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Abstract— We formulate and study a game where there is a
player who is involved for a long time interval and several small
players who stay in the game for short time intervals. The long-
term player plays open loop whereas the short-term players
play memoryless closed loop or open loop. This is motivated
by the fact that the long-term player is a player who usually
represents a state or institutional authority that has to commit
himself to long-term plans and regulations that are announced
in advance and remain unchanged for a long time, whereas the
short-term players not having such an institutional role can
change policies arbitrarily often. We study this game for Nash
strategies in a Linear Quadratic discrete time deterministic
set-up. For the memoryless closed loop strategies we confine
ourselves to strategies linear in the state. The derived associated
Riccati-type equations are of a novel character and are of
interest as such. Comparisons with the case where all players
play memoryless closed loop or open loop are carried out.

Index Terms— Nash strategy; Linear Quadratic games; Open
Loop strategy; Memoryless Closed Loop strategy; Different and
Overlapping Time Horizons; Overlapping Generations.

I. INTRODUCTION

In this paper, we formulate and study a game where
there is a player who is involved for a long time interval
and several small players who stay in the game for short
time intervals. Such dynamic game models could be related
to overlapping generation’s models in economics [2], [19].
The long-term player has a strategy with an open loop
information structure whereas the short duration players
apply a memoryless closed loop strategies, i.e. they satisfy
the Dynamic Programming Principle, (see [1], [3], [7], [22],
[23]). This is motivated by the fact that the long-term player
is a player who usually represents a state or institutional
authority that has to commit himself to long-term plans
and regulations that are announced in advance and remain
unchanged for a long period, whereas the short-term players
not having such an institutional role can change policies
arbitrarily often. The case where the short-term players also
play an open loop type strategy is also examined.

This game is studied in a Linear Quadratic, Deterministic,
and Discrete Time setup, where the short-term players use
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linear feedback strategies and all the players are in Nash
equilibrium, and where they all have the same cost struc-
ture independently of the time period they join the game.
The short-term players are assumed to stay in the game
for the same fixed period of time (taken to be of length
five without any loss of generality) whereas the long-term
players time horizon is taken to be infinite. In a previous
work we examined the case where all players were playing
Linear Memoryless Closed Loop [12]. Our present choice
of strategies is motivated as follows: In many applications
the long-term player is usually committed to a particular
policy, which is preannounced, and adhered to for long time
durations. Not revising his policy very often is thought of
as a way of providing a stable environment within which
the short-term players make and adapt their decisions and
occasionally drop out of the game at will, a behavior which
is not expected from or permitted to the long-term player.
One can think of the long-term player as a Government
agency or a Bank. Such institutions are long-term players
who stay in business for a very long time whereas most
of their customers stay for relatively shorter time periods.
Thus it would be of interest to derive the Nash solution
with this type of strategies for the players and compare the
resulting costs to those ensued in the case where all players
play Linear Memoryless Closed Loop i.e. when even the
long-term institutional player is allowed often changes in
his policy. Such type of games with overlapping horizons
have also potential applications in traffic systems and energy
market [11].

An important feature of the solutions derived is that they
lead to Riccati type equations for calculating the gains, which
are interlaced in time i.e. their evolution depends on present
and past values of the gains. Future versions of this game
may consider additional features, such as the random entry
time and exit of the small players, continuous time analogues,
etc.

Related work has been reported in [14], [15], [18]. The
present work is an extension of [14], where the same
framework was considered with all the players playing Linear
Memoryless Closed Loop strategies that satisfy the Dynamic
Programming Principle whereas here we consider that the
long-term player plays Open Loop. This leads to a different
set of conditions in the form of coupled Riccati equations,
which is of a novel character. It is interesting to compare the
solution presented here with the solution of [12]. This is done
in an example where the difference between an institutional
player who commits himself for a long time (i.e. plays Open
Loop) and an institutional player who updates his strategy all
the time (i.e. plays Memoryless-Closed Loop) is examined.
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The paper is organized as follows: In Section II, the basic
model is presented while the Nash solutions are derived in
Section III. Section IV provides algorithms to solve the ob-
tained coupled Riccati-type equations. Numerical examples
are given in Section V and concluding remarks make up
Section VI.

II. PROBLEM STATEMENT

Let us consider the following state evolution equation

xk+1 = Axk +Buk +
M

∑
i=1

Biui
k, k ∈ N, (1)

where xk ∈ Rn, is the state, uk ∈ Rm represents the control
of the long-term player and ui

k ∈ Rmi represent the controls
of the short-term players (i ∈ {1, · · · ,M}) who acts at the
time instants k ∈N. In Equation (1), ui

k is the control of the
player who entered the game at time k+ 1− i and he will
stay for k−M+ i. A short-term player coexists not only with
the long-term player but also with other short-term players
similar to him who entered the system before or after him
and whose time horizons overlap partly with his. The costs
associated with these players are:

J =
1
2 ∑

k∈N

(
xT

k Qxk +uT
k Ruk

)
, (2)

Js[k+1,k+M] =
1
2

xT
k+M+1QM+1xk+M+1

+
1
2

M

∑
j=1

(
xT

k+ jQ jxk+ j +(u j
k+ j)

T R ju
j
k+ j

)
(3)

The functional J in (2) is the cost of the long-term player
and Js[k+1,k+M] in (3) is the cost of the short-term player
who enters at time k+1 and acts until the time instant k+M.
For the matrices involved we have (i∈ {1, · · · ,M}) A∈Rn×n,
B∈Rn×m, Bi ∈Rn×mi . The matrices Q∈Rn×n and Qi ∈Rn×n

are symmetric and positive semidefinite. The matrices R ∈
Rm×m and Ri ∈ Rmi×mi are symmetric and positive definite.

We will consider the Nash solution with all the short-
term players playing Closed Loop (memoryless) whereas
the long-term player plays Open Loop. We will restrict the
Closed Loop solutions to be linear in the state. We do
that since although nonlinear solutions are known to exist
in the deterministic Linear Quadratic framework, it is also
known that in the presence of stochastic disturbances the
nonlinear solutions are not sustainable. Also, due to the
symmetry of the short-term players it is natural to seek
solutions for them which are also symmetric, i.e. the five-
tuple of gains used by any short-term player, composed of his
gains during his first, second, third, fourth and fifth actions,
is the same five-tuple that will be used by any other short-
term player independently of the time he starts his short-
term -of length five-career. We will also consider the Nash
solution with all the short-term players and the long-term
player all play Open Loop. Clearly the formulae and the
methodology extend trivially to the case where the horizon
of the short time players is not five but any arbitrary number

of stages. Actually the study of the behavior of the solution
as the time horizon of the short-term players increases is of
interest in answering important questions about the modeling
characteristics of the games introduced here.

III. SOLUTION

A. Open Loop – Closed Loop case

In order to derive the Nash equilibrium delineated above
we proceed as follows. Let us first consider the short-term
player who acts during the time interval [k,k+M− 1]. He
sees the following system of equations (` ∈ {0, · · · ,M−1}):

xk+`+1 =Axk+`+B1+`u1+`
k+`+Buk+`+ ∑

j∈{1,··· ,M}, j 6=(1+`)

B ju
j
k+`,

(4)
where u1+`

k+` are his controls (` ∈ {0, · · · ,M−1}). The inputs
uk+` (` ∈ {0, · · · ,M−1}) are the Open Loop controls of the
Long-term player, and the rest are the Closed Loop controls
of the other short-term players. Applying the discrete time
minimum principle, see [4], we obtain the following system:

Hk
j =

1
2
(xT

k+ j−1Q jxk+ j−1 +(u j
k+ j−1)

T R ju
j
k+ j−1)

+(pk
j+1)

T (Axk+ j−1 +Buk+ j−1 +B ju
j
k+ j−1

+ ∑
i∈{1,··· ,M},i6= j

BiLixk+ j−1
)
. (5)

The control u j
k+ j−1 aims at minimizing Hk

j and is given
by

u j
k+ j−1 =−R−1

j B j pk
j+1. (6)

Moreover we have the relations, for j ∈ {1, · · · ,M}:

pk
j =

∂Hk
j

∂xk+ j−1
= Q jxk+ j−1 +

(
A+ ∑

i∈{1,··· ,M},i6= j
BiLi

)T pk
j+1,

(7)
and finally

pk
M+1 = QM+1xk+M. (8)

Notice that since the long-term player plays Open Loop,

his control does not contribute to
∂Hk

i+1

∂xk+i
, i∈ {0, · · · ,M−1},

whereas the controls of the other short-term players do.
It should be noticed that since we consider that the short-

term players play the same M–tuple of gains independently
of when they start, we have the relations, `∈ {0, · · · ,M−1}:

u1+`
k+` =−R−1

1+`B1+`pk+`
2+` = L1+`xk+`, (9)

that is
u j

k = L jxk, ∀ j ∈ {1, · · · ,M}. (10)

Let us now consider the long-term player. He sees the state
equation:

xk+1 = Axk +Buk + ∑
j∈{1,··· ,M}

B ju
j
k, k ∈ N, (11)

or equivalently:

xk+1 = (A+ ∑
j∈{1,··· ,M}

B jL j)xk +Buk, k ∈ N. (12)
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Applying the discrete time minimum principle for the
infinite time invariant Linear Quadratic problem, yields :

H0
k =

1
2
(
xT

k Qxk +(uk)
T Ruk

)
+ pT

k+1
(
(A+ ∑

j∈{1,··· ,M}
B jL j)xk +Buk

)
. (13)

uk minimizing H0
k is given by

uk =−R−1BT pk+1, (14)

and we have

pk =
∂H0

k
∂xk

= Qxk +(A+ ∑
j∈{1,··· ,M}

B jL j)
T pk+1, (15)

with
lim

k→+∞
pk = 0. (16)

To sum-up we have the following system of equations
` ∈ {0; · · · ,M−1}:

L1+`xk+` =−R−1
1+`B

T
1+`pk

2+`; (17)

pk
1+` = Q1+`xk+`+

(
A+ ∑

i∈{1,··· ,M},i6=(1+`)

BiLi
)T pk

2+` (18)

and Equation (8), in addition of Equations (14) and (15).
Let us set

pk
1+` = K1+`xk+`, (19)
pk = Kxk, (20)

one can easily see that equivalently we have to solve the
system j ∈ {1, · · · ,M}:

K j = Q j +
(
A+ ∑

i∈{1,··· ,M},i6= j
BiLi

)T K j+1Acl (21)

and
KM+1 = QM+1. (22)

In addition,

K = Q+
(
A+ ∑

i∈{1,··· ,M}
BiLi

)T KAcl, (23)

with j ∈ {1, · · · ,M}:

L j =−R−1
j BT

j K j+1Acl, (24)

L =−R−1BT KAcl, (25)

Acl = A+BL+ ∑
j∈{1,··· ,M}

B jL j. (26)

By underlining the matrix Acl, we finally get the system
j ∈ {1, · · · ,M}

K j = Q j +AT
cl(K j+1 +KSK j+1 +K j+1S jK j+1)Acl,(27)

K = Q+AT
cl(K +KSK)Acl, (28)

A = (In +SK + ∑
j∈{1,··· ,M}

S jK j+1)Acl. (29)

and
KM+1 = QM+1, (30)

where S = BT R−1B and S j = BT
j R−1

j B j, j ∈ {1, · · · ,M}.
In order to satisfy the condition (16), it suffices that the

closed loop matrix Acl has its eigenvalues strictly inside the
unit disk.

Proposition 1: If the system of Equations (27)–(30)
admits solutions K, {K j} j∈{1,··· ,M+1} which are positive
semidefinite and the matrix Acl is asymptotically stable, then
the strategies (10) for the short-term players and the strat-
egy (14) for the long-term player, are in a Nash equilibrium
where the short-term players play Memoryless Closed Loop
and the long-term player plays Open Loop. (Notice that the
long-term player’s strategy is not Memoryless Closed Loop
and the formula

uk =−R−1BT Kxk (31)

indicates only its value realization). The optimal cost of the
long-term player is

J∗ =
1
2

xT
0 Kx0, (32)

and for the short time player who enters at time k is

J∗s [k,k+M−1] =
1
2

xT
k K1xk. (33)

�
Notice that the formulae are very similar to those obtained

for the case where all players play Memoryless Closed Loop
considered in [12]. The extra terms appearing in the recursion
for Ki are the only but substantial difference. They are of
reminiscent of the Riccati type equations appearing in the
theory of the classical LQ Nash Games, (see [1], [3], [7],
[22], [23]), but have some different features worth pointing
out, such as the noncausal character.

B. Open Loop – Open Loop case

For the case where not only the long-term horizon player
plays Open Loop, but the small horizon players also play
Open Loop, then instead of Equation (7), we have to use
j ∈ {1, · · · ,M}:

pk
j =

∂Hk
j

∂xk+ j−1
= Q jxk+ j−1 +AT pk

j+1. (34)

Thus we end up with the system:

L1+`xk+` =−R−1
1+`B

T
1+`pk

2+` (35)

pk
j = Q jxk +AT pk

j+1, (36)

and
pk

M+1 = QM+1xk+M, (37)

in addition of
uk =−R−1BT pk+1, (38)

pk = Qxk +(A+ ∑
j∈{1,··· ,N}

B jL j)
T pk+1, (39)

lim
k→+∞

pk = 0. (40)

Let us set:

pk
j+1 = K j+1xk+ j−1, ∀ j ∈ {0, · · · ,M}, (41)
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and
pk = Kxk. (42)

One can easily see that equivalently we have to solve the
system:

K j = Q j +AT K j+1Acl, ∀ j ∈ {1, · · · ,M} (43)

KM+1 = QM+1, (44)

K = Q+
(
A+ ∑

j∈{1,··· ,M}
B jL j

)T KAcl, (45)

where the following relations hold

L j =−R−1
j BT

j K j+1Acl, (46)

L =−R−1BT KAcl (47)

Acl = A+BL+ ∑
j∈{1,··· ,M}

B jL j. (48)

Substituting in the above equations the relation

A+ ∑
j∈{1,··· ,M}

B jL j = Acl−BL, (49)

we finally get the system

K j = Q j +AT K j+1Acl, ∀ j ∈ {1, · · · ,M}, (50)
KM+1 = QM+1, (51)

K = Q+AT
cl(K +KSK)Acl, (52)

A = (In +SK + ∑
j∈{1,··· ,M}

S jK j+1)Acl. (53)

In order to satisfy the condition (40), it suffices that the
closed loop matrix Acl has its eigenvalues strictly inside the
unit disk.

Proposition 2: If the system of Equations (50)–(53) ad-
mits solutions K and {K j} j∈{1,··· ,M} which are positive semi-
definite and the matrix Acl is asymptotically stable, then the
strategies (10) for the short-term players and (38) for the
long-term player, are in a Nash equilibrium where the short-
term players and the long-term player play Open Loop. (No-
tice that the long-term player’s strategy is not Memoryless
Closed Loop and the formulae

u1+`
k+` =−R−1

1+`B
T
1+`K2+`x1+`, ∀` ∈ {0, · · · ,M−1} (54)

and
uk =−R−1BT Kxk (55)

indicate only their value realizations).The optimal cost of the
long-term player is

J∗ =
1
2

xT
0 Kx0, (56)

and for the short time player who enters at time k is

J∗s [k,k+M−1] =
1
2

xT
k K1xk. (57)

�
The following section provides algorithms to solve the

systems of equations which are at the heart of the two
propositions.

IV. ALGORITHMS

It is noteworthy that is the two cases, the system of
Equations (27)–(30) and (50)–(53) may be viewed as new
coupled algebraic and difference Riccati equations. They
cannot be integrated backward in time because the equations
depends on the algebraic solution K. They cannot be solved
directly by algebraic methods [5], [16], [17]. Thus only
numerical methods could be used to solve such coupled
equations. The following algorithms are based on a fixed
point argument and are new modified versions of algorithms
described in [8], [10], [12], [13].

The solution K and K`, (` ∈ {1, · · · ,M+1}) of the equa-
tions (27)–(30) are symmetric and positive semidefinite due
to the symmetry of these equations and the definiteness of
the weighting matrices of the criteria J and Js[k+1,k+M].
A way to solve the equations (27)–(30) is to consider
Algorithm 1.

Algorithm 1 (Open-loop/Closed-loop):
• Define an error level ε .
• Initialize K(0) and K(0)

` (` ∈ {1, · · · ,M + 1}). For in-
stance, consider trivial matrices.

• At every step c ∈ N∗, set

A(c−1)
cl =

(
In +SK(c−1)+ ∑

`∈{1,··· ,M}
S`K

(c−1)
`

)−1

A

(58)
and apply the iterative scheme

K(c) = Q+(A(c−1)
cl )T ×

(K(c−1)SK(c−1)+K(c−1))A(c−1)
cl (59)

K(c)
M+1 = QM+1 (60)

K(c−1)
`−1 = (A(c−1)

cl )T
(

K(c−1)SK(c−1)
`

+K(c−1)
` S`K

(c−1)
` +K(c−1)

`

)
×

A(c−1)
cl +Q`−1, ∀` ∈ {2, · · · ,M+1}.(61)

• Compute ε(c) defined by

ε
(c)
K = ‖K(c)−Q− (A(c)

cl )
T (K(c)SK(c)+K(c))A(c)

cl ‖2
(62)

ε
(c)
K,` = ‖K

(c)
`−1−Q`

− (A(c)
cl )

T (K(c)
j+1 +K(c)SK(c)

j+1 +K(c)
j+1S jK

(c)
j+1)A

(c)
cl ‖2

(63)

and
ε
(c) = max

(
ε
(c)
K ,{ε(c)K,`}`∈{1,··· ,M+1}

)
. (64)

• Stop the algorithm when

ε
(c) < ε. (65)

�
Algorithm 2 is dedicated to solve the system of equa-

tions (50)–(53).
Algorithm 2 (Open-loop/Open-loop):
• Define an error level ε .
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• Initialize K(0) and K(0)
` (` ∈ {1, · · · ,M + 1}). For in-

stance, Identity matrices or the solution of the decoupled
equations could be used.

• At every step c ∈ N∗, set

A(c−1)
cl =

(
In +SK(c−1)+ ∑

`∈{1,··· ,M}
S`K

(c−1)
`

)−1

A

(66)
and apply the iterative scheme

K(c) = Q+(A(c−1)
cl )T ×

(K(c−1)SK(c−1)+K(c−1))A(c−1)
cl (67)

K(c)
M+1 = QM+1 (68)

K(c−1)
`−1 = AT K(c−1)

` A(c−1)
cl ×

+Q`−1, ∀` ∈ {2, · · · ,M+1}. (69)

• Compute ε(c) defined by

ε
(c)
K = ‖K(c)−Q− (A(c)

cl )
T (K(c)SK(c)+K(c))A(c)

cl ‖2
(70)

ε
(c)
K,` = ‖K

(c)
`−1−AT K(c)

j+1A(c)
cl −Q`‖2 (71)

and
ε
(c) = max

(
ε
(c)
K ,{ε(c)K,`}`∈{1,··· ,M+1}

)
. (72)

• Stop the algorithm when

ε
(c) < ε. (73)

�
The following section will illustrate the efficiency of our

approach.

V. EXAMPLES. COMPARISONS OF SOLUTIONS

Let us consider the following example, where M = 5, n =
2, ε = 10−6,

A =

[
0.5 0.2
0 0.7

]
; B =

[
1.5
1

]
;

B` =

[
1

0.5

]
, (∀` ∈ {1, · · · ,M});

Q =

[
1 2
2 4

]
; R = 1;

QM+1 = Q` = 10In,R` = 1 (∀` ∈ {1, · · · ,M});

By applying Algorithm 1, the breaking condition is
reached at the 12th iteration. The evolution of the error is
depicted in Figure 1. We thus obtain the numerical results:

K(12) =

[
1.2787 1.2998
1.2998 5.7608

]
> 02;

and
K(12)

1 =

[
10.1542 −0.4770
−0.2825 11.0307

]
.

In addition, we have A(12)
cl =

[
0.0698 −0.1407
−0.0927 0.2196

]
, with

λ (A(12)
cl ) = {0.0082,0.2813}. That is Acl is stable.

2 3 4 5 6 7 8 9 10 11 12
10 8

10 6

10 4

10 2

100

102

Iteration c

(c
)

Fig. 1. Errors ε
(c)
K and {ε(c)K,`}`∈{1,··· ,M} in function of the iteration c, for

Algorithm 1.

By considering the same numerical example, we apply
Algorithm 2. The breaking condition is reached at the 11th
iteration. The evolution of the error is depicted in Figure 2.
The numerical results are as follows

K(11) =

[
1.2823 1.2912
1.2912 5.7814

]
> 02;

and

K(11)
1 =

[
10.3933 −0.8043
−0.6164 11.5015

]
.

In addition, we have A(11)
cl =

[
0.0685 −0.1378
−0.0924 0.2191

]
,

with λ (A(12)
cl ) = {0.0081,0.2795}. That is Acl is stable.

2 3 4 5 6 7 8 9 10 11
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Iteration c

(c
)

Fig. 2. Errors ε
(c)
K and {ε(c)K,`}`∈{1,··· ,M} in function of the iteration c, for

Algorithm 2.

It is important to point out that the two algorithms present,
at least on these numerical examples, a logarithmic con-
vergence rate. In addition, the results obtained by the two
algorithms are distinct, even if they are close.

The cost function Js[k,k +M] for the two functions are
shown in Figure 3. With the semilog scale, the plots seem
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to be the same. Nevertheless by drawing their difference in
Figure 4, we can emphasize that they are distinct. The error
convergences to zero due to the stability of the closed-loop
matrix Acl. It should be noted also that the sign of this error
depends on the time for this example. A framework is thus
not always better than the other.

1 2 3 4 5 6 7 8 9 10
10 10

10 8

10 6

10 4

10 2

100

102

Time k

C
os

t f
un

ct
io

ns

Fig. 3. Cost functions Js[k,k+M] in function of time k.

1 2 3 4 5 6 7 8 9 10
0.005

0

0.005

0.01

0.015

0.02

0.025

Time k

Er
ro

r

Fig. 4. Error between the cost functions Js[k,k+M] in function of time k.

VI. CONCLUSIONS

Several interesting questions are worthy of further investi-
gations, such as the continuous time analogues in the Linear
Quadratic set-up, [18], the further theoretical study of the
new types of Riccati-type equations and the development of
good computational algorithms for solving them. Consider-
ing that the long-term player can be easily thought of as a
Leader the study of the Open Loop and Memoryless Closed
Loop solutions for the Stackelberg equilibrium concept [1],
[3], [6], [7], [9], [20], [21], is also a worthy avenue of
exploration. Another interesting question is to consider that
the long-term player plays for a large but finite length of time,
derive the solutions and take the limit of the solutions as the
time period of the long-term player goes to infinity. Does this
limit exist and how is it related to the infinite time solutions

examined here? (Notice that in Dynamic Games the solutions
of finite time problems do not relate in simple ways to the
solutions of their infinite time analogues. Similar remarks
hold for the interplay of existence questions between finite
and infinite time analogues). Stochastic analogues pertaining
in particular to random entries, and exits of the short time
players is another interesting topic, see [15] for some early
results.
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