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On Stability and LQ Control of MJLS With a Markov
Chain With General State Space

Ioannis Kordonis and George P. Papavassilopoulos

Abstract—We study the mean square stability and the LQ control of dis-
crete time Markov Jump Linear Systems where the Markov chain has a
general state space. The mean square stability is characterized by the spec-
tral radius of an operator describing the evolution of the second moment
of the state vector. Two equivalent tests for the mean square stability are
obtained based on the existence of a positive definite solution to a Lyapunov
equation and a uniformity result respectively. An algorithm for testing the
mean square stability is also developed based on the uniformity result. The
finite and infinite horizon LQ problems are considered and their solutions
are characterized by appropriate Riccati integral equations. An applica-
tion to Networked Control Systems (NCS) is finally presented and a simple
example is studied via simulation.

Index Terms—Markov jump linear systems, stochastic optimal control,
stochastic stability.

I. INTRODUCTION

MARKOV jump linear systems (MJLS) are linear dynamic models
where the matrices describing the evolution of the state vector, depend
on the state of a Markov chain. The existing results on the stability and
LQ control of MJLS are dealing with Markov chains having a discrete
state space, i.e., finite or countably infinite. However, in several appli-
cations, the natural choice for the state space of the Markov chain is
not discrete. Some examples of Markov chains with continuous state
space are given in [1, Ch. 1 and 2]. In this technical note, we extend the
stability analysis and the LQ control of discrete time MJLS to a more
general state space Markov chain case, including the continuous state
space case.
An example of such applications is the study of systems with de-

pendent random communication delays, such as Networked Control
Systems [2], [3]. The amount of time delay stands for the state vari-
able of the Markov chain. A natural choice for the Markov chain state
space is an uncountable subset of the real numbers, such as a closed
interval. Another example could be a dynamic linear economic model,
having coefficients depending on the price of some asset traded in a
stock market. The price of a stock market is usually modeled as a geo-
metric Brownian motion [4]. The state space of this Markov chain, is
the positive real numbers. Examples of MJLS with continuous state
space also arise in the study of gain scheduling control of nonlinear
systems with a Markovian desired trajectory or a Markovian measur-
able disturbance. More generally, several systems have been modeled
as linear uncertain systems, where the matrices describing the evolu-
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tion of the state vector, belong to a compact polyhedron [5]. Assuming
that there exists a Markovian model for the uncertainty, design prob-
lems involving MJLS with continuous state space Markov chain will
be obtained and will lead to less conservative stability conditions. An-
other example, which also motivates the current work, comes from the
optimal control problems, arising in the mean field approximation of
LQ games involving a large number of randomly entering players [6],
where the players are considered to belong to a continuum.
The first work studying the mean square stability of MJLS with fi-

nite state space Markov chain was [7]. Other contributions include [8]
where the stochastic additive case was studied and [9]–[11] where nec-
essary and sufficient conditions involving Lyapunov equations were
derived. The mean square stability for MJLS with a countably infinite
Markov chain was studied in [12], using an operator theoretic point of
view. Some problems related to the mean square stability ofMJLSwith
general state space were studied in [13], [14] under some ergodicity
assumptions. The relation among several notions of stochastic stability
for MJLS was studied in [11].
The first work studying LQ control problems related to MJLS was

in a continuous time setting [15]. A lot of work has been done on the
Linear Quadratic control of the discrete time MJLS as well. The finite
horizon LQ control problem for the finite state space Markov chain
case was solved in [16] and its infinite horizon counterpart in [17]. The
existence of a solution was first studied using controllability notions in
[18] and testable conditions were derived in [9]. A related work with
infinite horizon ergodic criterion and safety constraints is [19]. Filtering
problems for MJLS are studied in [20] and a review of several results
is given in the books [21] and [22]. The LQ control problem, for a
system involving a Markov chain with countably infinite state space
was studied in [12].
The contribution of this work is twofold. The first part, is the study

of the mean square stability of MJLS when the Markov chain has a
general state space. The mean square exponential stability notion is
characterized by the spectral radius of a certain operator. Then, testable
equivalent conditions are derived based on the operator theoretic result.
The second part of the contribution of this work is the extension of
the solution of finite and infinite horizon LQ problems to MJLS with
general state space. The basic difference between the current work and
the literature is that the techniques applied for the stability analysis of
MJLS with discrete state space could, not be directly extended to the
continuous or general state space. In a comparison to older results, a
more general class of models could be analyzed. Examples of models
of Markov chains with general state spaces could be found in [1]
The technical note uses the following notation. The probability is

denoted by and the expectation by . The value of theMarkov
chain is denoted by and its state space is the metric space . Denote
by the -algebra of Borelian subsets of . The evolution is
described by the notion of stochastic kernel, i.e., a function

such that .
A matrix function will be called strictly positive
definite, if there exists a positive constant such that , for
any . Finally, the spectral radius of an operator is denoted
by .

II. PROBLEM DESCRIPTION

The system under consideration is the following:

(1)

where is the state vector, is the control input,
and are Borel measurable, bounded matrix functions of appro-
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priate dimensions and are zero mean i.i.d. random variables with
finite second moments.
Two types of problems are considered. The first type is the stability

problem and it is stated as follows:
Stability problem: “Under which conditions the free system

(2)

is stable”. The notions of stochastic stability that we study in the current
work are given in the following definition.
Definition 1: The system given by (2) is:
(i) Mean square stable, if for any random
variables, such that .

(ii) Mean square exponentially stable, if for any random vari-
ables, such that , there exist constants
and such that it holds , for any positive
integer .

(iii) Stochastically mean square stable, if for any random vari-
ables, such that , it holds .

The second type of problems considered is the LQ control problems.
These problems are stated in a finite or an infinite horizon setting as
follows:
Finite Horizon LQ Control Problem: “Find the control law

, that minimizes the LQ criterion

(3)

Infinite Horizon LQ Control Problem: “Find the control law
(if any), that minimizes the LQ criterion:

(4)

The standard assumptions are made on the matrices involved in the
cost functions. More specifically, we assume that and are posi-
tive semidefinite, bounded matrix functions and and are strictly
positive definite bounded matrix functions. For the discount factor it
holds .

III. STABILITY ANALYSIS

In order to examine the mean square stability of a system in the form
(2), let us introduce the following quantity:

(5)

for any Borelian subset of . For any , is a set function
. It will be shown that is a symmetric

matrix of signed measures.
The stability analysis is based on the evolution of the quantity .

Thus, we introduce the space in which belongs. Denote by the
space of signed measures on and by the total variation
norm. Then, the space of symmetric matrices of signed measures is
defined as . Let us introduce on , the norm ,
where , i.e., the sum of total variations.
With this norm, becomes a Banach space.
The evolution of is described using a linear operator

. It will be shown that has the form

(6)

where is the element of and the formulae for the matrices
are given in the proof of Theorem 1. The stability properties

for a system in the form (2) depend on the spectral radius ([23])
of the operator as, shown in the following theorem.
Theorem 1: The quantity is a symmetric matrix of signed

measures and its evolution is given by (6). Furthermore, the following
hold:
(i) The system is mean square exponentially stable if .
(ii) If then the system is not mean square stable.
(iii) The system is mean square stochastically stable if and only if

.
(iv) The system is mean square exponentially stable then .

Proof: See Appendix.
The conditions of Theorem 1 involve the spectral radius of an infinite

dimensional operator and thus, they are not easy to check. Based on
Theorem 1, we are going to study further properties of exponentially
stable systems that will allow us to obtain conditions that are easier to
check.
The next proposition studies the uniformity of the exponential mean

square stability on the initial conditions. Particularly, it is shown that
in an exponential mean square stabile system, is going to be
small in a finite number of steps irrespectively of the initial condition
. It is also shown that the converse is true.
Proposition 1: The following are equivalent:
(i) The system is exponentially mean square stable.
(ii) There exist a positive constant and such that

for any random variables.
(iii) There exist an and a positive integer such that

, for any non-random initial condi-
tions.
Proof: See Appendix.

Condition (ii) of Proposition 1 has a stronger formulation than the
definition of the mean square exponential stability, because the con-
stants and are independent of the initial conditions, i.e., the ex-
ponential convergence to 0 is uniform on the initial conditions. Part
(iii) of Proposition 1 shows that the mean square exponential stability
is equivalent to the fact that the function is a “ -step
Lyapunov function” for (2). Furthermore, Proposition 1, shows that a
system which is not mean square exponentially stable could not be uni-
formly mean square stable.
This result also leads to a computational test for mean square expo-

nential stability. The following Algorithm uses recursive computations
to decide if , for any non-random initial con-
ditions.
Algorithm 1: Stability Test
S1 Set and .
S2 Set .
S3 Compute:

(7)

S4 If for any then return “The system is
exponentially mean square stable” and halt.
S5 Set
S6 If then halt. Else go to Step 2.

Formula (7), computes recursively the matrix
and thus Algorithm 1,

is valid due to Proposition 1 (iii).
An alternative way to deal with the stability problem is to study

the system using “one step quadratic Lyapunov functions” of the form
. In Proposition 2 the exponential mean square

stability is proved to be equivalent to the existence of a positive definite
solution to a Lyapunov equation.
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Proposition 2: Consider a strictly positive definite matrix function
. The following are equivalent:

(i) The system is exponentially mean square stable
(ii) There exists a bounded, strictly positive definite matrix function

that satisfies the Lyapunov equation:

(8)

Proof: See the Appendix.
Let us note that if the stochastic kernel is continuous, i.e., it could be

described using densities, the Lyapunov equation (8) becomes a linear
vector integral equation of Fredholm type. Thus, in several cases(8)
could be solved numerically.
Remark 1: The techniques applied to study themean square stability

of MJLS with discrete state space, could not be applied to a MJLS
with general state space. More precisely, the quantity involved in the
stability analysis of MJLS with discrete state space is, in several cases,
identically zero when applied to MJLS with general state space. Thus,
it is not appropriate for stability analysis.
Another interesting notion is stabilizability, i.e., the existence of a

stabilizing control law. It refers to a system under control in the form:

(9)

Let us define stabilizability:
Definition 2: The system under control (9) is stabilizable, if there

exists a bounded matrix function such that the closed-loop system
given by:

(10)

is mean square exponentially stable. In this case, the pair
will be called stabilizable.

IV. OPTIMAL CONTROL PROBLEMS

At first, the finite horizon linear quadratic control problem is studied.
The system under control is slightlymore general than the system given
by (1)

(11)

i.e., time varying matrices and B are allowed. The problem under
consideration is to find a control law that minimizes
the cost function given by (3). The solution to the finite horizon linear
quadratic control problem is given recursively by the following equa-
tions:

(12)

(13)

(14)

(15)

(16)

Proposition 3: Consider the system given by (11) and the cost cri-
terion (3). Then, the control law computed recursively using the equa-
tions (12)–(16) is optimal.

Proof: Application of dynamic programming.
Let us now study the infinite horizon linear quadratic control

problem, i.e., minimize (4) subject to (1). The solution of this problem
depends on the following Riccati integral equation:

(17)

where

(18)

The following Theorem 2 characterizes the optimal control policy
in terms of the solution of the Riccati equation (17). Before stating
Theorem 2, let us denote by the value of the cost function (4)
when and , . Let us also denote by

, the optimal value of the cost function (4).
Theorem 2: Consider the system given by equation (1) and the cost

function (4). Then:
(i) Assume that there exists a policy that makes the criterion (4),
finite i.e., for any . Then, optimal cost has the
form , where satisfies the
Riccati equation (17). Furthermore, the optimal control is given
by

(19)

(ii) Conversely, assume that a bounded function satisfies the
Riccati equation (17). Assume that the undisturbed closed-loop
system given by:

(20)

is mean square exponentially stable. Then the policy given by
(19) is optimal.
Proof: The proof shares many ideas with [21] or [12]. The

basic difference is the proof of the finiteness of the cost when the
controller given by (19) is used. That proof uses essentially the results
of Section III. The differences are, however, of a technical character
and thus the detailed proof is omitted.
Theorem 2 characterizes the optimal control law when .

However, (17)–(19) provide also the optimal controller when
and .
Remark 2:
(i) The existence of a policy that makes finite for any ,

, is equivalent to the stabilizability of the pair
(ii) Equation (17), is a new form of Riccati equation. Specifically, it

is a nonlinear vector integral equation. The solution of equation
(17) could be approximated using the value iteration method (ex.
[24]).

(iii) If the matrices , , , are continuous and the
stochastic kernel is strongly Feller [1], then any solution of (17)
is continuous.
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Fig. 1. Networked Control System.

Fig. 2. Gains and .

V. AN APPLICATION

In this section, we study a simple example of application of MJLS
with general state space Markov chain on systems with random delays.
Examples of such systems include Networked Control Systems (NCS)
(ex. [2], [3], [25] and [26]) and distributed optimization algorithms (ex.
[8]). Particularly, we study a simple model of NCS with dependent
delays. Furthermore, a simple numerical example is given, illustrating
the solvability of the equations derived in Sections III and IV.
Consider a NCS as in Fig. 1 ([26] or [25]). The continuous time

plant is controlled by a controller . The sampler works at a
constant rate and the time intervals among the sampling times have
length . The information is transmitted from the sampler to the con-
troller through a communication channel, which introduces a random
delay. Let us denote the delay of the transmission of the -th mea-
surement as . In order to keep the model as simple as possible, we
consider time delays only from the sampler to controller and we as-
sume that the time delay introduced by the channel, is less than the
sampling time, i.e., . A Markovian model for the time
delay is introduced, i.e., there exists a stochastic kernel such
that . Finally, assume that the
zero order hold is event triggered, i.e., it holds the old value of the
control until the new value comes.
The system under control , is linear and its equation is given by

(21)

We will study the discretization of the system (21) on the time steps
, for . Let us, thus, define and

, i.e., the control value obtained using the mea-
surement of . The system (21) has an input , on the
time interval and on the interval

. Thus, in order to describe the evolution

Fig. 3. Several sample paths of the closed-loop system.

of , we use the augmented state vector . The evolu-
tion of is given by

(22)

where

(23)

Thus, the problem is reduced to the design of a controller for the MJLS
(22) and the techniques of Sections III and IV could be applied. In the
following example, a controller is designed for a simple system under
control .
1) Example 1: Consider the plant described by

Assume that , the maximum delay is 0.5 and the stochastic kernel
is described using the density function

if
if
if

i.e., . The matrices of the discretized system
(22) are given by

A LQ control law is designed. The matrices describing the quadratic
criterion (2) are given by and . For
the matrix functions and , the Riccati integral
equation (17) is solved using the value iteration method [24]. The com-
ponents of the gain vector are plotted in
Fig. 2.
The closed-loop system is simulated and several sample paths are

presented in Fig. 3.
Remark 3:
(i) Example 1 was considered, in order to illustrate that equations
of Section IV could be used to design LQ control laws for NCS
with dependent time delays described by a Markov chain with
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continuous state space. We would like also to point out that this
model for the delays is more general than the models used in the
literature.

(ii) The model used is as simple as possible. Thus, it can be gener-
alized in several directions. For example the hypothesis
could be dropped, a time delay from the controller to the ZOH
can be considered or packet losses could be studied.

VI. CONCLUSION

The class of MJLS with general state space was studied. The mean
square exponential stability is characterized by the spectral radius of an
infinite dimensional operator and proved to be uniform. An algorithm
for testing stability was derived based on the uniformity result. The
mean square exponential stability is also proved to be equivalent to the
existence of a positive definite solution of a vector integral equation of
Fredholdm type: the Lyapunov integral equation. The solution to the
LQ control problem is characterized by a Riccati integral equation. The
results derived, were used to design a controller to NCSwith dependent
random delays. The model of the random delays is more general than
those used in the literature.

APPENDIX

Proof of Theorem 1: Let us first show that is a matrix of signed
measures. It holds . In order to show that each element of the
matrix is a signed measure, it suffices to show -additivity. For a
sequence of disjoint sets , -additivity could be shown using
the functions with

and dominated convergence theorem.
In order to derive the formula for , we make the following compu-

tations:

where, is a version of and is the distri-
bution of . Let and be the elements of
and respectively. Let also be functions such that

. Thus, since
is the Radon—Nikodym derivative , it holds:

which completes the proof of (6).
Assuming that spectral formula implies

exponentially. Thus, the inequality completes the
proof of (i).
To prove (ii) let us assume that . Then there exists an

initial value such that as . Let , be the
Hahn decomposition of . Without loss of generality
as . It is not difficult to show that there exist random
variables such that . The proof of (ii) is
completed using the following fact:

Fact 1: It holds:

To prove (iii) let us observe that the “only if” part of (iii) is a direct
consequence of [27] Lemma 1 and the “if part” is a consequence of (i).
The proof of (iv) follows directly from (iii).
Proof of Proposition 1: We first show that (i) implies (ii). Using

Fact 1, it is not difficult to show that .

The spectral formula implies that there exist an integer and a positive
constant such that . Thus, using Euclidian division of
by , we conclude to the desired result:

with and .
The fact that (ii) implies (iii), is obvious.
It remains to show that (iii) implies (i). Let us introduce the following

quantities:

i,e, the expectation of the product of matrices. It could be shown
inductively that . Let be a positive integer such that

. Then for every , random variables it holds:
and using Fact 1 we obtain:

Thus, which completes the proof.
Proof of Proposition 2: We first show that (i) implies (ii). Let us

consider a sequence of matrix functions given by:

and their limit . The matrix function
is bounded, thus there exists a positive constant such that .
It holds:

where and satisfy the Proposition 1 (ii). Thus is bounded.
Furthermore, it holds:

Taking limits, we conclude to (8).
It remains to show that (ii) implies (i). Following the same steps as

[9, Theorem 2.1], we conclude that:

where and are positive constants such that
and

Thus Proposition 1 (iii) completes the proof.
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Formation Control and Network Localization
via Orientation Alignment

Kwang-Kyo Oh, Member, IEEE, and Hyo-Sung Ahn, Member, IEEE

Abstract—We propose a formation control strategy based on inter-agent
displacements for single-integrator modeled agents in the plane. Since the
orientations of the local reference frames of the agents are not aligned with
each other due to the absence of a common sense of orientation, the pro-
posed strategy consists of an orientation alignment law and a formation
control law. Under the proposed strategy, if the interaction graph is uni-
formly connected and all the initial orientation angles belong to an interval
with length less than , the orientations are exponentially aligned and the
formation exponentially converges to the desired formation. We also show
that the proposed strategy can be utilized for network localization as a dual
problem.

Index Terms—Formation control, orientation alignment, single-inte-
grator.

I. INTRODUCTION

Formation control of mobile agents based on local and partial mea-
surements has recently attracted a considerable amount of research in-
terest. In the literature, one may find two dominant formation control
problem formulations, which might be called displacement- and dis-
tance-based approaches, depending on whether a common sense of ori-
entation is available to agents.
In displacement-based approaches [1]–[3], based on a common

sense of orientation, agents measure the relative positions (dis-
placements) of their neighbors with respect to a common reference
frame as depicted in Fig. 1(a). Then the agents directly control the
relative positions to control their formation. It has been known that
consensus-based control laws ensure global asymptotic convergence
of the formation to the desired formation [1]–[3].
In distance-based approaches [4]–[6], agents measure the relative

positions of their neighbors only with respect to their own local refer-
ence frames whose orientations are not necessarily aligned with each
other due to the absence of a common sense of orientation. Since the
orientations of the local reference frames are not aligned as depicted
in Fig. 1(b), the desired formation cannot be specified by desired rela-
tive positions in general, and thus the agents cannot control the relative
positions directly. Rather than the relative positions, the agents adjust
the norms of the relative positions to control their formation. Though
distance and angle measurements are available to the agents, formation
control problems are complicated in these approaches because of mis-
aligned orientations [4]–[6].
Though displacement-based approaches are effective in the sense

that global asymptotic convergence is ensured, they require agents to
carry some direction sensor such as a compass. While distance-based
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