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GAMES WITH LONG TERM AND SHORT TERM PLAYERS 
 
 
 
Section 1 

 
In many dynamic games we have players of different time horizons.  For example a bank is a long-term 
player whereas individual customers have a much shorter time horizon. In addition these shorter time 
horizon players are active during different and partially overlapping time intervals.  
Examples of dynamic games where the players have different time horizons abandon in practice: a bank 
and its customers, a big electricity company and the smaller producers, a university and its students.  
The last example may very well serve as a generic paradigm. The university has an infinitive time horizon 
and the students have short, say 5-year horizons, overlapping since a freshman, a sophomore, a junior 
e.t.c. although they act each year simultaneously, they have different maturity and thus different control 
strategies.  
In many applications up to now the “smaller” short term players are aggregated as a single long-term 
player. In the present paper we intend to address explicitly the impact of the short term versus the long-term 
characters of the players, as well as the overlapping of the intervals of play of the short term players. We 
study a deterministic version of the problem in discrete time. The Nash equilibrium is employed. We 
consider the LQ case and since we are interested in strategies that survive in a stochastic framework (Refs. 
2 , 5) we use the principle of optimality to derive the solutions. We derive the associated Ricatti equations 
(closed loop case). We present several examples in the LQ set-up and demonstrate several interesting 
features pertaining to the impact of the long term-short term interplay on the strategies and costs of the 
players.  
 
Our paper consists of five sections. The first section is the introduction. In the second section we formulate 
our problem, we define the state equation and costs and we derive the Ricatti equations with which we 
characterise the Nash strategies for the short-term and the long-term players. In the third section we 
specialise to the scalar case which we are going to solve numerically for several parameter values using 
Matlab.  In the fourth section we present our numerical results for several values of the parameters and we 
discuss the results. In the fifth section we consider again the scalar version of the problem where all the 
small players are concatenated in one player with the same time duration as the long-term player. We 
derive the associated Nash equilibrium. Our aim is to compare the solution derived now with the one we 
derived earlier where we took explicitly into account the short-term time overlapping character of the small 
players. The sixth is a short section with conclusions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Section2 
 
The state equation is: 
 
xk+1 = Axk + B0uk + B1u1k + B2u2k + B3u3k + B4u4 k + B5u5k , k = 0,1,2,...    (1) 
 
where xκ is the state ,uk is the control of the long term player (university), uik is the control of the i-th year 
student (i=1-5)  and A,Bi are given matrices of appropriate dimensions. 
The quadratic costs of the major player (J) and the minor players (Jl) who act in the interval between l and 
(l+5) are: 

 
J = (xk

TQ0xk + uk
T R0uk )

0

∞

∑ , Jl = (xk+ l+1
T Qf xk+ l+1 + u(k+1)(l+ k )

T Rfu(k+1)(l+ k ) )
k=0

4

∑ + xl
TQf xl

         (2) 
The Q’s are symmetric real non negative matrices and the R’s are symmetric positive defined matrices 
which are known. In our case we consider A, B, Q, R constant. (References 1-4 contain the appropriate 
material needed for deriving the Nash solution of linear quadratic problems.) To clarify how we derive the 
solution we think as follows. Consider a student who starts his studies at time k=30 with control u1,30=L1x30 
when he is a first-year student. Next year his control is u2,31=L2x31,  the next u3,32=L3x32, u4,33=L4x33and the fifth 
and last year u5,34=L5x34. Notice that the L1, L2, L3, L4, L5 are independent of the year this student started his 
studies.   
 
As regards the long-term player for his optimal reaction we consider the state equation: 
 

   (3) 
and we use the Ricatti equation: 
 

     (4) 
Then the long term player’s optimal reaction is : 
 

 ,      (5) 
 
and his optimal cost is  

 .         (6) 
 
To derive the equations that provide the Li’s of the student we think as follows. We will examine for example 
a University and students who enter the University and their studies last for 5 years. Consider the student 
who enters the calendar year 30 (k=30). He sees the following system (eq. 7-13) where in this first equation 
(eq. 7) he acts as first year student and the other-year students act with the fixed laws L2x30, L3x30, L4x30, 
L5x30. 
 
xk+1 = (A + B0L0 + BL2 + BL3 + BL4 + BL5 )xk + Bu1k = A1xk + Bu1,k        (7) 
 
Similarly when he is a second year student he sees the following system 
 
xk+2 = (A + B0L0 + BL1 + BL3 + BL4 + BL5 )xk+1 + Bu2,k+1 = A2xk+1 + Bu2,k+1     (8) 
 
and the other-year students act with the fixed laws L1,L3,L4,L5  and so on. 
Thus the whole system of equations that the student who entered the calendar year k=30 and his studies 
last five years sees, is: 
 



xk+1 = (A + B0L0 + BL2 + BL3 + BL4 + BL5 )xk + Bu1k = A1xk + Bu1,k
xk+2 = (A + B0L0 + BL1 + BL3 + BL4 + BL5 )xk+1 + Bu2,k+1 = A2xk+1 + Bu2,k+1
xk+3 = (A + B0L0 + BL1 + BL2 + BL4 + BL5 )xk+2 + Bu3,k+2 = A3xk+2 + Bu3,k+2
xk+4 = (A + B0L0 + BL1 + BL2 + BL3 + BL5 )xk+3 + Bu4,k+3 = A4xk+3 + Bu4,k+3
xk+5 = (A + B0L0 + BL1 + BL2 + BL3 + BL4 )xk+4 + Bu5,k+4 = A5xk+4 + Bu5,k+4  

(9) 
(10) 
(11) 
(12) 
(13) 

 
 
For this system of equations and the cost  
       

J30 = (xk+30+1
T Qf xk+30+1 + u(k+1)(30+ k )

T Rfu(k+1)(30+ k ) )
k=0

4

∑ + x30
T Qf x30

  (14) 
we derive the optimal policy by employing the Ricatti equations.  The Li’s are given by the following system 
of equations. 
 

 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

 
 
The total cost of a student who entered the University at year 30 is : 
 

         (26) 
 
Notice that we consider linear no memory strategies. We know that there may exist other solutions, which 
are not necessarily linear and may have memory. We know nonetheless (Selten and Ref.2) that these 
solutions disappear in the presence of noise. 
 
Section 3 
 
Here we consider the scalar case and study the costs of the players by changing the parameters. 
In this case we consider the matrices A, B, Q, R as constant scalars α,b,q,r. We take the R’s to be 1. So the 
system of the matrix equations becomes:  
 



xk+1 = axk + uk + L1xk + L2xk + L3xk + L4xk + L5xk

xk+1 = (a + L1 + L2 + L3 + L4 + L5 )xk + uk = a
__
xk + uk

a
__
= a + L1 + L2 + L3 + L4 + L5

uk
* = L0xk

L0 = −(K + I )−1K a
__

K = a
__T
(K − K(K + I )−1K )a

__
+ q0

J = (q0xk
2 + uk

2 )
k=0

∞

∑
 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

 
xk+1 = (a + L0 + L2 + L3 + L4 + L5 )xk + u1k = a1xk + u1k
xk+2 = (a + L0 + L1 + L3 + L4 + L5 )xk+1 + u2,k+1 = a2xk+1 + u2,k+1
xk+3 = (a + L0 + L1 + L2 + L4 + L5 )xk+2 + u3,k+2 = a3xk+2 + u3,k+2
xk+4 = (a + L0 + L1 + L2 + L3 + L5 )xk+3 + u4,k+3 = a4xk+3 + u4,k+3
xk+5 = (a + L0 + L1 + L2 + L3 + L4 )xk+4 + u5,k+4 = a5xk+4 + u5,k+4  

(34) 
(35) 
(36) 
(37) 
(38) 

 
L1 = −(K2 + I )

−1K2a1
K1 = a1(K2 − K2 (K2 + I )

−1K2 )a1 + qf
L2 = −(K3 + I )

−1K3a2
K2 = a2 (K3 − K3(K3 + I )

−1K3)a2 + qf
L3 = −(K4 + I )

−1K4a3
K3 = a3(K4 − K4 (K4 + I )

−1K4 )a3 + qf
L4 = −(K5 + I )

−1K5a4
K4 = a4 (K5 − K5 (K5 + I )

−1K5 )a4 + qf
L5 = −(K6 + I )

−1K6a5
K5 = a5 (K6 − K6 (K6 + I )

−1K6 )a5 + qf
K6 = qf  

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(The K’s and L’s are scalar’s) 
After some transformations we created the following scalar equations (five for the short term players and 
one for the long term player) where the xi’s , stand for the Ki’s, i=0,1..5: 
 
x5 = qf
x4 = qf + A

2 (x5 + x5
2 )

x3 = qf + A
2 (x4 + x4

2 )

x2 = qf + A
2 (x3 + x3

2 )

x1 = qf + A
2 (x2 + x2

2 )

x0 = q0 + A
2 (x0 + x0

2 )  

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

 
 



A =
a

1+ S + x0
S = x1 + x2 + x3 + x4 + x5

x0 =
a
A
−1− S

 

 
(56) 
 
(57) 
 
(58) 

 
\ 
Substituting x0 from (58) into (55) we obtain the equivalent  
 
F(A) = (α − Α− ΑS)(1− Α2 ) − Αqp − Α(α − Α− ΑS)2 = 0      (59) 
 
Since S can be calculated explicitly as a function of A by using recursively (50)-(54) we conclude that F(A) 
is a function of A, a , q0, qf which has to be solved for its roots. Solving F(A)=0 we find the A and 
immediately the xi’s from (50)-(54), (58). If F(A)=0 has many solutions A, then there exist many different xi’s, 
i.e. the game has many solutions. Of course we seek solutions A of F(A)=0 which are smaller than 1 in 
magnitude so that the close-loop system is stable. (Notice that A is the closed loop matrix). 
Notice also that in order that (55) has a real solution x0 it must hold: 
 

 
A <

1
q0 + q0 +1                 (60)     

 
It must be x1> x2> x3> x4> x5 , and all the xi’s positive. Also A and α have the same sign (see (50)) and that 
is why in the numerical examples we take α positive.  
 
 
 
Section 4 
 
Our next step is, by using the Matlab to solve these equations for several values of α, q0, qf. 
We present some results of the numerical experiments in Table 1.  
For each triplet of values of α, q0, qf. we solve first the equation F(A)=0 (59). Knowing the solution A of (59) 
we use this value to calculate the xi’s. Notice that F(0)=α > 0 , F(1)<0 and thus F(A)=0 always has a 
solution in (0,1). Since multiple solutions of F(A)=0 implies many solutions of the game, we provide some 
plots of F(A) , see Appendix A. It appears in our experiments that F(A)=0 has a unique solution. It would be 
interesting to verify that this holds for any value of α, q0, qf and thus to be able to conclude that the scalar 
case has always a unique solution. 
We experimented with several values of α, q0, qf and we tried to combine cases with α stable ( 0<α<1) , α 
unstable (α>1) , α small / large , q0 small/large , qf small / large. 
 



 
 

N/N qf q0 α x0 x1 
1 0.2 0.3 2 0.940643857 0.355739695 
2 0.4 5 3 10.95606453 0.427787782 
3 0.2 0.2 10 107.2815088 0.202033206 
4 5 0.1 2 0.147308367 5.17751777 
5 0.1 10 3 18.0845003 0.102653147 
6 0.1 10 9 89.13006363 0.101097654 
7 4 4 0.2 4.636156441 4.001217467 
8 3 2 1 2.376367131 3.035724933 
9 1 5 0.2 5.10851722 1.000648631 

10 5 1 0.2 0.308854969 5.001733902 
11 1 5 3 8.112666758 1.098785773 
12 5 1 3 0.812698284 5.386418711 
13 10 1 10 1.293726313 14.84245578 
14 1 10 10 99.18945565 1.018555487 
15 1 10 0.1 8.285322242 1.000098014 
16 10 1 0.1 1.629990457 10.00039713 
17 5 1 0.1 0.314056467 5.000433269 
18 5 1 3 1.113122694 5.378089324 
19 5 1 10 0.615899776 10.59389327 
20 10 1 0.1 4.554129883 10.00035642  

 

N/N qf q0 α x0 x1 
21 10 1 3 1.119064198 10.36973035 
22 10 1 10 1.293726313 14.84245578 
23 1 5 0.1 3.99919982 1.00020006 
24 1 5 3 8.112666758 1.098785773 
25 1 5 10 93.91815071 1.020622924 
26 1 10 0.1 8.285322242 1.000098014 
27 1 10 3 14.65925325 1.04426562 
28 1 10 10 99.18945565 1.018555487 
29 5 5 0.1 0.314056467 5.000433269 
30 5 5 3 5.139082174 5.287513421 
31 5 5 10 17.69422576 7.179090223 
32 0.5 0.5 0.1 0.49812324 0.500469337 
33 0.5 0.5 3 1.032002046 0.936738724 
34 0.5 0.5 10 93.55503582 0.508129951 
35 10 10 0.1 1.629990457 10.00039713 
36 10 10 3 9.126166344 10.27832769 
37 10 10 10 12.34529519 13.34944245 

Table 1 
 
 
By observing the values x0,x1 we draw some conclusions about the costs of the University(Jo) and the cost 
of the student(Jl) which cost are proportional to x0 and x1 respectively. When the system is unstable (α=10) 
we notice that when qf>qo then Jf>Jo and respectively when qf<qo then Jf<Jo. When qf=qo and they have 
small prices Jf>>Jo. While the qf, qo get bigger prices and still holds qf=qo then Jf gets closer to Jp until they 
become almost equal. So we conclude that in unstable system and with small values for qf,qp the cost of 
University is much bigger than students’  and the long term player is essentially more sensitive. 
In a more stable system (α=0.1) we notice that the players interchange roles and the students are more 
sensitive with bigger cost. 
 
Section 5  
 
Our purpose in this section is to compare the solutions obtained in sections 2,3 with the solution that would 
result if we were to group all the small duration players (students) together. In this case we would have two 
long term players. We work out only the scalar case.   
By considering all the students (short term players) as one player with a cost equal to the sum of the costs 
of all the students, and a state equation  
xk+1 = axk + uk + 5vk    
where 5vk is the control of this concatenated player , we have a classical linear quadratic infinite time game 
with two players. We take the R’s of the costs equal to 1 and α>0. We can derive the associated Ricatti 
equations for the Nash solution. After some transformations it turns out that we have to solve the following 
system of equations. 
  
x1 = 25qf + A

2 (x1 + x1
2 )       (61) 

x0 = q0 + A
2 (x0 + x0

2 )       (62) 

A =
a

1+ x0 + x1        (63) 
A is the closed loop matrix and in order to have real solutions x1, x0 and A stable it must be: 

A <
1

q0 + q0 +1
,A <

1
25qf + 25qf +1

,0 < A < 1
  (64) 



The cost of the university is proportional to x0 and the cost of the concatenated student player is 
proportional to x1.  
 
We present some numerical results of solving (61)-(63)  for several values of the parameters  
 

N/N qf q0 α x0 x1 A 
1 5 1 0.1 1.00000124 125.009765 0.000787341 
2 5 1 3 1.00097744 133.8020305 0.023620231 
3 5 1 10 1.003950318 223.6711045 0.044311499 
4 10 1 0.1 1.000000315 250.0098813 0.00039681 
5 10 1 3 1.000264549 258.8967572 0.01149879 
6 10 1 10 1.001625954 349.1463592 0.028478022 
7 1 5 0.1 5.000312068 25.00676429 0.00322507 
8 1 5 3 5.204657329 31.47982683 0.079608361 
9 1 5 10 5.217728109 115.8495711 0.081922022 

10 1 10 0.1 10.00084863 25.00501577 0.002777325 
11 1 10 3 10.64962595 29.80879337 0.072361659 
12 1 10 10 10.92680096 106.6542415 0.084330512 
13 5 5 0.1 5.000017479 125.0091778 0.000763305 
14 5 5 3 5.013982614 133.301559 0.02153385 
15 5 5 10 5.059925384 220.1440748 0.02153385 
16 0.5 0.5 0.1 0.500038222 12.50861048 0.007138447 
17 0.5 0.5 3 0.51421074 20.69211184 0.135096659 
18 0.5 0.5 10 0.506052038 110.713038 0.089111398 
19 10 10 0.1 10.00001615 250.0092116 0.000 383128 
20 10 10 3 10.01368411 258.3110144 0.011138971 
21 10 10 10 10.08866021 344.1268369 0.028151925 

Table 2 
 
By comparing the values of x0, x1 (for the same parameter values) of section 4 (Table 1) and section 5 
(Table 2) several conclusions can be drawn about the validity and usefulness of concatenating the many 
small players into one.  
By observing the values x0,x1 at Table 2 we draw some conclusions about the costs of the University(Jo) 
and the cost of the concatenated player (Jf) which cost are proportional to x0 and x1 respectively. When the 
system is unstable (α=10) we notice that when qf>qo then Jf>Jo (the same with Table 1 at the model of 
section 4) and qf<qo then Jf>Jo which is opposite with what we notice at section 4. When qf=qo and they 
have small prices then Jf>>Jo (the same with section 4).  
 
Section 6  
 
In our future search we intend to use the Stackelberg equilibrium model for the players. Of interest is also 
the case where the time duration of the short time players is a random variable taking values between 1 
and 5 or greater. Similarly we can consider cases where the appearance of a small duration player at each 
instant of time is itself a random event.  
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Appendix A 
 
PLOTS  F(A) – A  for Section 4 
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