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INTRODUCTION   
 

The reduction of energy cost, as well as the restriction of the continuously increasing need of energy, constitute 
an important issue. Greece facing problems of overloading the energy distribution network, particularly during the 
summer months, has increased the effort for an optimal management of consumption and distribution. The critical 
situation of the management of water resources is intensified by the ineffective decisions, lack of planning and 
programming, the under-estimation of problems of water quality and quantity, and the delay of facing the 
environmental factors. In the area of Chania, as in the majority of provincial cities of Greece, the water needs are 
satisfied through an interlinked network of drillings, pumps and water tanks. The distribution of water into the tanks 
and in the final consumption takes place via a network of electrical pumps.  

Our objective is the development of an energy management software, operates the pumps taking into 
consideration the optimisation of the energy cost at the Public Power Corporation of Greece (PPC) and the total 
energy consumption, based on the safety level limits of the tanks, the frequency of restarting the pumps and t he 
profile of demand of energy and water.   
 
The basic characteristic of the proposed solution is the application of optimal control methods. The basic method of 
operation should finally materialise itself without the necessity of frequent human intervention.   
In this paper we formulate the problem as a dynamic problem in discrete time, linear as regards the state and the 
control, with linear constrains on the state and control values. The cost is nonlinear in the case we examine. This 
not-linearity is due to the way of pricing of the Public Power Corporation of Greece (PPC), that associates the cost 
with the maximum value in time of the consumed energy, aiming at the standardisation of the requirements of 
consumers and the restrictions of demand peaks. Using a simple transformation we change equivalently the cost 
from nonlinear to linear with increased dimensions and thus we can resolve the problem using linear programming. 
This aims at avoiding the use of complicated not linear or stochastic optimisation methods[see 5]. This model is 
applied to various cases of requirements and finds the optimal solutions. Related work dealing with regulation of 
water pump systems has also been reported in references 1-5. 
The model is easy to extend to implement more general cases with more pumps and other possible restrictions. 
 
Knowledge area:  Energy Management of Aquatic Resources – Optimal Control  
 
Words keys:  energy optimisation, management of aquatic resources, optimal control, linear and nonlinear 
optimisation, cost function,.   
 
 
EQUIVALENT PROBLEM DESCRIPTION AS A PROBLEM OF LINEAR OPTIMAL PROBLEM  
 
The state equation of our problem is: 
xk+1 = a * xk + b *uk                          k = 0,1,2,…..N                                                                                          (1) 
The equation that describes the functional cost, that is to be minimised is: 

( ,... )o NJ f u u=                                                                                                                                                 (2) 
Subject to the restrictions:  
ck *uk + dk *uk ≤ dk                           (3)      
a, b, c, d are constant matrices with specific dimensions and ,k kc d vectors. x is the state ,u is the control and are 
vectors. 
The cost function can be linear  (see equation 8) or nonlinear (see equation 12), depending on the method we use to 
calculate the charge which we have to pay at the Public Power Corporation of Greece (PPC). This problem can be 
solved by using the Minimum Principle of Pontryagin for systems of discrete time or dynamic programming (see 
reference 6,8).   
If the time duration N is short, then we can handle the problem directly by transforming it directly to a linear or 
nonlinear programme with faster and more direct results. This method is the one we use in our paper. 
 
 
 



PRESENTATION OF OUR CASE STUDY  
 
Visiting the area of Chania and collecting information from the installed SCADA system at the area we draw the 
network. By some simplifications of the network, we consider the existence of tanks of big quantity of water only in 
the areas:  

• Ag.Iwannis 
• Vante 
• Agyia 

The rest of the areas are presented only as consumptions that they consume quantities of water depending on the  
demands. The water paths in the network are shown at the Figure 1. 
 

 
 

Figure 1 
 
The examined system of Figure 1 is constituted by 3 tanks.The one at Vante will be symbolized as W, the  one at 
Ag.Iwannis as  V  and the tank at Agyia as  Q. The sampling of water level will be every L hours. The transfer 
water rate ( 3 /m h ) to a water tank is symbolised as A1,A2… Ai ,where “i” is the number of the water paths (see 
Figure 1). There is always a water pump between  any two tanks and in general there is always a pump between the 
arrival ant departure of a water link. On theses pumps there are switches that are symbolized as 
DΑ1κ ,DΑ2κ ,DΑ3κ .......DΑiκ . We denote with L the hours between two checks and we denote k (k=24/L) the time 
levels when the sampling occurs. 
 
PARAMETRIZATION – MODELING OF THE SYSTEM 
 
The quantity of water (m3

) in each tank is denoted as  , ,k k kW V Q , It holds: 

 

WK +1 =WK + L * A7 *DA7K ! L * A8 *DA8K ! L * A4 *DA4K
VK +1 = VK + L * A4 *DA4K + L * A3*DA3K ! L * A2 *DA2K ! L * A1*DA1K
QK +1 = QK + L * A2 *DA2K + L * A8 *DA8K + L * A9 *DA9K + L * A6 *DA6K !
!L * A7 *DA87K ! L * A5 *DA5K ! L * A3*DA3K                                      (4) 

 
These are the state - equations describing the evolution of the state ( , ,k k kW V Q ) of the system.  
At our system the tank water supplies Ak are fixed and there are 9 supplies: A1 – A9 and at different time levels 
there different quantities of water in each tank. 
The tanks have initial quantity of water:  Wo,Vo,Qo  respectively.  
Also according to the geometrical specifications of the tanks and the demand profile of each area, there is a 
minimum and a maximum limit of water in each tank. 
Thus, it has to hold: 
 
 
 



         

Wmin !W1,W2 ,W3,W4 !Wmax

Vmin !V1,V2 ,V3,V4 !Vmax
Qmin !Q1,Q2 ,Q3,Q4 !Qmax                                                                                                                    (5) 

 
The basic target of our paper is the determination of the variables D ij (D ij: pump switch of water path i at period 
time j). We consider that these variables are analog, and their value is between 0-1 depending of the necessity for 
power of each pump.  
In our study we consider the cost of electricity R(euro/KWh) is a constant. 
According to the Figure 1 the analytic parametric equations of the three tanks are: 
WK +1 =WK + L * A7 *DA7K ! L * A8 *DA8K ! L * A4 *DA4K
VK +1 = VK + L * A4 *DA4K + L * A3*DA3K ! L * A2 *DA2K ! L * A1*DA1K
QK +1 = QK + L * A2 *DA2K + L * A8 *DA8K + L * A9 *DA9K + L * A6 *DA6K !
!L * A7 *DA87K ! L * A5 *DA5K ! L * A3*DA3K  

(6a) 
(6b) 

         (6) 
(6c)        
 

where  
! t: time sampling rate 
! Dij: power switch of the pumps (0-1) 
! Ak: tank water supplies 
! k: time levels 

 
As we have mentioned our control variables are the switches DAij and we use the notation Xi(X1,X2,…Xn) for 
each of the switches. 
So the equations (6) become: 
WK +1 =Wk + A7 * Xi ! A8 * Xj ! A4 * Xn
VK +1 = Vk + A4 * Xb + A3* Xx ! A2 * Xv ! A1* Xc
QK +1 = QK + A2 * Xe + A8 * Xp + A9 * Xf + A6 * Xu !
!A7 * Xj ! A5 * Xn ! A3* Xm  

(7a) 
(7b) 

              (7) 
(7c) 
 

The technical specifications of the pumps are: 
• J: electrical force of the pump (kw)  
• R: Euro per kWh (Euro / kwh)  

 
 
METHOD OF SYSTEM OPTIMISATION 
 
Case 1: Linear cost  
Here we consider the price of electricity as fixed and that cost of electricity(euro per kWh) includes only the total 
used KWh’s. Thus we want to minimise the cost function f (x):  

 
f (x) = L * R * J(DA1k +

k=0

3

! DA2k + .......+ DA9k )
                                                                                                (8) 

 
The pumps switches  ijX  can use a percentage, from 0% to 100%, of their power depending on the system demand: 

0 1ijX≤ ≤                                                                                                                                                            (9) 
We can achieve this by using switches with power steps between 0% and 100% of the maximum power.  
Minimising (8) subject to (5) and (9) is a linear programming problem. 
The next step, after having written the descriptive equations, the cost function and the range value limits of the 
variables, is to use linear programming in the Matlab environment as it appears below: The system is: 
 
*

cos _ _ ( )

A X b
LBnb X UBnb
t function f x

≤

≤ ≤      

 
These matrices describe the system including the water requirements and the ability for water supply o the pumps. 
Our aim is to study the nonlinear case.  
 
Case 2: Nonlinear Cost  
Now we present how the PPC calculates the cost of the consumed energy, whereby it also attempts to reduse the 
peak demands. Including all the others restrictions and conditions we create the equation that is our cost function.  
As it was reported above there are 3 tanks:  W,  V,  Q. 



• The sampling rate is every 6 hours: Κmax=4 , k=1,2,3,4 
• The water flows  3 /m h are symbolized as Α1...Α9 
• The  switches (per  hour): αi(k): Χ1,Χ2,.......,Χ36 (i: 1-9, κ: 1-4) 
• Time  step of  simulation:  L=6h  
• Number of  Pumps:  i=1-9, n=9 
• Electrical Force of Pumps: Pi(k) 
• αi(k)=  % percentage  of using power of  pump at the moment k --> Χj, j=1-36 

 
Total Force: 

Pc = [ 20 *ai (k)]* 6 = 120 *
i=1

9

!k=1

4!
k=1

4

! ai (k)
i=1

9

!

Pmax = max
k
[ ai (k)Pi]
i=1

n

!
                            (11) 

 
The system operation cost expressed by the equation (12) which reflects the tariff of PPC  without taking into 
consideration, for now, the cos(x) of the pumps:  

J = 400 *C2 *max
k
[ ai (k) *Pi]
i=1

n

∑ + C3*max(0,
k=1

kmax

∑ ( ai (k) *Pi − 400))
i=1

n

∑
                      (12) 

 
Where: 
 

Z2 = C3*max(0,
k=1

kmax

! ( ai (k) *Pi " 400))
i=1

n

!

Z1 = 400 *C2 *max
k
[ ai (k) *Pi]
i=1

n

!
 (13)          

 
So the cost (2) is  J = Z1+Z2 (14) subject to:    
 
Z1 ! a1(1)*P + a2(1)*P + ......+ a9(1)*P
Z1 ! a1(2)*P + a2(2)*P + ......+ a9(2)*P
Z1 ! a1(3)*P + a2(3)*P + ......+ a9(3)*P
Z1 ! a1(4)*P + a2(4)*P + ......+ a9(4)*P          (15) 
 
Z2 ! 0

Z2 ! "4 * 400 +120 * Xi
i=1

36

#
 

It’s obvious that minimising (12) subject to (15)  equivalently we convert the problem from nonliner form to linear 
by introducing the new variables Z1,Z2 (see (13)), which is not a big burden at all.  
  
There are 38 variables in our system. The 36 are associated with the 9 pumps and with the percentage of operation 
of each pump per 6 hours (L=6) [ a (k) (i: 1-9, k: 1-4) ] while the 2 other are the variables Z1 and Z2 from the cost 
function.  
 
We have thus formulated our problem as 
 
*

cos _ _ ( )

A X b
LBnb X UBnb
t function f x

≤

≤ ≤      

We can use linear programming in the Matlab environment.  
 
 
 
 
 
 
 
 



APPLICATIONS 
 
Taking into consideration the system, the requirements for water supply and irrigation of the Chania area we present 
5 operation scenarios of our system and we present the proper percentage of operation of each pump every 6h in a 
24h operation. 
We also have these datas for our system: 

• Time sampling rate: 6 hours (L=6) 
• Transfer water rates:  

Α1=950 3 /m h  Α4=550 3 /m h  Α7=750 3 /m h  
Α2=700 3 /m h  Α5=600 3 /m h  Α8=650 3 /m h  
Α3=850 3 /m h  Α6=650 3 /m h  Α9=950 3 /m h  

 
• At different time levels there are different quantities of water in each tank. More specifically: 

 
Time Symbolism of Tanks 
6:00 W1,V1,Q1 

12:00 W2,V2,Q2 
18:00 W3,V3,Q3 
24:00 W4,V4,Q4 

 
• Initial water quantities in the tanks: Wo = 1500m3

,  Vo = 2500m3
,  Qo = 3500m3

  respectively 
• Minimum and maximum safety levels: 

 

                          

Wmin = 1000m
3,Wmax = 5500m

3,
Vmin = 2000m

3,Vmax = 6500m
3,

Qmin = 3000m
3,Qmax = 8000m

3
 

The technical specifications of the pumps are: 
• J: electrical force of the pump (kw) - 20 kW  
• R: Euro per kWh (Euro / kwh) – 0,4 € / kWh  

 
 The 5 scenarios are:  

1. Scenario 1: The pump 1 that supplies the main consumers of the system has a minimum point of operation 
at 80% and the pump 9 that draws water from the earth has minimum operation at 40%. The remaining 
pumps function from 0 to 100%. 

2. Scenario 2: The pump 1 has the minimum point of operation at 80% and the pump 9 at 40%.The remaining 
pumps operate from 10% to 100%. 

3. Scenario 3: The pump 1 has the minimum point of operation at 80% and the pump 9 at 40%.The pumps 5,6 
can  be inactive and the rest of the pumps have minimum operation at 40%.  

4. Scenario 4: The pump 1 has the minimum point of operation at 100% and the pump 9 at 40%. The pumps 
5,6 can  be inactive and the remaining pumps  have minimum operation at 40%.  

5. Scenario 5: The pump operates at 100% and the pump 9 has minimum operation at 40%. The remaining 
pumps function from 40% until 100% while pumps 5,6 function as  minimum 30 %.  

 
In the following tables we show the results of optimising for the 5 scenarios and their associated costs. 

 
• Scenario 1 

 
Pump 6h scale 1ο (6:00) 2ο (12:00) 3ο (18:00) 4ο (24:00) 

1 80% 80% 80% 80% 
2 0% 0% 0% 0% 
3 65.09% 86,79% 83,45% 81,15% 
4 48,48% 0% 0% 0% 
5 0% 0% 0% 0% 
6 0% 0% 0% 0% 
7 24,44% 0% 0% 0% 
8 0% 0% 0% 0% 
9 40% 42,74% 46,08% 48,38% 

Factors Ζ1/Ζ2 Ζ1=41,9059 Ζ2=0 
COST 41,9059 



 
• Scenario 2 

 
Pump 6h scale 1ο (6:00) 2ο (12:00) 3ο (18:00) 4ο (24:00) 

1 80% 80% 80% 80% 
2 10% 10% 10% 10% 
3 67,30% 91,98% 90,08% 85,50% 
4 40,98% 10% 10% 10% 
5 10% 10% 10% 10% 
6 10% 10% 10% 10% 
7 45,60% 10% 10% 10% 
8 10% 10% 10% 10% 
9 40% 40,92% 42,83% 47,40% 

Factors Ζ1/Ζ2 Ζ1=54,5807 Ζ2=0 
COST 54,5807 

 
• Scenario 3 

 
Pump 6h scale 1ο (6:00) 2ο (12:00) 3ο (18:00) 4ο (24:00) 

1 80% 80% 80% 80% 
2 40% 40% 40% 40% 
3 77,08% 99,47% 97,25% 92,69% 
4 54,82% 40% 40% 40% 
5 12,53% 0% 0% 0% 
6 0% 0% 0% 0% 
7 100% 49,04% 50,99% 55,72% 
8 40% 40% 40% 40% 
9 40% 41,10% 41,37% 41,20% 

Factors Ζ1/Ζ2 Ζ1=77,9220 Ζ2=335,9078 
COST 413,8298 

 
• Scenario 4 

 
Pump 6h scale 1ο (6:00) 2ο (12:00) 3ο (18:00) 4ο (24:00) 

1 100% 100% 100% 100% 
2 40% 40% 40% 40% 
3 100% 100% 100% 100% 
4 100% 46,97% 54,90% 59,34% 
5 45% 0% 0% 0% 
6 0% 0% 0% 0% 
7 100% 85,76% 66,93% 66,41% 
8 40% 40% 40% 40% 
9 40% 55,09% 66% 62,07% 

Factors Ζ1/Ζ2 Ζ1=93,5654 Ζ2=762,1774 
COST 855,7428 

 
 

• Scenario 5 
 
Pump 6h scale 1ο (6:00) 2ο (12:00) 3ο (18:00) 4ο (24:00) 

1 100% 100% 100% 100% 
2 40% 40% 40% 40% 
3 100% 100% 100% 100% 
4 100% 47% 54,76% 59,45% 
5 55,83% 10% 10% 10% 
6 10% 10% 10% 10% 
7 100% 86,14% 66,54% 66,44% 
8 40% 40% 40% 40% 
9 40% 54,16% 66% 61,42% 

Factors Ζ1/Ζ2 Ζ1=97,4601 Ζ2=857,2826 
COST 954,7201 



 
 
The schematic presentation of the cost of the 5 versions and the factors Z1 and Z2 as we have analyzed above are:   
 

 
 
DISCUSSION 
 
Comment 1: 
Notice that the daily cost, as it was expected, increases as we increase the number of the pumps that we place in 
operation according to the water requirements. Also, the pumps 5,6 (that connect the two basic tanks without 
intermediate consumptions), remain inactive and they are activated only when one of the 2 main tanks needs further 
quantities of  water in order to cover further requirements.   
Comment 2: 
Our study case was the area of Chania. We developed our model based on a typical day of the year and on typical 
water demands for water consumption. Our next step is to attempt to increase the sampling period (from 6 hours to 
2 hours) and make a statistical analysis of the scada data. Then we can create average demands and their variance 
for each year period in order to calculate more robust decisions.  
Conclusion: 
After that our aim is to transform our problem from analogue to integer (the pumps have O/I switches) and finally 
we will build a full parametric model with user friendly interface. 
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Aim
• Reduction of energy cost
• Increasing need of energy
• Greece facing problems of overloading the 

energy distribution network - summer 
months.

• Chania - drillings, pumps and water tanks via 
a network of electrical pumps. 



• Objective: development of energy management 
modelling, solution and software - operation of 
pumps taking into consideration the 
optimisation of the energy cost at the National 
Electrical Company and the total energy 
consumption, based on: 

• 1. The safety level limits of the tanks.  
• 2. The frequency of restarting the pumps.  
• 3. The profile of demand of energy and water. 



• Application of optimal control methods. 
• No frequent human intervention. 
• We formulate the problem as a dynamic 

problem in discrete time, linear as regards 
the state and the control, with linear 
constrains on the state and control values. 
The cost is nonlinear in the case we examine. 



• This not-linearity is due to the way of pricing of 
the National Electrical Company, that associates 
the cost with the maximum value in time of the 
consumed energy, aiming at the standardisation 
of the requirements of consumers and the 
restrictions of demand peaks. 

• Using a simple transformation we change 
equivalently the cost from nonlinear to 
linear with increased dimensions and thus 
we can resolve the problem using linear 
programming. 



Our study case
• Visiting the area of Chania and collecting 

information from the installed SCADA system at 
the area we draw the network:



• 3 tanks : 
-Ag.Iwannis
-Vante
-Agyia

• Sampling of water level every 6 hours. 
• The transfer water rate (         ) to a water tank is 

symbolised as A1,A2… A9 
• On these pumps there are switches that are 

symbolized as 
• With k we denote the time levels when the sampling 

occurs.

3 /m h

1 , 2 ,.... 3κ κ κ∆Α ∆Α ∆Α



Parameterization – Modeling of the 
system
• The examined system  is constituted by 3 tanks. 
• The sampling of water level will be every 6 

hours.
• The quantity of water in each tank is denoted as    

It holds:
•

1

1

1

6* 7* 7 6* 8* 8 6* 4* 4
6* 4* 4 6* 3* 3 6* 2* 2 6* 1* 1
6* 2* 2 6* 8* 8 6* 9* 9 6* 6* 6

6* 7* 7 6* 5* 5 6* 3* 3

k k

k

k k

W W A
V V
Q Q A

κ κ κ

κ κ κ κ κ

κ κ κ

κ κ

+

+

+ Κ

Κ

= + ∆Α − Α ∆Α − Α ∆Α
= + Α ∆Α + Α ∆Α − Α ∆Α − Α ∆Α
= + ∆Α + Α ∆Α + Α ∆Α + Α ∆Α

− Α ∆Α − Α ∆Α − Α ∆Α



• According to the geometrical specifications of the tanks 
and the demand profile of each area, there is a minimum 
and a maximum limit of water in each tank:

• Thus, it has to hold:

Qmax=8000Vmax=6500Wmax=5500

Qmin=3000Vmin=2000Wmin=1000

1000 1, 2, 3, 4 5500
2000 1, 2, 3, 4 6500
3000 1, 2, 3, 4 8000

W W W W
V V V V
Q Q Q Q

≤ ≤
≤ ≤
≤ ≤



• The analytic parametric equations of each tank are: 

0 0 0

1 1 1

2 2 2

3 3 3

1 1500 6* 7* 7 6* 8* 8 6* 4* 4
2 1 6* 7* 7 6* 8* 8 6* 4* 4
3 2 6* 7* 7 6* 8* 8 6* 4* 4
4 3 6* 7* 7 6* 8* 8 6* 4* 4

W A
W W A
W W A
W W A

= + ∆Α − Α ∆Α − Α ∆Α

= + ∆Α − Α ∆Α − Α ∆Α
= + ∆Α − Α ∆Α − Α ∆Α
= + ∆Α − Α ∆Α − Α ∆Α

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

1 2500 6* 4* 4 6* 3* 3 6* 2* 2 6* 1* 1
2 1 6* 4* 4 6* 3* 3 6* 2* 2 6* 1* 1
3 2 6* 4* 4 6* 3* 3 6* 2* 2 6* 1* 1
4 3 6* 4* 4 6* 3* 3 6* 2* 2 6* 1* 1

V A A
V V A A
V V A A
V V A A

= + ∆Α + ∆Α − Α ∆Α − Α ∆Α
= + ∆Α + ∆Α − Α ∆Α − Α ∆Α
= + ∆Α + ∆Α − Α ∆Α − Α ∆Α
= + ∆Α + ∆Α − Α ∆Α − Α ∆Α



• And

0 0 0 0 0

0 0 0

1 1 1 1

1 1 1

2 2 2 2

1 6* 2* 2 6* 8* 8 6* 9* 9 6* 6* 6
6* 7* 7 6* 5* 5 6* 3* 3
2 1 6* 2* 2 6* 8* 8 6* 9* 9 6* 6* 6
6* 7* 7 6* 5* 5 6* 3* 3
3 2 6* 2* 2 6* 8* 8 6* 9* 9 6* 6* 6
6

Q Q A

Q Q A

Q Q A

= + ∆Α + Α ∆Α + Α ∆Α + Α ∆Α −

− Α ∆Α − Α ∆Α − Α ∆Α

= + ∆Α + Α ∆Α + Α ∆Α + Α ∆Α −
− Α ∆Α − Α ∆Α − Α ∆Α

= + ∆Α + Α ∆Α + Α ∆Α + Α ∆Α −
− 2 2 2

3 3 3 3

3 3 3

* 7* 7 6* 5* 5 6* 3* 3
4 3 6* 2* 2 6* 8* 8 6* 9* 9 6* 6* 6
6* 7* 7 6* 5* 5 6* 3* 3
Q Q A

Α ∆Α − Α ∆Α − Α ∆Α
= + ∆Α + Α ∆Α + Α ∆Α + Α ∆Α −

− Α ∆Α − Α ∆Α − Α ∆Α



• As we have mentioned our variables are the 
switches ∆Αij. We introduce the following 
notation:



Method of System Optimization
• Let us present how the National Electrical Company 

(∆ΕΗ) calculates the cost of the consumed energy, 
whereby it also attempts to discourage the peak demands. 

• There are 3 tanks:  W,  V,  Q.
-The sampling rate is every 6 hours: Κmax=4 , k=1,2,3,4
-The water flows  are symbolized as Α1...Α9
-The pumps are symbolized as ∆Α1,∆Α2,...,∆Α9  (n=9)
-The  switches (per  hour): αi(k): Χ1,Χ2,.......,Χ36 (i: 1-9,         
κ: 1-4)

-Time  step of  simulation:  ∆t=6h
-Number of  Pumps:  i=1-9, n=9



-Electrical Force of Pumps: Pi(k) =20kW (stable)
-αi(k)=  % percentage  of using power of  pump at 
the moment k --> Χj, j=1-36

• Total Force:

4 9 4 9

1 1 1 1

1

[ 20* ( )]*6 120* ( )

max max[ ( ) ]

i i
k i k i

n

i ik i

Pc a k a k

P a k P

= = = =

=

= =

=

∑ ∑ ∑∑

∑



• The system operation cost equation which 
reflects the tariff of National Electrical 
Company: 

• Where:

max

1 1 1
cos 400* 2*max( ( )* ) 3*max(0, ( ( )* 400))

n k n

i ik i k i
t C a k Pi C a k Pi

= = =

= + −∑ ∑ ∑

max

1 1

1

2 3*max(0, ( ( )* 400))

1 400* 2*max( ( )* )

k n

i
k i

n

ik i

Z C a k Pi

Z C a k Pi

= =

=

= −

=

∑ ∑

∑



• The restrictions for Ζ1,Ζ2 are:

and:

1 1(1)* 2(1)* ...... 9(1)*
1 1(2)* 2(2)* ...... 9(2)*
1 1(3)* 2(3)* ...... 9(3)*
1 1(4)* 2(4)* ...... 9(4)*

Z a P a P a P
Z a P a P a P
Z a P a P a P
Z a P a P a P

≥ + + +
≥ + + +
≥ + + +
≥ + + +

36

1

2 0

2 4*400 120*
i

Z

Z Xi
=

≥

≥ − + ∑



• The initial system with the new restrictions is :

1
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.
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• The matrix with the 6 equations describing the 
restrictions is:

:1, 2,3, 4,17,21,25,29,33 1_ 0

:5,6,7,8,18,22,26,30,34 1_ 0

:9,10,11,12,19,23,27,31,35 1_ 0

:13,14,15,16,20,24,28,32,36 1_ 0

0.................................................0 0 _ 1

120...................

PX

PX

PX

PX

−

−

−

−

−

38 1 6 1
6 38

1 0
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• The expression of the total system is:

24 36

6 38
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• The system cost function is: 

We have thus formulated our problem as:

and now we can use linear programming in the 
Matlab environment. 

( ) 400* 2* 37 3* 38 21,88* 37 0,03623* 38f x C X C X X X= + = +

*

cos _ _ ( )

A X b
LBnb X UBnb
t function f x

≤
≤ ≤



• Our aim is to transform our system from 
nonlinear to linear form. This can be achieved by 
introducing the two new variables Z1,Z2 ,which 
is not a big burden at all. 



Performance Evaluation
• Taking into consideration the system, the 

requirements for water supply and irrigation of 
the Chania area, we present 5 operation 
scenarios of our system and we present the 
proper percentage of operation of each pump per 
6h on a 24h operation basis. The 5 scenarios are: 



• Scenario 1: The pump 1 that supplies the main consumers of the 
system has a minimum point of operation at 80% and the pump 9 
that draws water from the earth has minimum operation at 40%. 
The remaining pumps function from 0 to 100%.

• Scenario 2: The pump 1 has the minimum point of operation at 
80% and the pump 9 at 40%.The remaining pumps operate from 
10% to 100%.

• Scenario 3: The pump 1 has the minimum point of operation at 
80% and the pump 9 at 40%.The pumps 5,6 can  be inactive and 
the rest of the pumps have minimum operation at 40%. 

• Scenario 4: The pump 1 has the minimum point of operation at 
100% and the pump 9 at 40%. The pumps 5,6 can  be inactive and 
the remaining pumps  have minimum operation at 40%. 

• Scenario 5: The pump operates at 100% and the pump 9 has 
minimum operation at 40%. The remaining pumps function from 
40% until 100% while pumps 5,6 function as  minimum 30 %. 



• In the following tables we show the results of 
optimising for the 5 scenarios and their 
associated costs.







• The schematic presentation of the cost of the 5 
versions and the factors Z1 and Z2 as we have 
analyzed above are: 



Conclusions
• Notice that the daily cost, as it was expected, 

increases as we increase the number of the 
pumps that we place in operation according to 
the water requirements. Also, the pumps 5,6 
(that connect the two basic tanks without 
intermediate consumptions), remain inactive 
and they are activated only when one of the 2 
main tanks needs further quantities of  water in 
order to cover further requirements. 

• Our study case was the area of Chania. We 
developed our model based on a typical day of 
the year and on typical demands for water



• Our next step is to attempt to increase the 
sampling period (from 6 hours to 2 hours) 
and make a statistical analysis of the scada data. 

• Then we can create average demands and their 
variance for each year period in order to 
calculate more robust decisions.

• After that our aim is to transform our problem 
from analogue to integer (the pumps have 
O/I switches) and finally we will build a full 
parametric model with user friendly 
interface.

Future work
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