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Abstract - We consider a system that consists of a major 

player infinite time horizon and minor players  remaining in 
the system for overlapping and different finite time periods and 
with different quality features. We study how they interact 
among themselves (horizontal interaction), and with the major 
player respectively (vertical interaction), via their decisions 
/strategies and the impact of the length of the time interval that 
the minor players remain in the system. In this paper this time 
is various and we study how this feature influences the cost of 
the major player and the cost of the minor players. Our major 
player is the PPC (Public Power Corporation) and the minor 
players are the energy consumers (houses, industries etc.) or 
renewable energy producers (for example photovoltaic solar 
energy producers). We employ the basic game theoretic Nash 
solution. The optimal equilibrium (the decisions/strategies of 
the minor players and of the major player) will result in a dual 
target: global system minimum cost and individual best 
performance. Our game is dynamic, deterministic and evolves 
in discrete time. The equilibriums we consider satisfy the 
Dynamic Programming Principle and are thus “robust” in the 
presence of noise in the state equation. 

 
Index Terms— energy optimization cost, equilibrium, game 

theory, major player, minor players, Nash 
 
                            I.INTRODUCTION 
.  
 The work presented here is motivated by the game 

between a large Public Power Corporation referred to as 
the major player and the many small producers/consumers 
referred to as the minor ones. This game has many 
features worthy of investigation. We choose to address 
here the role of the time duration of the minor players 
which is small relative to the time horizon of the major 
player (PPC). We change the time period that the minor 
players remain in the system and we examine its influence 
on the cost of the major player. Similarly the influence on 
the costs of the minor players and the strategies of all the 
players can be studied. Clearly the other parameters 
involved in describing the time evolution and costs of the 
players influence the costs and strategies. Our target is to 
create a parametric model, which will take into 
consideration all these features, and thus we will be able 
by changing the time durations and the parameters to 
study their influence on the strategies and costs of the 
players. In many applications considered in the literature 
up to now, the “smaller” short term players are 
aggregated as a single long-term player and the impact of 
the parameter values on the strategies and costs is studied. 
In the present paper we intend to address explicitly the 
impact of the short term versus the long-term characters 
of the players, as well as the overlapping of the intervals 
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of play of the short term players. 
 We study a deterministic version of the problem in discrete 

time. The Nash equilibrium is employed. We consider the 
LQ case and since we are interested in strategies that 
survive in a stochastic framework ([2], [5]) we use the 
principle of optimality to derive the solutions. (The 
formulation of the problem and the associated dynamic 
programming equations for the nonlinear case is 
straightforward but their solution is obviously much more 
demanding.)  We derive the associated Ricatti equations. 
In order to provide some simple examples we consider the 
time invariant scalar case and thus we assume that all the 
matrices involved are time-invariant constants. We also 
assume that all minor players have the same cost function, 
act during different time periods but for the same duration 
T. This results to having to solve a system with T+1 
equations. Now by changing the values of the parameters 
involved we can easily solve each time the system of the 
Riccati equations and find the optimal controls-decisions 
and costs in every case for each player. 

The usefulness of this work for the case where a framework 
of liberalization of the energy market is considered, lies in 
providing an indicator as to the impact of having various 
lengths  of contractual agreements concerning producers 
or consumers. If we assume that the major player is  
concerned more directly with the social welfare benefits, 
he is faced with the question-among many others-of 
whether he should  favour  giving licences to producers of 
smaller or bigger time duration. Similarly, he is faced 
with the question of whether he should provide 
consumers with smaller or bigger time duration electricity 
supply commitments. The answer to these questions 
depends obviously on the particular parameter values 
describing the time evolution and costs of the producers 
/consumers. Thus one has to study the interplay of 
parameters and time durations and their joined impact on 
costs. Clearly, besides the energy sector, such problems 
appear in other areas where market designs are sought. 

This paper is a continuation of [6] and for reasons of self – 
sufficiency we repeat the basic formulation and derivations 
from there in Sections II and III. In Section II we formulate 
the problem, we define the state equations and costs and we 
derive the Ricatti equations which characterize the Nash 
solutions for the major and minor players. In Section III we 
specialise to the scalar case which we are going to solve 
numerically for several parameter values using Matlab.  In 
the fourth section, which constitutes the core contribution of 
the present paper, we present our numerical results for 
several values of the parameters and time interval lengths of 
the minor players and we discuss the results. In the fifth 
section we consider again the scalar version of the problem 
where all the small players are concatenated as one player 
with the same time duration as the major player and we 
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derive the associated Nash equilibrium. Our aim is to 
compare the solution derived now with those we derived 
earlier where we took explicitly into account the short-term 
time overlapping character of the minor players. The sixth is 
a short section with conclusions.  

II. MATHEMATICAL FORMULATION 
 
The state equation is: 
 

 

 
where xk is the state, uk is the control of the long term player 
(PPC), uik is the control of the minor players (clients or 
producers) at the i-th year remaining in the system (i=1-5). 
For example, a player who enters the game at time k will use 
controls u1k, u2k+1, u3k+2, u4k+3, u5k+4, corresponding to times 
k,k+1,k+2,k+3,k+4. A, Bi are given matrices of appropriate 
dimensions. If the players are six the state equation is: 

 
 
and so on for 7 and 8 players. 

The quadratic costs of the major player (J) and the minor 
players (Jl) who act in the interval between l and (l+5) are: 

 

The Q’s are symmetric real non negative matrices and the 
R’s are symmetric positive defined matrices which are 
known. In our case we consider A, B, Q, R constant. 
(References [1]-[4] contain the appropriate material needed 
for deriving the Nash solution of linear quadratic problems.) 
To clarify how we derive the solution we think as follows. 
Consider a minor player who starts his interaction with the 
system at time k=30 with control u1,30=L1x30 when he begins 
to consume/produce energy. Next year his control is 
u2,31=L2x31,  the next u3,32=L3x32, u4,33=L4x33 and the fifth and 
last year u5,34=L5x34. Notice that the L1, L2, L3, L4, L5 are 
independent of the year the minor player enters the system. 

As regards the long-term player for his optimal reaction 
we consider the state equation: 

 

and we use the Ricatti equation: 
 

 

Then the long term player’s optimal reaction is: 
 

 

 

and his optimal cost is: 
  

 
To derive the equations that provide the Li’s of the minor 

player we think as follows. We will examine for example 
the system with a major player (PPC) and minor players 
(producers or consumers) who enter the system and their 
remaining lasts for 5 years. Consider the minor player who 
enters the calendar year 30 (k=30). He sees the following 
system (7)-(13) where in this first equation (7) he acts as 
first year consumer/producer and the other-year 
consumers/producers act with the fixed laws L2x30, L3x30, 
L4x30, L5x30. 

 

 

 
Similarly when he is at the second year it sees the 

following system 
 

 
and the other-year producers/consumers act with the fixed 
laws L1, L3, L4, L5  and so on. 

Thus the whole system of equations that the small players 
who entered the calendar year k=30 and their staying last 
five years see, is: 

 
 

 
For this system of equations and the cost  

   

    
we derive the optimal policy by employing the Ricatti 
equations.  The Li’s are given by the following system of 
equations. 
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(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

 
 

The total cost of a small player who entered the system at 
year 30 is: 

 
 

 
Notice that we consider linear no memory strategies. We 

know that may exist other solutions, which are not 
necessarily linear and may have memory. We know 
nonetheless (Selten and [2]) that these solutions disappear in 
the presence of noise. 

III. SCALAR FORM 
 
Here we consider the scalar case and study the costs of 

the players by changing the parameters. 
In this case we consider the matrices A, B, Q, R as 

constant scalars α, b, q, r. We take the R’s and the B’s to be 
equal to 1. So the system of the matrix equations becomes:  

 
 

 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

 
(33) 

 

 

     (34) 

(35) 

(36) 

(37) 

(38) 

 

 

(39) 
(40) 
(41) 
(42) 
(43) 
(44) 
(45) 
(46) 
(47) 
(48) 
(49) 

(The K’s and L’s are scalar’s) 
After some transformations we created the following 

scalar equations (five for the short term players and one for 
the long term player) where the xi’s, stand for the Ki’s, 
i=0,1,...5: 

 

 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

 
 

 

 
(56) 
 
(57) 
 
(58) 

Substituting x0 from (58) into (55) we obtain the 
equivalent  

  (59) 
If the time horizon of the minor players is 7 (or 6 or 8 or…), 
the formulae (15)-(25),(39)-(49),(50)-(57) will have to be 
modified appropriately. For example, if 7 is the time 
horizon, the equations (51)-(55) remain the same but we will 
also have similar formulae for x6,x7 ,and  S in (57) will be 
given by: 
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Since S can be calculated explicitly as a function of A by 

using recursively (50)-(54) we conclude that F(A) is a 
function of A, a , q0, qf which has to be solved for its roots. 
Solving F(A) =0 we find the A and immediately the xi’s 
from (50)-(54), (58). If F(A) =0 has many solutions A, then 
there exist many different xi’s, i.e. the game has many 
solutions. Of course we seek solutions A of F(A) =0 which 
are smaller than 1 in magnitude so that the close-loop 
system is stable. (Notice that A is the closed loop matrix). 

Notice also that in order that (55) has a real solution x0 it 
must hold: 

 
 

  
It must be x1> x2> x3> x4> x5, and all the xi’s positive. 

Also A and α have the same sign (see (56)) and that is why 
in the numerical examples we take α positive.  

Equation (59) is very important because it constitutes the 
centrepiece of the numerical solution. A graphical 
representation of F(A) can be achieved as follows: For a 
given value of A we calculate x5,x4,x3,…,xo from (50)-(55) 
and S from (57). Knowing S we calculate the value F(A).We 
seek the roots of F(A) =0,with |A|<1. If the root is unique 
the game has a unique solution. If there are many then it has 
many solutions. This can happen as the Figures 5 and 7 
indicate. 

It would be of interest to try to derive the analogue of 
(59) for the matrix case since it would facilitate greatly the 
numerical solution for this case, but we have not achieved 
that. It seems unlikely that such a formula (in matrix form of 
course) will become easily available. 

IV. RESULTS 
Our next step is, by using the Matlab to solve these 

equations for several values of α, q0, qf. 
We present some results of the numerical experiments in 

Tables I-VI which are presented in the Appendix and in 
more compact form in Plot 1. 

 
PLOT 1 

 
 

For each triplet of values of α, q0, qf, we solve first the 
equation F(A)=0 (see (59)). Knowing the solution A of (59) 
we use this value to calculate the xi’s.  

Notice that F(0)=α>0, F(1)<0 and thus F(A)=0 always 
has a solution in (0,1). Since multiple solutions of F(A) =0 
implies many solutions of the game, we provide some plots 
of F(A), see Appendix. It appears in our experiments that 
F(A) =0 has usually  a unique solution but there are cases 
such as those shown in Figures 5 and 7 where there are two 
solutions . 

We experimented with several values of α, q0, qf and we 
tried to combine cases with α stable (0<α<1), α unstable 
(α>1), α small/large, q0 small/large, qf small / large. 

By observing the values x0, x1 we draw some conclusions 
about the optimal costs of the PPC (J) and the cost of the 
consumer/producer (Jl) which are proportional to x0 and x1 
respectively. At the 5-year system when the system is 
unstable (α=10) we notice that when qf>qo then Jl>J and 
respectively when qf<qo then Jl<J. When qf=q and they have 
small prices Jl>>J. While the qf, qo get bigger prices and still 
holds qf=qo then Jl gets closer to J until they become almost 
equal. So we conclude that in unstable system and with 
small values for qf, q0 the cost of PPC is much bigger than 
consumers’/producers’ and the long term player is 
essentially more sensitive. 

In a more stable system (α=0.1) we notice that the players 
interchange roles and the consumers/producers are more 
sensitive with bigger cost. 

As we observe the rest tables, the system shows similar 
behaviour. When the system is unstable (α=10) and qf>qo 
then Jl>J and respectively when qf<qo then Jl<J. When qf=q, 
for small prices Jl>>J and while they get bigger the Jl gets 
closer to J until they become almost equal (for small time 
horizon this becomes more difficult and that is why for 3 
year duration J decreases but in the end is still bigger than 
Jl). When the system is stable (a=0,1) the players 
interchange roles and minor players have bigger costs. 

The main point however is to study the costs as the time 
horizon increases. We notice that the unstable system, when 
qf>qo, has great cost for the minor players (Jl) which gets 
smaller as the time horizon increases. On the other hand, the 
cost of the major player (J) is very big for small time 
horizon and small values of qo at the same time. In these 
particular cases (3 and 4 years) as show the plots in the 
Appendix there are more feasible solutions of F(A)=0, so 
there also other sets of x and costs which however present 
the same behaviour (big costs J). In the rest of the cases it is 
small with fluctuations. When qf<qo, then Jl<<J but J tends 
to decrease as the time horizon increases. When qf=q 
happens the same. 

 When the system is stable, Jl is practically stable as the 
time horizon increases whereas J has some fluctuations but 
tends to decrease. 

The results show that the stable system has smaller costs 
than the unstable for all the players. Additionally, the costs 
are bigger for small time horizons especially for the major 
player. The major player has generally smaller cost than the 
minor players when the system is stable (except for when 
qf<qo) or when qf>qo. 
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V.CONCATENATED PLAYER 
Our purpose in this section is to compare the solutions 

obtained in sections II, III for example for time horizon 5 
years with the solution that would result if we were to group 
all the small duration players together. In this case we would 
have two long term players. We work out only the scalar 
case.   

By considering all the short term players as one player 
with a cost equal to the sum of the costs of all the players 

      (61) 
, and a state equation  

                      (62) 
where 5vk is the control of this concatenated player, we have 
a classical linear quadratic infinite time game with two 
players. (We took the R’s and the B’s equal to 1 and α>0.) 
We can derive the associated Ricatti equations for the Nash 
solution. After some transformations it turns out that we 
have to solve the following system of equations. 
 

                (63) 

               (64) 

             (65) 
A is the closed loop matrix and in order to have real 

solutions x1, x0 and A stable it must be: 

  (66) 
The cost of the PPC is proportional to x0 and the cost of 

the concatenated short term player is proportional to 1/5 x1. 
In our experiments the solutions turned out to be unique for 
each triplet of the parameters α, q0, qf. 

A similar concatenation can be done if we have a time 
horizon of 7 (or 6 or any other length) for the minor players. 
In this case the coefficients 5 and 25 appearing in (61)-(65) 
will be substituted by 7 and 49 respectively. 
We present some numerical results of solving (61)-(63) for 
the same values of α, q0, qf in Table VII in the Appendix. 

 
By comparing the values of x0, x1 (for the same 

parameter values) of section IV (Table I) and section V 
(Table VII) several conclusions can be drawn about the 
validity and usefulness of concatenating the many small 
players into one.  

VI. CONCLUSIONS 
In our future search we intend to use the Stackelberg 

equilibrium model for the players. Of interest is also the 
case where the time duration of the short time players is a 
random variable taking values in a certain interval. Similarly 
we can consider cases where the appearance of a small 
duration player at each instant of time is itself a random 
event.  

 
 
 
 

 

APPENDIX 
 

TABLE I 
TIME HORIZON 3 YEARS 

 

N/N qf q0 a x0 x1 

1 10 1 0.1 0.247746958 10.00112664 

2 10 1 3 0.814297118 11.02225805 

3 10 1 10 0.952273151 20.54378178 

4 5 1 0.1 0.664506239 5.001080428 

5 5 1 3 0.982631706 5.999368294 

6 5 1 10 8.604233333 11.0291 

7 1 5 0.1 4.332757209 1.000288124 

8 1 5 3 9.82253976 1.104559829 

9 1 5 10 98.00184336 1.019764964 

10 1 10 0.1 8.499743975 1.000128025 

11 1 10 3 16.04242311 1.047403077 

12 1 10 10 103.4918343 1.017749419 

13 5 5 0.1 3.998499794 5.000750206 

14 5 5 3 5.964327649 5.605595428 

15 5 5 10 70.88182708 5.447591161 

16 0.5 0.5 0.1 0.439440465 0.500869005 

17 0.5 0.5 3 4.638513638 0.664816936 

18 0.5 0.5 10 95.52344669 0.507965998 

19 10 10 0.1 2.331353146 10.00099019 

20 10 10 3 10.7222562 10.59588665 

21 10 10 10 32.20642151 13.44634573 
 

TABLE II 
TIME HORIZON 4 YEARS 

 

N/N qf q0 a x0 x1 

1 10 1 0.1 0.664765713 10.00063368 

2 10 1 3 0.794150148 10.58302386 

3 10 1 10 0.645152668 17.65086319 

4 5 1 0.1 1.220399452 5.000607635 

5 5 1 3 0.973759738 5.590923489 

6 5 1 10 20.75662544 7.497445366 

7 1 5 0.1 4.99939988 1.00020006 

8 1 5 3 8.924652739 1.103027039 

9 1 5 10 95.95011748 1.020199407 

10 1 10 0.1 9.285420257 1.000098014 

11 1 10 3 15.27263543 1.046249779 

12 1 10 10 101.3290077 1.018155849 

13 5 5 0.1 3.998559831 5.000480084 

14 5 5 3 5.076796304 5.420021264 

15 5 5 10 57.40997258 5.568527783 

16 0.5 0.5 0.1 0.446381488 0.500631813 

17 0.5 0.5 3 2.440979724 0.816438634 

18 0.5 0.5 10 95.01547727 0.507969417 

19 10 10 0.1 8.998679926 10.00044004 

20 10 10 3 9.558866595 10.3985896 

21 10 10 10 16.13618209 14.37704012 
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TABLE III 
TIME HORIZON 5 YEARS 

 

N/N qf q0 a  x0   x1  

1 10 1 0.1           4,554129883            10,000356420    

2 10 1 3           1,119064198            10,369730350    

3 10 1 10           1,293726313            14,842455780    

4 5 1 0.1           0,314056467              5,000433269    

5 5 1 3           1,113122694              5,378089324    

6 5 1 10           0,615899776            10,593893270    

7 1 5 0.1           3,999199820              1,000200060    

8 1 5 3           8,112666758              1,098785773    

9 1 5 10         93,918150710              1,020622924    

10 1 10 0.1           8,285322242              1,000098014    

11 1 10 3         14,659253250              1,044265620    

12 1 10 10         99,189455650              1,018555487    

13 5 5 0.1           0,314056467              5,000433269    

14 5 5 3           5,139082174              5,287513421    

15 5 5 10         17,694225760              7,179090223    

16 0.5 0.5 0.1           0,498123240              0,500469337    

17 0.5 0.5 3           1,032002046              0,936738724    

18 0.5 0.5 10         93,555035820              0,508129951    

19 10 10 0.1           1,629990457            10,000397130    

20 10 10 3           9,126166344            10,278327690    

21 10 10 10         12,345295190            13,349442450    
 
 
 

TABLE IV 
TIME HORIZON 6 YEARS 

 

N/N qf q0 a x0 x1 

1 10 1 0.1 5.66542912 10.00024751 

2 10 1 3 0.181249765 10.26649779 

3 10 1 10 0.696100067 13.25743429 

4 5 1 0.1 2.331983226 5.000270027 

5 5 1 3 0.625254685 5.274009629 

6 5 1 10 1.801413987 8.583985187 

7 1 5 0.1 4.110300954 1.000162039 

8 1 5 3 7.556488691 1.091284933 

9 1 5 10 91.90531682 1.021050735 

10 1 10 0.1 9.666306636 1.000072008 

11 1 10 3 14.22279057 1.041685111 

12 1 10 10 97.07241184 1.018959505 

13 5 5 0.1 2.331983226 5.000270027 

14 5 5 3 5.481827577 5.206834557 

15 5 5 10 7.058578692 7.709085443 

16 0.5 0.5 0.1 0.345840656 0.50039717 

17 0.5 0.5 3 0.889118343 0.844682801 

18 0.5 0.5 10 93.04690587 0.508129953 

19 10 10 0.1 1.498591939 10.00028162 

20 10 10 3 9.428511247 10.20157895 

21 10 10 10 11.64497359 12.37384924 

 
 

TABLE V 
TIME HORIZON 7 YEARS 

 

N/N qf q0 a x0 x1 

1 10 1 0.1 0.427277784 10.00021561 

2 10 1 3 1.027374155 10.19174043 

3 10 1 10 1.275667714 12.26158508 

4 5 1 0.1 1.035724749 5.000218718 

5 5 1 3 0.782017776 5.201302496 

6 5 1 10 0.216308957 7.688161834 

7 1 5 0.1 4.499231877 1.000128025 

8 1 5 3 7.136605693 1.083182175 

9 1 5 10 89.91101306 1.02148334 

10 1 10 0.1 8.666234628 1.000072008 

11 1 10 3 13.66136502 1.039809285 

12 1 10 10 96.05345233 1.018959505 

13 5 5 0.1 3.998874936 5.000187513 

14 5 5 3 4.686370025 5.165074462 

15 5 5 10 7.233408323 6.92368935 

16 0.5 0.5 0.1 0.043274787 0.500363352 

17 0.5 0.5 3 0.139765609 0.841513921 

18 0.5 0.5 10 92.53877591 0.508129953 

19 10 10 0.1 0.427277784 10.00021561 

20 10 10 3 9.155219226 10.15508136 

21 10 10 10 11.75882068 11.74551947 
 
 
 
 

TABLE VI 
TIME HORIZON 8 YEARS 

 

N/N qf q0 a x0 x1 

1 10 1 0.1 2.332224505 10.0001584 

2 10 1 3 1.311424795 10.14657709 

3 10 1 10 1.1565471 11.70146966 

4 5 1 0.1 0.665457001 5.000172811 

5 5 1 3 0.777641647 5.155499929 

6 5 1 10 2.277887489 6.781397716 

7 1 5 0.1 3.499103853 1.000128025 

8 1 5 3 6.784080553 1.075582122 

9 1 5 10 87.93465947 1.02192077 

10 1 10 0.1 7.66616262 1.00007201 

11 1 10 3 13.29680808 1.037386726 

12 1 10 10 92.90293532 1.01978171 

13 5 5 0.1 0.665457001 5.000172811 

14 5 5 3 4.97991073 5.12874880 

15 5 5 10 5.226993432 6.57576716 

16 0.5 0.5 0.1 0.26126147 0.50027095 

17 0.5 0.5 3 0.415548348 0.741670961 

18 0.5 0.5 10 91.09598546 0.50829212 

19 10 10 0.1 2.332224505 10.0001584 

20 10 10 3 9.05370561 10.12261035 

21 10 10 10 10.73639171 11.38100576 
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TABLE VII 
CONCATENATED PLAYER (5 YEARS) 

 

N/N qf q0 α  x0   x1  A 

1 5 1 0.1             1,000001240          125,00976500    0,000787341 

2 5 1 3             1,000977440          133,80203050    0,023620231 

3 5 1 10             1,003950318          223,67110450    0,044311499 

4 10 1 0.1             1,000000315          250,00988130    0,00039681 

5 10 1 3             1,000264549          258,89675720    0,01149879 

6 10 1 10             1,001625954          349,14635920    0,028478022 

7 1 5 0.1             5,000312068            25,00676429    0,00322507 

8 1 5 3             5,204657329            31,47982683    0,079608361 

9 1 5 10             5,217728109          115,84957110    0,081922022 

10 1 10 0.1           10,000848630            25,00501577    0,002777325 

11 1 10 3           10,649625950            29,80879337    0,072361659 

12 1 10 10           10,926800960          106,65424150    0,084330512 

13 5 5 0.1             5,000017479          125,00917780    0,000763305 

14 5 5 3             5,013982614          133,30155900    0,02153385 

15 5 5 10             5,059925384          220,14407480    0,02153385 

16 0.5 0.5 0.1             0,500038222            12,50861048    0,007138447 

17 0.5 0.5 3             0,514210740            20,69211184    0,135096659 

18 0.5 0.5 10             0,506052038          110,71303800    0,089111398 

19 10 10 0.1           10,000016150          250,00921160    0,000 383128 

20 10 10 3           10,013684110          258,31101440    0,011138971 

21 10 10 10           10,088660210          344,12683690    0,028151925 
 
 

Plots F(A) – A  for Section IV 
 

 
Fig. 1.  Plot 24 (time horizon 5 years). 
 
 

 
Fig. 2.  Plot 25 (time horizon 5 years). 
 
 

 
Fig. 3.  Plot 28 (time horizon 5 years). 
 
 
 

 
Fig. 4.  Plot 34 (time horizon 5 years). 
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Fig. 5.  Plot 6 (time horizon 3 years). 
 
 

 
Fig. 6.  Zoom of Fig. 5.  
 
 

 
Fig. 7.  Plot 6 (time horizon 4 years). 
 
 

 
Fig. 8.  Zoom of Fig. 7. 
 
 

 
Fig. 9.  Plot 4 (time horizon 7 years). 
 
 

 
Fig. 10.  Plot 14 (time horizon 7 years). 

 
 

 
 
 
 

 

 
 
 
 



 9 

REFERENCES 
[1] D. P. Bertsekas, “Dynamic Programming and Optimal Control” 2nd 

ed., Athena Scientific-Belmont-Massachusetts , 2000 
[2] T. Basar and G. J. Olsder, “Dynamic Noncooperative Game Theory” 

2nd ed., SIAM Classics in Applied Mathematics, 1999 
[3] A.W. Starr and Y.C. Ho, “Nonzero-Sum Differential Games”, JOTA: 

Vol. 3, No. 3, 1969, p.p. 184-206 
[4] A.W. Starr and Y.C. Ho, “Further Properties of Nonzero-Sum 

Differential Games”, JOTA: Vol. 3, No. 4, 1969, p.p 207-219 
[5] G.P. Papavassilopoulos, “On the Linear Quadratic Gaussian Nash 

Game with One-Step Delay Observation Sharing Pattern”, IEEE 
Trans. on Automatic Control, Vol. AC-27, No. 5, October 1982, pp. 
1065-1071 

[6] G.P. Papavassilopoulos, N.Kakogiannis, “Games among Long and 
Short Term Electricity Producers and Users”, 14th Intern. Symposium 
on Dynamic Games and Applications  ,June 19th to 24th, 2010 The 
Banff Centre, Banff, Alberta, Canada. 

[7] D.Fudenberg and J.Tirole “Game Theory” , MIT press 1991 

BIOGRAPHIES 
 
Nikolaos Chr. Kakogiannis was born in Athens, Greece, and received his 
Diploma (2006) from the Dept. of Mechanical and Electrical Engineering at 
the National Technical University of Athens. He has an MsC in Economics 
from National Technological University of Athens and now is a PhD 
candidate at NTUA. His research interests are in Control and Decision 
Theory, Game Theory and Applications in Energy Policy in liberalised 
markets.  He is also Investment and Development Consultant of the Vice 
President of the Greek Government (nikos_kakogiannis@yahoo.com)  

 

Panagiotis Kontogiorgos was born in Athens, Greece, and is an 
undergraduate student of Dept. of Electrical and Computer Engineering at 
National Technological University of Athens. He is interested in 
Applications of Control and Game Theory in Energy Policy 
(panko09@hotmail.com) 
 
Elena Sari was born in Athens, Greece. She holds a BSc in Physics (4 year 
program), a 2 year MPhil degree in Electronics and Radioelectrology, from 
the Depts. of Physics and Informatics all at the National & Kapodistrian 
University of Athens and a PhD in Electrical and Computer Engineering 
from the National Technical University of Athens (NTUA). Since then she 
works as a Research Scientist at the Control and Decision Theory 
Laboratory (CDL). She is also a Laboratory Instructor at the Technological 
Education Institute of Piraeus, Dept. of Electronic Engineering. Before 
starting her PhD, she worked as a Telecommunication Engineer at the 
Department of Design and Development of Networks and New 
Technologies at a Local Mobile Provider. Her current research interests are 
in the area of Optimization and Decision Making under uncertainty, Game 
Theory as well as Techno-Economic Analysis and Applications in 
Telecommunications and Energy. Her e-mail address is: 
elena@netmode.ntua.gr. 
 
George P. Papavassilopoulos received his Diploma (1975) from the Dept. 
of Mechanical and Electrical Engineering at the National Technical 
University of Athens, the Master’s (1977) and PhD (1979) degrees both 
from the Dept. of Electrical Engineering, University of Illinois at Urbana-
Champaign. He was a Professor in the Dept. of EE-Systems, University of 
Southern California, Los Angeles, from 1979 until 2000 when he joined the 
Dept. of Electrical and Computer Engineering of NTUA as Professor. He 
has conducted research in Dynamic and Stochastic Game Theory, 
Optimization and Control Theory, Parallel Algorithms, Markovian 
Learning, BMIs for Robust Control. He is also interested in applications in 
Biomedical Engineering, Energy and Telecommunication Policies. For 
more information on current activities see: http://www.control.ece.ntua.gr 

 


