk=y]=

∫
D

KM (y′)K̄(y, dy′). (29)

Consider the matrix functions K(·),Λ(·) satisfying the Riccati
integral equation (28), (29). Then the control law given by

uM (k) = L̃M,�(yk)
[(
xM (k)

)T
z̃T (k)

]T
(30)

where

L̃M,�(y) = −
(
(B̃M )TΛB̃M +RM/a

)−1

ΛÃM (31)

solves the optimal control Problem 3, under the following
finiteness criterion:

Finiteness Criterion 2: Consider the closed loop matrix
given by

ÃM
cl = ÃM − B̃M L̃M,�.



1492 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 6, JUNE 2015

There exists a strictly positive definite matrix function S(·)
satisfying∫
y′∈D

a
(
ÃM

cl (y)
)T

S(y′)ÃM
cl (y)K̄(y, dy′)−S(y)=−I (32)

for any y ∈ D. �
The reduced order dynamics for a minor player is sim-

plified under the limiting procedure. Specifically, consider a
minor player i0 with entrance time ti0 . The limit dynamics is
given by

x̃i0(k + 1) = Ã(k − ti0 , yk)x̃
i0(k)

+ B̃(k − ti0 , yk)u
i0 +W i0(k). (33)

The entries of the matrix are computed by simple but lengthy
calculations. The entries of the first row are given by

ÃxMxM =AM +BMLMM (yk),

ÃxMzl =F +BMLM (l, yk).

The entries of the second row are zero. For the rest of the rows
except the last one, the entries are given by

Ãzl+1xM = ylk(G+BL1M (l, yk))

Ãzl+1zl′ = δl,l′
(
A+ ylkBL̄(l, yk)

)
+ (F +BL(l′, l, yk))y

l
k

Ãzl+1xi0 =0.

The entries of the last row remain the same, i.e., Ãxi0xM = G,
Ãxi0zl = F and Ãxi0xi0 = A.

The limit optimal control problem for a minor player i0 is,
thus, the following:

OC Problem 4: “Minimize the cost function (5) subject to
the dynamics (33) and yk+1 ∼ K̄(yk, ·).” �

The solution of the limit optimal control Problem 4 depends
on the following Riccati type difference integral equaitons:

KT (y) =Qf (y) (34)
Λk+1(y) =E

[
Kk+1(yk+1+ti0

)|yk+ti0

]
=

∫
D

Kk+1(y
′)K̄(y, dy′) (35)

Kk(y) =Q+
(
Ã(k)

)T [
Λk+1 − Λk+1B̃

·(R+ B̃TΛk+1B̃)−1B̃TΛk+1

]
Ã. (36)

The optimal control law is then given by

ui0(k + ti0) = L̂�
kx̃

i0(k + ti0) (37)

where

L̂�
k(y) = −(R+ B̃TΛk+1B̃)−1Λk+1Ã. (38)

C. Consistency Conditions and ε—Nash Equilibrium

The consistency conditions for the solutions of the OC
Problems 3 and 4 are stated and then used to characterize
approximate Nash equilibrium.

Definition 4: Consider a set of strategies that belong in the
general form (6), (7) with gains L̃ and L̃M . Assume that they
depend continuously on y ∈ D. Compute the matrix functions
ÃM (y) and Ã(y). The set of strategies will be called consistent if:

(i) There exist continuous matrix functions KM (y),ΛM (y)
satisfying (28), (29). Moreover it holds

L̃M = L̃M,� (39)

where L̃M,�(y) is given by (31).
(ii) The closed loop matrix ÃM

cl (y) satisfies the Finiteness
Criterion 2.

(iii) The matrix functions L̂�
k(y) computed by (34)–(38) satisfy

L̃(y) = [L̂�
0(y), . . . , L̂

�
T−1(y)] (40)

for any y ∈ D. �
Let us consider a game with a large number of players gν ,

where the participants use a set of approximately consistent
strategies, characterized by gains L̃ and L̃M . Under certain
conditions, this set of strategies is shown to constitute an
ε—Nash equilibrium, i.e., the cost of any player is at most
ε—far from the optimal cost. This property is illustrated by the
following Theorem 1 and its Corollary 1.

Before stating the Theorem 1, let us introduce some notation:
Notation: For the game gν , let us denote by JM,ν(πL̃,L̃M )

and J i,ν(πL̃,L̃M ) be the values of the cost functions, (4) and
(5), when all the players use the policies given by (6) and (7)
with gains L̃, L̃M .

Let also (JM,ν(πL̃,−M ))� be the minimum value of the cost
function of the major player, assuming that the other players
use the policies given by (6) with gains L̃. Finally, denote by
(J i,ν(πL̃,L̃M ,−i))

� the minimum value of the cost function of
the player i, assuming that the other players use the strategies
given by (6) and (7) with gains L̃, L̃M . �

Theorem 1: Consider an approximately consistent set of
strategies given by (6) and (7) with gains L̃, L̃M . Then for any
positive constant ε, there exists a positive integer ν0 such that

JM,ν(πL̃,L̃M ) ≤ (JM,ν(πL̃,−M ))� + ε (41)

J i,ν(πL̃,L̃M ) ≤ (J i,ν(πL̃,L̃M ,−i))�

+ ε
(
1 + E

[(
x̃i(ti)

)2])
, (42)

for all the minor players i ∈ Δ and any ν ≥ ν0.
Structure of the Proof: The proof of the second inequality is

based on the fact that the optimal policies for a minor player
involve continuous functions of the state vector and the Markov
chain and some properties of the weak convergence.

A basic step in the proof of the first inequality is given in
Appendix B, where it is shown that some stability properties
of the MJLS are preserved under weak convergence. It is
then shown that the final part of the series involved in the
cost function is small in some sense, uniformly in the initial
conditions, and thus it suffices to compare finite series. The
result for finite series is similar to the proof of the second
inequality. The detailed proof is relegated to the Appendix.
More general results are first shown in section C and particu-
larly in Propositions 4 and 5. Theorem 1 is then proved as a
consequence of the Propositions of section C. �
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Corollary 1: Consider a set of strategies in the form (6), (7).
In addition to the assumptions of Theorem 1, assume that the
closed loop system is mean square exponentially stable, i.e.,
the following Lyapunov equation:∫

y′∈D

(ÃM
cl (y))

TS(y′)ÃM
cl (y)K̄(y, dy′)− S(y) = −I

admits a strictly positive definite solution S(·). Then for any
positive constant ε, there exists a positive integer ν0 such that
(6) and (7) constitute an ε-Nash equilibrium for any ν ≥ ν0,
i.e., it holds

JM,ν(πL̃,L̃M ) ≤ (JM,ν(πL̃,−M ))� + ε (43)

J i,ν(πL̃,L̃M ) ≤ (J i,ν(πL̃,L̃M ,−i))
� + ε. (44)

Proof: The inequality (44) is a consequence of the in-
equality (42) and the mean square stability. �

Remark 11: The approximate consistency conditions (Def. 4)
involve nonlinear matrix integral equations and in general are
not simpler than the consistency conditions of Section IV.
However, in several cases the situation is extremely simplified
as illustrated in the Example 3 of the next section. �

VI. COMPUTING THE NASH EQUILIBRIA

An algorithm for solving the consistency conditions derived
in Section IV, is described in subsection A. Conditions under
which the algorithm converges are stated and thus sufficient
conditions for the existence of a Nash equilibrium are then
derived. In the third subsection, some numerical examples are
given.

A. Algorithm

The algorithm initially guesses a value for the feedback
gains. With the assumed values, it computes the matrices for the
optimal control problems. Then, the optimal control problems
are solved and new feedback gains are computed. The new
feedback gains are then used to compute the system matrices
and solve the optimal control problems and so forth. This
algorithm is presented in Algorithm 1 table.

Algorithm 1

1: Guess L̃, L̃M .
2: Compute the matrices Ã(·, ·) using (11).
3: Compute the new values for the gains L̂�

1, . . . , L̂
�
T−1, using

equations (18)–(22).
4: Set L̃ = [L̂�

1, . . . , L̂
�
T−1]

5: Compute the matrix ÃM using (10).
6: Set L̃M

old = L̃M .
7: Compute matrices KM (·),ΛM (·) to satisfy (12), (13).
8: Use (15) to update the values of L̃M , i.e., set L̃M = L̃M,�.
9: If the difference maxy ‖L̃M − L̃M

old‖ is small enough then
halt. Else go to Step 2.

An analogous algorithm can be used for the Mean field case,
as well.

Remark 12: Step 7 of the algorithm may be implemented
in several ways. Probably the simpler one is to use the value
iteration algorithm. A variant of the algorithm would involve
the use of a single step of the value iteration method, instead of
the steps 7 and 8 of the Algorithm 1. �

B. Convergence of the Algorithm

The convergence of the Algorithm 1 depends on the existence
of a Nash solution, as well as on some stability properties. Such
problems are hard to solve and remain open even in simpler
settings (ex. [43]).

In this subsection, we study the convergence of the Mean
Field variant of Algorithm 1. Particularly, sufficient conditions
for convergence of the algorithm and hence, the existence of a
Mean Field Nash solution are stated, based on contraction map-
ping ideas. A special class of games is analyzed. Specifically,
it is assumed that there are only minor players coupled only
though costs having state vectors of dimension one. The time
horizon of the players is three.

In what follows, for vectors ‖ · ‖ denotes the 1-norm, for a
matrix A, ‖A‖ denotes the induced 1-norm and for a matrix
function A(·), ‖A‖ denotes the essential supremum of the
induced 1-norm. Assuming that A = α, B = 1 and r = 1, the
matrices Ã and B̃ take the form

Ã=

⎡
⎢⎣

0 0 0 0
α+(L(0,0)+L̄(0))y0k L(1,0)y0k L(2,0)y0k 0

L(0,1)y1k a+(L(1,1)+L̄(1))y1k L(2,1)y1k 0
0 0 0 α

⎤
⎥⎦

B̃ = [0 0 0 1]T . Let us denote by

L̃Ã = [L̃Ã(0), L̃Ã(1)]

= [[L(0, 0) L(1, 0) L(2, 0) L̄(0)] ,
[L(0, 1) L(1, 1) L(2, 1) L̄(1)]]

i.e., all the entries of L̃ that affect Ã.
We consider the following mappings:

L̃Ã T1−→
(
Ã;

[
K1

K2

])
T2−→

(
Ã;

[
Λ1

Λ2

])
T3−→

(
L̃Ã
)�

. (45)

This mappings compute the best response of a player if the other
players use strategies described by LÃ. Sufficient conditions
for the contractivity of the mapping T = T1 ◦ T2 ◦ T3 are then
derived.

The mappings T1 and T2 are computed according to the
following equations:

K3(y) =Qf (y)

K2(y) =Q+ ÃT [Λ3 − Λ3B̃B̃TΛ3/(1 + Λ4,4
3 )]Ã

K1(y) =Q+ ÃT [Λ2 − Λ2B̃B̃TΛ2/(1 + Λ4,4
2 )]Ã

Λi(y) =

∫
y′∈D

Ki(y
′)K̄(y, dy′).

The mapping T3 is given by

(L̃Ã(i))� = − 1

1 + Λ4,4
i+1

Λi+1Ã, i = 0, 1. (46)
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Lemma 1: It holds∥∥∥∥∥∥
∫

y′∈D

(K(y′)−K ′(y′))K̄(y, dy′)

∥∥∥∥∥∥ ≤ ‖K(y)−K ′(y)‖

Proof: Immediate �
The mapping T2 is, thus, non-expansive (weakly contrac-

tive). Sufficient conditions for the contractivity of T are found
using the following technical result.

Lemma 2: If ‖A‖, ‖A′‖ < d1, ‖K‖, ‖K ′‖ < d2 and ‖A−
A′‖ < c1, ‖K −K ′‖ < c2, then it holds

‖f(A,K)− f(A′,K ′)‖ < 2(d1d2 + d1d
2
2)c1

+ d21(1 + d22 + 2d2 + c2)c2

where: f(A,K) = Q+AT [K −KB̃B̃TK/(1 +K4,4)]A.
Proof: The proof is long but straightforward. It uses

repeatedly the matrix identity XY −X ′Y ′ = (X −X ′)Y +
X ′(Y − Y ′) and the sub-multiplicative property of the matrix
norm. �

For a constant 0 < ρ < 1, a region, R̄ρ, containing 0 that
the mapping T is ρ-contractive, will be determined. Assuming
that the algorithm starts with zero gains, L̃Ã = 0, after the
application of T we have

‖(L̃Ã)�‖ ≤ β

= 2qα+ α3(q + (1 + α2)(qf + q2f ) + (q + α2(qf + q2f ))
2)

where q = ‖Q‖ and qf = ‖Qf‖. This inequality can be derived
using the sub-multiplicative property of the matrix norm. If
after a number of iterations of T , L̃Ã remains in R̄ρ, then it
holds

‖L̃Ã‖ < β/(1− ρ),

‖Ã‖ < d1 = a+ β/(1− ρ) and∥∥∥∥
[
K1

K2

]∥∥∥∥ < d2

where

d2 = 2q + d21(q + (1 + d21)(qf + q2f ) + (q + d21(qf + q2f ))
2).

The last inequality is also shown using the sub-multiplicative
property of the matrix norm.

Proposition 2: Assume that the parameters α, q, qf are such
that

4(d1d2 + d1d
2
2) + 2d21[1 + d22 + 2d2

+ 2(d1d2 + d1d
2
2)β](d1d2 + d1d

2
2) < ρ1. (47)

Furthermore, assume that ρ2 = d1 + d2 + 2d1d2 is such that

ρ = (1 + ρ1)ρ2 < 1. (48)

Then T is ρ-contractive, the Algorithm 1 converges and there
exists a MF Nash solution for the game.

Proof: We first determine a Lipschitz constant for T1.
Assuming that ‖L̃Ã − L̃

′Ã‖ < c, Lemma 2 implies

‖Λ2 − Λ′
2‖ ≤ ‖K2 −K ′

2‖ < 2(d1d2 + d1d
2
2)c

‖K1 −K ′
1‖ < 2(d1d2 + d1d

2
2)c

+ 2d21(1 + d22 + 2d2 + 2(d1d2 + d21d2)c)(d1d2 + d1d
2
2)c.

Hence, inequality (47) implies that

‖K1 −K ′
1‖+ ‖K2 −K ′

2‖ < ρ1c.

Thus, T1 has Lipschitz constant less than 1 + ρ1. Using (46)
and the sub-multiplicative property, it is straightforward to
show that T3 is ρ2—contractive. These, in combination with
the non-expansive property of T2, complete the proof. �

Remark 13: The generalization to the many steps case does
not add any further difficulties. The existence of a dynamic
coupling except the cost coupling makes the matrix A, time
varying. The generalization to the multi-dimensional case is
also immediate. However, only this special case is analyzed in
order to keep the results as simple as possible.

C. Numerical Examples

The following example illustrates the convergence of the
Algorithm 1. Furthermore, it studies the dependence of the
Nash feedback gains on the coupling of the dynamic equations
and costs of the major and minor players.

Example 2: In this example major and minor players have
scalar state equations. The minor players have time horizon 2
and the maximum possible number of minor players partic-
ipating in the game at some time step is 4. The number of
new minor players that enter the game at each instant of time
is either 1 or 2. Thus, the entrance dynamics is described
by a Markov chain with state space:

(
1
4 ,

1
4

)
,
(
1
4 ,

2
4

)
,
(
2
4 ,

1
4

)
,

and
(
2
4 ,

2
4

)
. For the states of the Markov chain, we shall use

the enumeration 1,2,3,4 respectively. The entrance dynamics is
described by the following transition matrix:

Π =

⎡
⎢⎣
0.9 0 0.1 0
0.2 0 0.8 0
0 0.3 0 0.7
0 0.8 0 0.2

⎤
⎥⎦ .

The dynamic equation of the major player is given by

xM (k + 1) = xM (k) +
c1
4

∑
i∈Ik

xi(k) + uM (k) + wM (k)

and for a minor player by

xi(k + 1)=xi(k)+
c1
4

∑
j∈Ik

xj(k)+ c1x
M (k)+ ui(k)+ wi(k)

where by c1, we denote all the coupling coefficients of the
dynamic equations. Thus, the parameters of the state equations
are given by AM =BM =A=B=1 and FM =G=F =c1.

The cost function matrices Q for the major player are
given by Q(1) = Q(2) = Q(3) = I3 and Q(4) = (1 + c2)I3.
The cost matrices Q1 for the minor players are all units, i.e.,
Q(y) = Qf (y) = I4 and R = RM = 1.
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TABLE I
GAIN MATRICES FOR THE MAJOR PLAYER, c1 = c2 = 1

Fig. 1. The dependence of the feedback gains LMM (y) on c1.

Fig. 2. The dependence of the feedback gains LMM (y) on c2.

For example, if c1= c2= 1, after 30 steps of the Algorithm 1,
the gain matrices change less than 10−15. The feedback gains
for the major player are gain in Table I.

In what follows, we study the dependence of the feedback
gains on the coupling parameters c1 and c2. Let us first consider
the case where c2 = 0 and c1 �= 0. Then, each player will in-
teract dynamically with an unknown number of minor players.
The distribution of the number of the minor players in the next
step depends on yk. Thus, the dependence of the feedback gains
on y is larger, for larger values of |c1|. The dependence of
LMM (y) for y = 1, . . . , 4 on c1 is illustrated in Fig. 1.

We next assume no dynamic coupling, i.e., c1 = 0 and
c2 �= 0. The dependence of LMM (y) for y = 1, . . . , 4 on c2 is
illustrated in Fig. 2. Again, the dependence on yk is larger, for
larger values of |c2|.

The Algorithm 1 does not always converge. For example, for
c1 = c2 = 10, the Algorithm 1 does not converge.

Finally we fix a dynamics and cost function for the par-
ticipants of the game and present the sample paths of a run.
The dynamics of the players are as before, with c1 = 1 and
the cost functions slightly different. Particularly, QM (y) = I3,
RM = 1, R = 0.75 and

Q(y) = Qf (y) =

⎡
⎢⎣

10 0 0 −10
0 0 0 0
0 0 0 0

−10 0 0 10

⎤
⎥⎦

The sample paths are shown in Fig. 3. �

Fig. 3. The sample paths of the major and minor players. The black line
corresponds to the major player. The red lines correspond to cases where there
is a second player entering at some instant of time.

The following example studies a very simple game with a
large number of minor players. It illustrates that, in certain
cases, the mean field approximation simplifies very much the
analysis of the game. For simplicity reasons, we assume that
there is no major player.

Example 3: There is only one type of minor players with
time horizon two. At each time step, each one of ν minor play-
ers tosses a fair coin and with probability 1/2 enters the game.

The dynamic equation of the minor players is given by

xi(k + 1) = xi(k) +
∑
j∈Ik

xj(k)/sc + ui(k) + wi(k).

The cost function matrices are given by Qf = 4y1I3, Q =
12yyT I3 and R = 1 (where the notation Qf , Q,R, y1, y0 is
used instead of Q1

f , Q
1, R1, y1,1, y1,0).

The scale variable has a value sc = 2ν and the approximate
description of the Markov chain when ν → ∞ is given by the
stochastic kernel

K̄((y1, y2), ·) = δ(1/4,y1)(·)

where δ is the Dirac measure.
Due to the absence of a major player the approximate

consistency conditions involve only (33)–(36). The unknown
quantities can be expressed in terms of the functions L1(y) =
L(0, 0, y), L2(y)=L(1, 0, y), L3(y)=L(0, 1, y), L4(y)=L(1,
11, y), L5(y) = L̄(0, y), and L6(y) = L̄(1, y).

Due to the special form of the stochastic kernel, the integral
equation (35) becomes

Λk+1((y1, y2)) = Kk+1(ȳ, y1)

where ȳ = 1/4. Hence, the form of the stochastic kernel implies
a decoupling in the consistency conditions. Particularly, for
ỹ = (ȳ, ȳ), the consistency conditions do not depend on the
other values of y. Writing the consistency conditions for some
y′ = (ȳ, y1), the equations depend only on L1(y

′), . . . , L6(y
′)

and L1(ỹ), . . . , L6(ỹ). Furthermore, for some y = (y1, y2), the
consistency conditions depend only on L1(y), . . . , L6(y) and
L1(y

′), . . . , L6(y
′).

This structure of the consistency conditions suggests the
following procedure: Compute the values of L1, . . . L6 on ỹ,
solving six equations with six unknowns. Then, for each y′ =
(ȳ, y1), compute the values of L1, . . . L6 on y′. Finally, for any
y = (y1, y2), compute the values of L1, . . . L6 on y, again, by
solving six equations with six unknowns involving L1, . . . L6

on y and y′.
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TABLE II
GAIN MATRICES COMPUTATION

As an example, we compute the values of the feedback gains
on y = (0.2, 0.6). The computations are shown in Table II.

It remains to show the stability of the limit system. For k ≥ 3,
it holds yk = ỹ a.s. Furthermore, it holds

AM
cl (ỹ) =

[
0 0

0.88 0.08

]
.

Thus, Corollary 1 applies, i.e., for any ε > 0 the strategies
computed constitute an ε—Nash equilibrium for large ν. �

Remark 14: Example 3 shows that when the random en-
trance is independent, the approximate consistency conditions
are decoupled. The solutions to the approximate optimal control
problems could, thus, be obtained using this special form. �

VII. CONCLUSION

Games with a major player and Randomly Entering minor
players were considered. The problem of the characterization
of Symmetric Linear Feedback Strategies that constitute a
Nash equilibrium, was converted to a set of coupled finite and
infinite horizon LQ control problems for MJLS. Appropriate
coupled Riccati type equations were derived to characterize
Nash equilibrium. The case where there exists a very large
number of minor players was addressed using a Mean Field
approach. Particularly, the evolution of the number of players
is approximately described using a Markov chain having a
continuum of states. Some limit optimal control problems were
then stated. A set of Symmetric Linear Feedback Strategies
that solves the limit optimal control problems was proved to
constitute an ε—Nash equilibrium, when the scale is suffi-
ciently large. A sufficient condition for the existence of a
Mean Field Nash equilibrium was derived using contraction
mapping ideas. Numerical examples were also presented. It
occurs that, in several cases, the Mean Field approximation
simplifies considerably the analysis.

APPENDIX

For easy reference the notation used in the paper is summa-
rized in Table III.

The rest of the Appendix contains the proof of Theorem 1
and some propositions needed to prove that result. In Section A
we recall some results from [38]about the stability of MJLS.
Section B studies the properties of a sequence of MJLS systems
when the sequence of Markov chains converges weakly to
a Feller continuous limit. The basic result of Section B is
Proposition 3, which shows that if the limit system is stable
then a tail of the sequence of systems consists of stable systems.
Section C proves that policies which are optimal for the limit
system, are ε—optimal for the tail of the sequence. The basic
results of Section C are Proposition 4 and Proposition 5, where
the result is proved for the finite and infinite horizon problems
respectively. In Section D the proof of Theorem 1 is completed.

TABLE III
NOTATION

Let us note that the results of Sections B and C, dealing
with the approximation of Markov chains in MJLS, are also
of independent interest.

A. Stability of MJLS With General State Space

Let D be a compact subset of the Euclidean space and K̄(·, ·)
a stochastic kernel on D. Consider a system in the form

xk+1 =A(yk)xk

yk+1 ∼ K̄(yk, ·). (49)

The exponential mean square stability of a system in this
form is equivalent to the fact that the spectral radius [44] of
an operator T = TA,K̄ is less than one. The operator is defined
using the quantity Pk : B(D) → R

n×n, where B(D) is the set
of the Borel subsets of D and Pk has the form

Pk(C) = E[xkx
T
k χyk∈C ]. (50)

The operator T is defined such that Pk+1(·) = T (Pk(·)).
The exponential mean square stability of a system in the form

(49) has the property to be uniform on the initial conditions.
Specifically, the exponential mean square stability of (49) is
equivalent to the existence of a constant a ∈ (0, 1) and of a
positive integer k0 such that E[xT

k0
xk0

] < axT
0 x0, for any non-

random initial conditions x0, y0. Furthermore, it is equivalent
to the existence of positive constants M and a < 1 such that
E[xT

k xk] < MakE[xT
0 x0] for any initial conditions.

Another test for the Mean Square stability is given via the
Lyapunov equation. Particularly, consider a strictly positive def-
inite, bounded matrix function Q(y). The mean square stability
of the system given by (49) is equivalent to the existence of
a strictly positive definite matrix function S(y) satisfying the
Lyapunov equation∫

y′∈D

AT (y)S(y′)A(y)K̄(y, dy′)− S(y) = −Q(y). (51)

B. Weak Convergence and Mean Square Stability

Consider a sequence of systems

xν
k+1 = A(yk)x

ν
k, yνk+1 ∼ K̄ν(yνk , ·) (52)
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and a limit system

xk+1 = A(yk)xk, yk+1 ∼ K̄(yk, ·). (53)

Assume that K̄ν → K̄ weakly, K̄ is Feller continuous and
that A(·) is a continuous matrix function. Assume also that the
limit system, given by (53), is exponentially mean square stable.
The basic topic of this section is to show that the system given
by (52) is exponentially mean square stable, for large ν.

For any a ∈ (0, 1), there exists an integer k such that

E
[
xT
k xk

]
< aE

[
xT
0 x0

]
(54)

for any x0, y0 initial conditions. Choosing x0 to be any nonran-
dom initial condition, the last inequality becomes

aI − E
[
AT (y0) . . . A

T (yk−1)A(yk−1) . . . A(y0)
]
> 0. (55)

The positive definiteness of this matrix is equivalent, due to the
Sylvester criterion, to a set of inequalities in the form

fj

⎛
⎜⎝E

⎡
⎢⎣

f̄1(y0, . . . , yk−1)
...

fn2(y0, . . . , yk−1)

⎤
⎥⎦
⎞
⎟⎠ > 0 (56)

for j = 1, . . . , n, where f̄i, i = 1, . . . , n2 correspond to the
elements of the matrix in (55) and are continuous and fj are
the multinomials derived using the Sylvester criterion.

The inverse procedure shows that the conditions in (56) imply
the mean square exponential stability of the limit system (53).

Let us then state the basic result of this section.
Proposition 3: Under the assumptions stated above, there

exists a positive integer ν0 such that r(TA,K̄ν)<1, for any ν≥ν0.
Before proving the proposition, a lemma will be stated. This

lemma illustrates a uniformity property of the weak conver-
gence. The uniformity is expressed in terms of the Bounded
Lipschitz metric ([45] section 17) which is defined by

β(P1, P2) = sup

{∣∣∣∣
∫

fdP1 −
∫

fdP2

∣∣∣∣ : ‖f‖BL ≤ 1

}

where P1, P2 are probability measures on D and ‖f‖BL =
supy∈D{f(y)}+ inf{L : f is L− Lipschitz}. The metric
β(·, ·) metrizes the weak convergence, due to the fact that D
is seperable ([45] section 17).

In order to state the lemma, let us consider the functions

Ξν ,Ξ : (D, ‖ · ‖) → (Π(Dk), β)

where Π(Dk) is the space of probability measures on Dk

and for any C ∈ B(Dk) the functions Ξν have the form
Ξν(y)(C) = Pr((z0, . . . , zk−1) ∈ C), where z0 has a distribu-
tion concentrated on y and zi+1 ∼ K̄ν(zi, ·). In the same way
the values of Ξ are defined. Thus, Ξ maps the initial condition
y0 to the distribution of (y0, . . . , yk−1).

Due to the Feller continuity of K̄, it is not difficult to show
that the function Ξ is continuous ([41]). The following lemma
illustrates a uniformity property of the convergence of Ξν to Ξ.
Particularly, it is shown that for the same initial condition yν0 =
y0 and large ν, the distribution of (yν0 , . . . , y

ν
k−1) is β—close to

(y0, . . . , yk−1), uniformly in y0.
Lemma 3: Under the assumptions stated above, for any ε >

0, there exists a positive integer ν0 such that β(Ξν(y),Ξ(y)) <
ε for any ν ≥ ν0 and any y ∈ D.

Proof: To contradict, assume that there is a positive con-
stant ε such that for any ν0 ∈ N, there exists a ν ≥ ν0 and a
y ∈ D with β(Ξν(y),Ξ(y)) > ε. Then there exist sequences
mν , ymν

such that mν ≥ ν, mν > mν−1 and β(Ξmν (ymν
),

Ξ(ymν
)) > ε. The compactness of D implies the existence

of a further subsequence ymνl
that converges to a value ȳ.

Theorem 1 of [41] implies that β(Ξmνl (ymνl
),Ξ(ȳ)) → 0.

However, the triangle inequality implies

β(Ξmνl (ymνl
),Ξ(ȳ)) ≥ β(Ξmνl (ymνl

),Ξ(ymνl
))

− β(Ξ(ymνl
),Ξ(ȳ))

> ε− β(Ξ(ymνl
),Ξ(ȳ))

The continuity of Ξ implies that β(Ξmνl (ymνl
),Ξ(ȳ)) > ε/2,

which contradicts β(Ξmνl (ymνl
),Ξ(ȳ)) → 0. �

Remark 15: If the functions Ξν are continuous for large ν,
the proof of Lemma 3 becomes trivial. �

Let us then turn back to the proof of Proposition 3.
Proof of Proposition 3: The quantities

gj(y0) = fj

⎛
⎜⎝E

⎡
⎢⎣

f̄1(y0, . . . , yk−1)
...

fn2(y0, . . . , yk−1)

⎤
⎥⎦
⎞
⎟⎠ (57)

are continuous functions of y0. Thus, due to the compactness
of D, there is a constant ε1 > 0, with gj(y) > ε1 for any
y ∈ D and any j = 1, . . . , n. The functions fj(·) are uniformly
continuous in D and thus there exists a positive constant δ1
such that fj(v1) > ε1 implies fj(v2) > 0, for any v2 ∈ Dk

with ‖v1 − v2‖ < δ1 and any j = 1, . . . , n.
Choose y0 = yν0 . The entries of the functions fj , i.e.,

E[f̄i(y
ν
0 , . . . , y

ν
k−1)] and E[f̄i(y0, . . . , yk−1)], i = 1, . . . , n2

can be written in the form∫
f̄i(w) (Ξ(y0)) (dw) and

∫
f̄i(w) (Ξ

ν(y0)) (dw).

We claim that:
Claim 1: For large ν, it holds∣∣∣∣
∫

f̄i(w) (Ξ(y0)) (dw)−
∫

f̄i(w) (Ξ
ν(y0)) (dw)

∣∣∣∣ < δ1/n
2

for any y0 ∈ D and any i = 1, . . . , n2.
In order to prove the Claim 1, recall that any uniformly

continuous function may be approximated by a Lipschitz
one. Let f̄ ′

i : D → R, i = 1, . . . , n2 be Lipschitz functions
such that ‖f̄ ′

i − f̄i‖ < δ1/(4n
2). Denote by L̄ the maxi-

mum bounded Lipschitz norm of the functions f̄ ′
i, i.e., L̄ =

maxi=1,...,n2 ‖f̄ ′
i‖BL. Hence∣∣∣∣

∫
f̄i(w) (Ξ(y0)) (dw)−

∫
f̄i(w) (Ξ

ν(y0)) (dw)

∣∣∣∣
≤
∫ ∣∣f̄i(w)− f̄ ′

i(w)
∣∣ (Ξ(y0) + Ξν(y0))(dw)

+

∣∣∣∣
∫

f̄ ′
i(w)(Ξ(y0))(dw)−

∫
f̄ ′
i(w)(Ξ

ν(y0))(dw)

∣∣∣∣ .
The first term is bounded by δ1/(2n

2), due to the fact that
Ξ(y0)(·) and Ξν(y0)(·) are probability measures. To bound
the second term, let us observe that Lemma 3 implies the
existence of a positive integer ν0 such that β (Ξν(y0),Ξ(y0))<
δ1/(2n

2L̄), for any ν≥ν0. This completes the proof of Claim 1.
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Therefore, for ν ≥ ν0 it holds

fj

⎛
⎜⎝E

⎡
⎢⎣

f̄1
(
yν0 , . . . , y

ν
k−1

)
...

fn2

(
yν0 , . . . , y

ν
k−1

)
⎤
⎥⎦
⎞
⎟⎠ > 0

for any yν0 ∈ D and j = 1, . . . , n. Hence

E
[
(xν

k)
T xν

k|xν
0 , y

ν
0

]
< a (xν

0)
T xν

0 .

Integrating over the distribution of xν
0 , y

ν
0 , we conclude

E
[
(xν

k)
T xν

k

]
< aE

[
(xν

0)
T xν

0

]
(58)

for any initial condition and any ν ≥ ν0, which completes the
proof of the proposition. �

Let us then state a corollary of the Proposition 3, dealing
with systems having also additive stochastic disturbance. Par-
ticularly, consider the systems given by

xν
k+1 = A (yνk)x

ν
k + wν

k , yνk+1 ∼ K̄ν (yνk , ·) (59)

and

xk+1 = A(yk)xk + wk, yk+1 ∼ K̄(yk, ·) (60)

where wν
k and wk are zero mean i.i.d. random variables with

finite variances.
Corollary 2: Consider the systems described by (59) and

(60). Assume that K̄ν → K̄ weakly and that K̄ is Feller
continuous. Let a < 1 and assume that T = TA,K̄ has spectral
radius less than 1/a. Then for any ε > 0, there exist positive
integers k0, ν0 such that

E

[ ∞∑
k=k0

ak (xν
k)

T xν
k

]
≤ ε

(
1 + E

[
(xν

0)
T xν

0

])
(61)

E

[ ∞∑
k=k0

akxT
k xk

]
≤ ε

(
1 + E

[
xT
0 x0

])
(62)

for any ν ≥ ν0.
Proof: The proof is straightforward and uses equation

(50), as well as the bound (58) and techniques form [38]. �

C. Weak Convergence and ε—Optimality

In what follows, we assume that K̄ν → K̄ weakly, K̄ is
Feller continuous and the functions Aν(y, k), A(y, k), A(y) are
continuous on their y argument. Let us then introduce some
notation, needed in order to state the basic results.

Notation: Consider the system given by

xk+1 = A′(yk, k)xk +B(yk)uk + wk, yk+1 ∼ K̄ ′(yk, ·)

and the feedback control law uk=Lk(yk)xk. Then, we denote by

JK̄′,k0,A′,uk=Lk(yk)xk
(x0, y0) = E

[
xT
k0+1Qk0+1xk0+1

+

k0∑
k=0

akxT
k

[
LT
k (yk)R(yk)Lk(yk) +Q(yk)

]
xk

]

and J�
K̄′,k0,A′(x0, y0) the optimal value, where K ′ can take

the values K̄ or K̄ν and the time horizon is allowed to take
the infinity value. We use the notation JK̄′,k0,uk=Lk(yk)xk

and
J�
K̄′,k0

(x0, y0) for A′(yk, k) = A(yk). �
The basic topic of this section is the proof of the following

two propositions about the ε—optimality in the finite and
infinite horizon LQ control problems respectively.

Proposition 4: Assume that Aν(yk, k) → A(yk, k) as ν →
∞. Let us denote by uk = Lk(yk)xk the optimal control law
that attains the minimum J�

K̄,A(yk,k),k0
. Then for any ε > 0

there exists a positive integer ν0 such that

JK̄ν ,k0,Aν(yk,k),uk=Lk(yk)xk
(x0, y0) ≤ J�

K̄ν ,k0,A(yk,k)

+ ε
(
1 + xT

0 x0

)
(63)

for any ν ≥ ν0. �
Proposition 5: Let us denote by uk = L(yk)xk the feedback

strategy that attains the minimum J�
K̄,∞. Then, for any ε > 0

there exists a positive integer ν0 such that

JK̄ν ,∞,uk=L(yk)xk
(x0, y0) ≤ J�

K̄ν ,∞ + ε
(
1 + xT

0 x0

)
(64)

for any ν ≥ ν0. �
The proof of the Propositions 4 and 5 depends on the follow-

ing lemmas.
Lemma 4: Consider a feedback control law uk = Lk(yk)

which is continuous in yk. Then for any ε > 0, there exists a
positive integer ν0 such that∣∣JK̄,k0,uk=Lk(yk)xk

(x0, y0)− JK̄ν ,k0,uk=Lk(yk)xk
(x0, y0)

∣∣
< ε(1 + xT

0 x0)

for any ν ≥ ν0.
Proof: The proof is a direct consequence of the properties

of the weak convergence [41]. �
Lemma 5: Let fν : D → R be a sequence of continuous

functions and f their pointwise limit. Then, it holds∫
D

fν(y
′)K̄ν(y, dy′) →

∫
D

f(y′)K̄(y, dy′)

as ν → ∞.
Proof: The proof is a direct consequence of the compact-

ness of D and the properties of the weak convergence. �
Lemma 6: For any ε > 0, there exists a positive integer ν0

such that∣∣∣J�
K̄,k0

(x0, y0)− J�
K̄ν ,k0,

(x0, y0)
∣∣∣ < ε

(
1 + xT

0 x0

)
for any ν ≥ ν0.

Proof: The proof proceeds backwards in time from the
step k0 to 0. At each step the Dynamic programming equations,
as well as the Lemma 5 are used. �

We then proceed to the proof of the basic results of the
current section.

Proof of Proposition 4: Lemma 4 implies the existence of
a positive integer ν01 such that

JK̄nu,k0,uk=Lk(yk)xk
(x0, y0)

< JK̄,k0,uk=Lk(yk)xk
(x0, y0) + ε(1 + xT

0 x0)

= J�
K̄,k0

(x0, y0) + ε(1 + xT
0 x0) (65)
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for any ν ≥ ν01. On the other hand, Lemma 6 implies the
existence of a positive integer ν02 such that

J�
K̄,k0

(x0, y0) < J�
K̄ν ,k0

(x0, y0) + ε
(
1 + xT

0 x0

)
(66)

for any ν ≥ ν02. Inequalities (65) and (65) imply the desired
result for ν0 = max{ν01, ν02}. �

Proof of Proposition 5: In order to complete the proof, the
following series of comparisons is made:
JK̄ν ,∞,uk=L(yk)xk

, JK̄ν ,k0,uk=L(yk)xk
, JK̄,k0,uk=L(yk)xk

,
J�
K̄,∞, J�

K̄,k′
0
, J�

K̄ν ,k′
0
, J�

K̄ν ,∞.

Particularly, each of these quantities is compared to the next
one. It is shown that each of these quantities is at most slightly
larger than the next.

At first let us compare JK̄ν ,∞,uk=L(yk)xk
with

JK̄ν ,k0,uk=L(yk)xk
. Corollary 2 implies that for any ε > 0

there exist integers k0 and ν01 such that

JK̄ν ,∞,uk=L(yk)xk
(x0, y0)

≤ JK̄ν ,k0,uk=L(yk)xk

(
x0, y0) + ε(1 + xT

0 x0

)
/4

for any ν ≥ ν01.
Lemma 4 implies the existence of a positive integer ν02 such

that

JK̄ν ,k0,uk=L(yk)xk
(x0, y0)

≤ JK̄,k0,uk=L(yk)xk
(x0, y0) + ε

(
1 + xT

0 x0

)
/4

for any ν ≥ ν02, which serves as the second comparison.
Comparison three holds as an inequality, i.e.,

JK̄,k0,uk=L(yk)xk
(x0, y0) ≤ J�

K̄,∞(x0, y0).

To derive an inequality for the fourth comparison, let us
observe that Kk → K and ck → c uniformly as k → ∞, where
Kk,K, ck and c are as in Proposition 3 and Theorem 2 of
[38]. It also holds J�

K̄,k
= xT

0 Kk(y0)x0 + ck and J�
K̄,∞ =

xT
0 K(y0)x0 + c. Thus, for any ε > 0, there exists a positive

integer k′0 such that

JK̄,∞(x0, y0) ≤ J�
K̄,k′

0
(x0, y0) + ε

(
1 + xT

0 x0

)
/4.

Lemma 6 implies the existence of a positive integer ν03 such
that

JK̄,k′
0
(x0, y0) ≤ J�

K̄ν ,k′
0
(x0, y0) + ε

(
1 + xT

0 x0

)
/4

for any ν ≥ ν03. This inequality shows the fifth comparison.
The last comparison holds as an inequality, i.e.,

J�
K̄ν ,k′

0
(x0, y0) ≤ J�

K̄ν ,∞(x0, y0).

Hence, choosing ν0 = max{ν01, ν02, ν03} the desired result
is shown. �

D. Proof of Theorem 1

The proof is a direct consequence of the Propositions 4 and
5 and the continuity of the functions involved.
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