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Abstract 

 

We consider a class of Discrete-Time Linear Quadratic Games involving a major player 

who has an infinite time horizon and a random number of minor players of several types. 

Each type of minor player has its own time horizon and its own dynamic equation. At 

every time step, the dynamic equation of each player depends on the state vector of the 

currently active players and its own control. The number of new minor players of each 

type, entering at each time step is a random variable following a Markov chain. Sufficient 

conditions characterizing a Nash equilibrium of Linear Feedback Strategies are derived. 

Games involving a large number of minor players are then studied using a mean field 

approach. ε–Nash  equilibrium results are derived for the case with a large number of 

players. Numerical examples are also given.  

 

1. Introduction 

 
In most of the dynamic game models the time interval during which the players are involved 

in the game as well as the number of players that participate in the game at each time step is quite 

structured. For example in finite or infinite horizon dynamic games e.x. [27], [6] all the players 

participate in the game for identical time intervals. In overlapping generation games [26], [5], 

[13] a known number of players of each generation enters the game at each time step and stays 

for a certain period of time. Several attempts to impose less structure on the players’ time 

intervals or on the number of players that participate in the game have been made. For example in 

games with population uncertainty or in Poisson games [20] the number of players that participate 

in the game is not known a priori. Games with random horizon have been studied in [2] in a 

repeated game setting and in [28] in a differential game setting. In this class of games the time 

intervals that the players are involved in the game are identical, however the time horizon is 

random. In [14] a game with overlapping generations involving players with horizon 2 is 

considered. The number of players of each generation is however random. This work is a new 

attempt to impose less structure on the time intervals that the players participate in the game as 

well as on the number of the players active at each time step. 

In this paper we consider a Dynamic Linear Quadratic (LQ) Stochastic Game with players 

having different time horizons, interacting for different time intervals. Particularly there is a 

player with infinite time horizon, called the major player and many players with finite time 
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horizons, called minor players, that enter the game at every time step. We suppose that each 

minor player belongs to one of several, but finite in multitude, categories (types). Each type of 

minor player has its own dynamics, cost function and time horizon (i.e. it stays in the game for a 

specified number of steps). The minor players enter randomly in the game. Particularly at each 

time step, the number of new players of each type that enter the game is a random variable with a 

distribution depending on the number of players of each type that participate in the game at that 

time step. The problem considered here is the characterization of a Nash equilibrium of Feedback 

Strategies. After that, the case of a game with a large number of minor players i.e. the case which 

the number of new minor players entering at each step is large, is considered. A mean field 

approximation is used to characterize strategies, which are asymptotically optimal as the number 

of new minor players in each step tends to infinity.  

The motivation for the introduction of the major player comes from several game situations 

where there is a long living agent or institution that at each time step interacts with a number of 

agents and the interaction with each agent is maintained for a certain, rather small amount of 

time. For example a bank that gives loans to households may be considered as a major player 

with an infinite horizon and each person that assumes a loan as a minor player with a finite pre-

specified time horizon. The bank issues loans also to enterprises and other entries and thus it 

deals with several type of customers. Another example of a game theoretic model involving 

players with different time horizons and different types is a liberalized energy market ([15]) in 

which there is a public power corporation with an infinite time horizon and many renewable 

energy producers that take a permission to enter the system for a certain amount of time. A third 

example is University Games [25], where the students of each semester stand for the minor 

players and the university as a major player. Other examples involve the study of repeated games 

with long-run and short run-players [8] such as chain store game and the study of reputation 

effects [18],[7]. 

The interest for the games with large number of players is not new. In [21] games with a 

continuum of players called oceanic games were introduced and a value for such games was 

defined. Models with a continuum of players were also studied in [4] (see also [22 ch. X]). In 

recent years the mean field approach in the study of games with large number of players was 

introduced [9]. The closely related methodology of Nash Certainty Equivalence was recently 

developed in order to obtain asymptotic Nash equilibrium results as the number of players tends 

to infinity [10]. Stochastic games with large number of players have been considered in [11]. An 

LQG game involving a major player and a large number of players of infinite time horizon is 

considered in [12] and asymptotically optimal decentralized feedback strategies were 

characterized.   

In games with random entrance that we study in the current work, the future number of 

players is not known precisely and thus the dynamic equations are linear but uncertain. The 

problem of random entrance is thus reduced to the study of coupled finite and infinite horizon LQ 

problems for Markov Jump Linear Systems (MJLS). Thus the Nash equilibria are characterized 

using appropriate coupled Riccati type equations. For the large number of players case, the mean 

field approach involves the statement of approximate optimal control problems assuming an 

infinity of players. In that case ε-equilibrium results are proved. The method used to prove the ε-

equilibrium results is based on some results connecting the stability and the LQ control of MJLS 

with the convergence of a sequence of Markov chains. These results are proved in the Appendix 

and may be of independent interest. 

The rest of the paper is organized as follows: In section 2 the dynamics of major and minor 

players as well as the cost functions are defined. In section 3 sufficient conditions for a strategy of 

a player to be optimal given the strategies of the other players are obtained. In section 4 sufficient 

conditions on a set of linear feedback strategies to constitute a Nash equilibrium are obtained. In 

section 5 a numerical example is given. In section 6 the problem with a large number of players is 

approximated by a mean field model.  Then some ε-Nash equilibrium results are obtained. In 



3 

 

Section 7, we conclude and propose some directions for future research. The proofs of the results 

in the text are relegated to the appendix. 

 
2. Description of the Game 

 

The random entrance of the minor players is first described. Let ( ), , PrΩ ℑ  be a probability 

space. The number of the types of minor players is finite; denote by 1,2,..., p  the types of minor 

players. For a minor player of type { }1,2,....,j p∈ , let jT  be its horizon i.e. the number of steps 

that this player stays in the game. Consider a countably infinite set of minor players 

{ }1,2,...Λ ≡ =� . For any minor player i∈Λ , let  { }:
i

t Ω→ ∪ ∞�  be a stopping time 

describing the time step at which the player i  enters the game.  At each time step k , the number 

of the minor players of each type that participate in the game may be described by the vector:
 
  

( )1 2
, 11, 1 2, 11,0 1,1 2,0 2,1 ,0 ,1

, ,..., , , ,..., ,..., , ,..., /pp TT T p p

k k k k k k k k k k cy N N N N N N N N N s
−− −=           (1) 

where 
, ,#j l j l

k kN I= , 
,j l

kI  the set of players of type j  with entrance time k l−  for 

0,1,.., 1jl T= −  and c
s  the maximum possible number of active players and will be called the 

scale variable. Let us also denote 

1

,

1 0

jTp
j l

k k

j l

I I

−

= =

=∪∪ , the set of active players at time step k . 

Suppose that the number of new minor players of type j  that enter at time step 1k +  i.e. 
,0

1

j

kN +  is 

a random variable with distribution that depends on k
y . Thus the random entrance is modeled by 

a Markov chain k
y  with a finite state space and let 1,2,..., M  be an enumeration of the Markov 

chain state space. We shall use the vector form (1) and the enumeration 1,2,..., M  

interchangeably. Denote also by 
ij

p Π =    the transition matrix i.e. ( )1Pr |
k k ij

y j y i p+ = = = .   

Each player participating in the game has its own dynamic equation. The evolution of the 

state vector of each player depends on the state vectors of the currently active players and its own 

control. The dynamics of the major player is described by: 

( ) ( ) ( ) ( ) ( )1 /i

k

MZM M M i M M M

c

i I

x k A x k F x k s B u k w k
∈

+ = + + +∑ ,                 (2) 

where 
Mx  and 

ix  are the state vector of the major player and minor player i  respectively and 

i
Z  is the type of player i . The stochastic disturbances ( )Mw k  are zero mean iid random 

variables with finite variances. Denote by 
M

D  the covariance matrix of ( )M
w k . The initial 

condition for the major player ( )0Mx  is also of zero mean and has a finite variance.  

The dynamics of the minor player i  is described by: 

( ) ( ) ( ) ( ) ( ) ( )1 /i ji i i

k

Z ZZ Z Zi i M j i i

c

j I

x k A x k G x k F x k s B u k w k
∈

+ = + + + +∑          (3) 

The initial condition for the minor player i  is random and given by: 

( ) ( )1i i

i i
x t w t= − .                (4) 

The stochastic disturbances ( ) ,    i

k
w k i I∈  are independent for each time step k  and 

independent of the previous values of the state vectors. For each minor player the disturbances 
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( )iw k  are zero mean iid random variables with finite variances. For a minor player i∈Λ  of 

type { }1,...,j p∈ , denote by 
j

D  the covariance matrix of ( )iw k .  

In order to define the cost functions of the players let us introduce the following quantities: 

( ) ( )
,

, /
j l

k

j l i

c

i I

z k x k s
∈

= ∑ ,  ( ) ( ) ( ) ( ) ( )1
, 11, 11,0 ,0... ... ... pp TT p

z k z k z k z k z k
−− =  � , 

where we use the convention that the sum of an empty set of vectors is the zero vector of 

appropriate dimensions. Let us call the vector z� , the vector of mean field quantities. The cost 

function of the major player is given by: 

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
0

T
T T T

M k M T M T M M

k

k

J E a x k z k Q y x k z k u k Ru k
∞

=

     = +          
∑ � �        (5) 

where ( )Q y , { }1,...,y M∈  and R are positive semidefinite and positive definite matrices 

respectively of appropriate dimensions and ( )0,1a∈  is a discount factor.  

For the minor player i∈Λ  the cost function is given by: 

( ) ( )( ) ( )( ){ ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( )
( ) 1

0

                                            

i

i Z i

Z i

i i

T TZi i i

i f t T iZ i Z i

T
T T

Z Zi i i i

i k i i i

k

J E x t T Q y x t T

x t k Q y x t k u t k R u t k

+

−

=

= + + +

 + + + + + +   
∑

� �

�

    (6) 

where ( ) ( )( ) ( ) ( ) ( )
T

T T
i M T i

x k x k z k x k =   
� � , { }1,...,y M∈ , ( )iZ

f
Q y  and ( )iZ

Q y  are 

positive semidefinite matrices of appropriate dimensions and R  positive definite matrix of 

appropriate dimensions. 

Remark 2.1: Linear dynamics describing the state of the universe may also be included in 

the model as a part of the state vector of the major player. More general cases with time varying 

( )iZ

k
Q y , or dependence of , , , , , ,i ji i i i

Z ZMZ Z Z ZM M
A F B A G F B  on k

y   may be considered. The 

dynamic equation of the major and minor players may also depend on the weighted sum of the 

values of the control variables of the other players. These cases may be analyzed with the 

methods considered here. For notational simplicity we consider the cases given by (2), (3), (5) 

and (6).                                                                                      �  

Let us suppose that a player involved in the game at time step k  has access to the value of 

the state vector of the major player ( )M
x k , the mean field quantities ( )z k� , the value of its own 

state vector and the value of the Markov chain 
k

y . The problem considered here is the 

characterization of a Nash equilibrium of closed loop strategies. We shall focus on feedback 

strategies [6 Def 5.2] i.e. on strategies that depend only on the current state measurements. 

Particularly a minor player i∈Λ  uses a strategy in the form: 

( ) ( ) ( ) ( ) ( ) ( )
1

,

1 0

, , , , ,
j

i i i

Tp
Z M Z Zi M j l i

i k i k i k

j l

u L k t y x k L j l k t y z k L k t y x k

−

= =

= − + − + −∑∑        (7) 

and the major player uses a strategy in the form: 

( ) ( ) ( ) ( )
1

,

1 0

, ,
jTp

M MM M M j l

k k

j l

u L y x k L j l y z k

−

= =

= +∑∑                                                                    (8) 

 



5 

 

3. Optimal control problems  
 

In this section the optimal control problems for the players involved in the game are stated 

under the assumption that the other players use strategies (7) and (8). The dynamics of a player as 

well as its cost function under the control laws (7) and (8) depend only on ( )M
x k , ( )z k� , the 

value of its own state vector and k
y . Thus optimal control problems for the players will be stated 

based on reduced order models involving only these quantities and solutions of the optimal 

control problems are again in the form (7) and (8). At first the evolution of the mean field vector 

( )z k�  is computed. For the component 
,j l

z , 1,...,j p=  and 0,..., 1
jZ

l T= −   it holds: 

( ) ( ) ( )
, 1 ,
1

, 1 1 1
1 1 1

j l j l
k k

j l i i

i I i Ic c

z k x k x k
s s+

+

+

∈ ∈

+ = + = +∑ ∑  

For 
,j l

ki I∈  it holds: 

( ) ( ) ( ) ( ) ( )
' 1

' ', '

' 1 ' 0

1
jTp

i j i j M jj j l j i i

j l

x k A x k G x k F z B u k w k

−

= =

+ = + + + +∑∑  

Thus we have: 

( ) ( ) ( ) ( )

( ) ( )

'

, ,

1, ,
, 1 , ' ', '

' 1 ' 0

1

1 1
                                                                              

j

j l j l
k k

Tj l j l p
j l j j l j M jj j lk k

j lc c

j i i

i I i Ic c

N N
z k A z k G x k F z k

s s

B u k w k
s s

−
+

= =

∈ ∈

+ = + + +

+ +

∑∑

∑ ∑
          (9) 

To compute the evolution of z�  it remains to compute ( ),0
1

j
z k + . It holds:  

( ) ( ) ( )
,0 ,0
1 1

,0 1 1
1 1

j j
k k

j i i

i I i Ic c

z k x k w k
s s

+ +∈ ∈

+ = + =∑ ∑                                                    (10) 

 

3.1 Optimal control for the major player 
 

The dynamics and cost for the major player depend only on the quantities 
Mx , z�  and y .  

Thus using (7), (9) and (10), the evolution of these may be computed: 

( ) ( ) ( ) ( ) ( )
1

,

1 0

1
jTp

M M M Mj j l M M M

j l

x k A x k F z k B u k w k

−

= =

+ = + + +∑∑ , 

( ) ( )
,0
1

,0 1
1

j
k

j i

i Ic

z k w k
s

+∈

+ = ∑ , 

( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) ( )
'

,

,
, 1 ,

1, ,
' ', ' ,

' 1 ' 0

1 ,

1
           + ', ', , ,

j

j l
k

j l

j l j j l j j jM Mk
k

c

Tj l j lp
jj j j j l j j j l ik k

k k

j l i Ic c c

N
z k A z k G B L l y x k

s

N N
F B L j l l y z k B L l y z k w k

s s s

+

−

= = ∈

+ = + + +

+ + +∑∑ ∑
 

The evolution of 
Mx  and  z�  may be described in compact form: 
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( )
( )

( )
( )

( )
( ) ( )

1

1

M M

M M M M

k

x k x k
A y B u k W k

z k z k

   +
= + +   

+      

� �

� �
          (11) 

 

where: 

1,0 1, 1 ,0 , 11

1,0 1,0 1,0 1, 1 1,0 ,0 , 11,0 1,01

1, 1 1, 1 1, 1 1, 11,01 1 1 1

... ... ...

... ... ...

... ... ... ... ... ... ... ...

...

M M M T M p p TM M p

M T p p Tp

T T T TM

M M M M M

x x x z x zx z x z

M M M M M

z x z z z zz z z z

M M M

M z x z z z z

A A A A A

A A A A A

A A A
A

− −

− −

− − − −

=

� � � � �

� � � � �

� � �
� 1, 1 , 1,0 1, 11 1

,0 ,0 1,0 1, 1 ,0 ,0 , 1,0 ,01

, 1 , 1 , 1 1, 11,0 1

... ...

... ... ... ... ... ... ... ...

... ... ...

... ... ... ... ... ... ... ...

... .

T p Tp T p

p M p T p p p Tp p p

p T p T p T TMp p p

M M

z z z z

M M M M M

z x z z z zz z z z

M M M

z x z z z z

A A

A A A A A

A A A

− −−

− −

− − − −

� �

� � � � �

� � �
, 1 , 1 , 1,0

.. ...p T p T p Tpp p p

M M

z z z z
A A− − −

 
 
 
 
 
 
 
 
 
 
 
 
  

� �

                      (12) 

 

( )M M

M M

kx x
A y A=� ,  ( ),M j l

M Mj

kx z
A y F=� ,  

( ) ( )( ),

, 1

1,j l M

j l
M j j jMk

k kz x
c

N
A y G B L l y

s

−

= + −�  for 1l ≥ ,   

( ),0 0j M

M

kz x
A y =� ,  

( ) ( )( ) ( ), ', '

, 1 , 1
'

1, ' , '', ', 1, ',j l j l

j l j l
M jj j j j j jk k

k k l l j j kz z
c c

N N
A y F B L j l l y A B L l y

s s
δ δ

− −

−

 
= + − + + 

 
�  for 1l ≥ ,  

( ),0 ', ' 0j j l

M

kz z
A y =�

  
and  

0

M

M B
B

 
=  
 

� . 

Thus the optimal control problem that solves the major player is a discounted infinite horizon LQ 

control problem for a MJLS. The problem is stated as:  

Minimize: 

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
0

T
T T T

M k M T M T M M

k

k

J E a x k z k Q y x k z k u k Ru k
∞

=

     = +          
∑ � �  

subject to:  

( )
( )

( )
( )

( )
( ) ( )

1

1

M M

M M M M

k

x k x k
A y B u k W k

z k z k

   +
= + +   

+      

� �
� �

 

 

3.2 Optimal control for a minor player 

 

Consider a minor player 0i  with entrance time 
0i

t  and suppose that other players use the 

feedback strategies (7) and (8). Then the evolution of the state vector and the cost of 0i  depend 

only on 
Mx , 0ix , z�  and y . The evolution of vector z�  is computed substituting 

Mu  from (8) 

and 
iu  from (7) for all minor players except 0

i . It holds: 
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( ) ( )
,0
1

,0 1
1

j
k

j i

i Ic

z k w k
s

+∈

+ = ∑ ,  

for 
0i

j Z≠  or 
0i

l k t≠ −  it holds: 

( ) ( ) ( )( ) ( )
,

, 1 ,1 ,
j l

j l j j l j j jM Mk
k

c

N
z k A z k G B L l y x k

s

+ + = + + +  

( )( ) ( ) ( ) ( ) ( )
'

,

1, ,
' ', ' ,

' 1 ' 0

1
+ ', ', , ,

j

j l
k

Tj l j lp
jj j j j l j j j l ik k

k k

j l i Ic c c

N N
F B L j l l y z k B L l y z k w k

s s s

−

= = ∈

+ + +∑∑ ∑  

and for 
0i

j Z=  and 
0i

l k t= −  it holds: 

( ) ( ) ( ) ( ) ( ) ( )0

, ,
, 1 ,

,

1 1
1 , ,

j l j l
ij l j j l j j jM M j jk k

k kj l

c k c

N N
z k A z k G B L l y x k B L l y x k

s N s

+  −
+ = + + − + 

 
 

( ) ( ) ( ) ( )
' 1, , ,

' ', ' ,

,
' 1 ' 0

1
             + ', ', , ,

jTj l j l j lp
jj j j j l j j j lk k k

k kj l
j lc k c

N N N
F B L j l l y z k B L l y z k

s N s

−

= =

 −
+ + + 

 
∑∑  

( ) ( )0

,

1 1
            +

j l
k

ij i

i Ic c

B u k w k
s s ∈

+ ∑  

The evolution of the state vector of the major player is described by: 

( ) ( )( ) ( ) ( )( ) ( ) ( )
1

,

1 0

1 , ,
jTp

M M M MM M Mj M M j l M

k k

j l

x k A B L y x k F B L j l y z k w k

−

= =

+ = + + + +∑∑  

Thus the evolution of the quantities 
Mx , z�  and 0ix  may be described in a more compact 

form: 

( )
( )
( )

( )
( )

( )
( )

( ) ( )0 0 0 0

0

0 0

1

1 ,

1

M M

j j i i

i k

i i

x k x k

z k A k t y z k B u k W k

x k x k

   +
   

+ = − + +   
   +   

� �� �           (13) 

where:  
00 ij Z= ,  

( )

0 0 0 0 0
1,0 1, 1 ,0 , 11

0 0 0 0 0
1,0 1,0 1,0 1, 1 1,0 ,0 , 11,0 1,01

0
1, 1 1, 1 1,01 1

0

0

... ... ...

... ... ...

... ... ... ... ... ... ... ...

,

M M M T M p p TM M p

M T p p Tp

T TM

j j j j j

x x x z x zx z x z

j j j j j

z x z z z zz z z z

j j

z x z z

j

i k

A A A A A

A A A A A

A A

A k t y

− −

− −

− −

− =

� � � � �

� � � � �

� �

�

0 0 0 0
1, 1 1, 1 1, 1 , 1,0 1, 11 1 1 1

0 0 0 0 0
,0 ,0 1,0 1, 1 ,0 ,0 , 1,0 ,01

0
, 1 ,

... ... ...

... ... ... ... ... ... ... ...

... ... ...

... ... ... ... ... ... ... ...

T T T p Tp T p

p M p T p p p Tp p p

p T pMp

j j j

z z z z z z

j j j j j

z x z z z zz z z z

j

z x z

A A A

A A A A A

A A

− − − −−

− −

−

� � �

� � � � �

� �

0

0

0
1,0 0

0
1, 1 01

0
,0 0

00 0 0 0
, 11 , 1 , 1 , 1 , 11, 11,0 ,0 01

0 0 0 0
1, 11,0 ,00 0 0 01

...

...

...

... ... ...

     ...     ...   

iM

i

iT

ip

p TT p T p T p T p T iT ppp p p p p

i i i iTM p

j

x x

j

z x

j

z x

j

z x

jj j j j

z xz z z z z z z

j j j j

x x x z x z x z

A

A

A

A

AA A A

A A A A

−

−− − − − −−

−

�

�

�

�

�� � �

� � � � 0 0
, 1 0 00

  ...     p T i ii p

j j

x xx z
A A−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

� �

  (14)  

and  
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( ) ( )0

0
,M M

j M M MM

i k kx x
A k t y A B L y− = +� ,                     ( ) ( )0

,
0
, , ,M j l

j Mj M M

i k kx z
A k t y F B L j l y− = +� , 

( ) ( )( ) ( )0
, 1

0 0 0

,

, ,

1
, , ,j l M

i i

j l
j j j jM j jMk

i k k k j Z l k tz x
c c

N
A k t y G B L l y B L l y

s s
δ δ+ −− = + −�  for 1 1l + ≥ , 

( )0
,0

0
, 0j M

j

i kz x
A k t y− =�   

( ) ( ) ( )( )

( )

0
, 1 ', '

0

0 0

, ,
'

, ' ',

', ,

, , ', ', ,

1
                                 ', ', ,

j l j l

i i

j l j l
j j j j jj j jk k

i k k j j l l kz z

c c

j j

k j Z l k t

c

N N
A k t y A B L l y F B L j l l y

s s

B L j l l y
s

δ δ

δ δ

+

−

 
− = + + + − 

 

−

�

( )0
,0 ', '

0
, 0j j l

j

i kz z
A k t y− =� ,                     ( )0

0 0
, 0iM

j

i kx x
A k t y− =� ,           

( ) ( )0
, 1 0 0 0 0

, ,

1
, ,ij l

i i

j j j

i k k j Z l k tz x
c

A k t y B L l y
s

δ δ+ −− = −�  

( )0 0

0 0
, i

i M

Zj

i kx x
A k t y G− =� ,                  ( )0

,0 0

, ',i j l

i j j

i kx z
A k t y F− =� ,             ( )0 0

0 0 0
, i

i i

Zj

i kx x
A k t y A− =�  

and 0

0

0

0

i

j

Z

B

B

 
 

=  
 
 

� . 

Therefore the optimal control problem that solves the minor player 0
i  is a finite horizon LQ 

control problem for a MJLS. The problem is stated as:  

Minimize: 

( ) ( )( ) ( )( ){ ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( )
( ) 1

0

                                            

i

i Z i

Z i

i i

T TZi i i

i f t T iZ i Z i

T
T T

Z Zi i i i

i k i i i

k

J E x t T Q y x t T

x t k Q y x t k u t k R u t k

+

−

=

= + + +

 + + + + + +   
∑

� �

�

subject to:   

( )
( )
( )

( )
( )

( )
( )

( ) ( )0 0 0 0

0

0 0

1

1 ,

1

M M

j j i i

i k

i i

x k x k

z k A k t y z k B u k W k

x k x k

   +
   

+ = − + +   
   +   

� �� �   

 

 

4. Optimality Conditions and Nash Equilibrium 
 

The optimal control problems: minimize (5) subject to (11) and minimize (6) subject to (13) 

are solved in [17]. The solution of the optimal control problem for the major player is given in 

terms of some matrices: ( ) ( ),K y yΛ   for 1,...,y M= . Particularly if there are matrices  

( ) ( ),K y yΛ  such that: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1

/
T T TTM M M M M MK y Q y A y a y a y B R a B y B B y A y

− = + Λ − Λ + Λ Λ 
 

� �� � � �   (15) 
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( ) ( ) ( )1

1

|
M

k k yj

j

y E K y y y p K j+
=

Λ = = =   ∑                                                                            (16) 

for 1,...,y M=  then the control law given by: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )
1

/
T

T T T
M M M M M M T

k k k
u k B y B R a B y A y x k z k

−
 = − Λ + Λ   

�� � � �      (17) 

is optimal under some stability conditions ensuring that the cost with the control law (17) is finite. 

To state the stability conditions consider the matrix:  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1

/
T T

M M M M M M M

cl
A y A y B B y B R a B y A y

−

= − Λ + Λ� � �� � � �  

that corresponds to the closed loop behavior of the system. Then the stability conditions depend 

on the spectral radius of an ( )( ) ( )( )1 / 2 1 / 2
M M M M

n n M n n M+ × +  matrix T� , where 
M

n  is 

the dimension of the state vector of (12). The matrix T�  is the matrix form of the operator T�  

defined in the Appendix A1 and may be computed using the relationships: 

( ) ( ) ( ) ( )
1 3 2 41 2 3 4, , , ,

T T M T M

ij i cl i i cl iv j i i v i i i
e Te p e A i e e A i e= � ��                                                                             (18) 

where: 

( ) ( )( ) ( ) ( ) ( )1 2 1 1 1 2 1
, , 1 1 / 2 1 1 1 / 2 1

M M M
v j i i n n j i n i i i i= + − + − + − − + − + . 

If the spectral radius of T�  is less than 1/ a  then the control law (17) is optimal. 

For a minor player 0
i , the optimal controller is computed using recursively the following 

relations: 

( ) ( )0 0

0j

j j

T f
K y Q y=                                  (19)

( ) ( ) ( )0 0 0

0 0
1 1 1 1

0

|
i i

M
j j j

k k k t k t yj k

j

y E K y y y p K j+ + + + + +
=

 Λ = = =
  ∑                       (20) 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

0 0 0

0 0 0 0 0 0 0 0

1

1

1 1 1

,

               ,

T
j j j

k k

T T
j j j j j j j j

k k k

K y Q y A k y y

y B R y B y B B y A k y

+

−

+ + +

= + Λ −

−Λ + Λ Λ 

�

�� � � �
           (21) 

The optimal control is then given by: 

( ) ( ) ( )( ) ( ) ( )( )0 0 0

0 0 0 00i

T T
i j iM T

i k k t i i iu k t L y x k t z k t x k t+
 + = + + +
  

�         (22) 

where: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )0 0 0 0 0

1

1 1
,

T T
j i i i i

k k k
L y R y B y B B y A k y

−

+ += − + Λ Λ �� � �           (23) 

In order a set of feedback strategies to constitute a Nash equilibrium, each strategy should be 

optimal given the other strategies. Thus some consistency conditions are stated in the next 

definition. 

Definition 4.1: Consider the set of feedback strategies (7) and (8). Compute the matrix 
MA�  

and the set of matrices ( ),
j

A k y�  for 1,...,j p= , 0,..., 1jk T= −  and  1,...,y M= . Then the set 

of feedback strategies it is called consistent if: 

(a) There exist a set of matrices ( ) ( ),K y L y , 1,...,y M=  satisfying  (15) and (16) and 

moreover it holds: 
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( ) ( ) ( )( ) ( ) ( ) ( )
1

/ 0 ... 0
M

TT T
MM M M M M

n
L y B y B R a B y A y I

−

 = − Λ + Λ  
�� � �               (24) 

and  

( ) ( ) ( )( ) ( ) ( ) ( )
1

, , / 0 ... 0 0 ... 0
j

TT T
M M M M M

n
L j l y B y B R a B y A y I

−

 = − Λ + Λ  
�� � �        (25) 

for 1,...,j p= , 0,..., 1jk T= −  and  1,...,y M= , where jn  is the size of the state vector of a 

minor player of type j  and 
jn

I  appears after 
1 11 ...

j
T T l−+ + + +  zero matrices of appropriate 

dimensions (in the same place as 
,j l

z  in 
T

TT
x z 

 
� ).  

(b) The spectral radius of the matrix T�  computed using (18) is less than 1/ a . 

(c) For any type 0
j  if the vectors ( )0j

k
L y  for 1,...,y M=  and 0,..., 1jk T= −  computed by (19 

- 23)  satisfy: 

( ) ( ) [ ]0 0, 0 ... 0 0
M

T
j M j

k nL k y L y I =                    (26) 

( ) ( )0 0, , , 0 0 ... 0 0 ... 0 0
j

T
j j

k n
L j l k y L y I  =   

          (27) 

( ) ( ) [ ]0 0

0

, 0 0 ... 0
j

T
j j

k n
L k y L y I =                     (28) 

jn
I  appears after 1 11 ... jT T l−+ + + +  zero matrices of appropriate dimensions (in the same place 

as 
,j l

z  in ( )0

T
T

iT T
x z x 
  

).      

Proposition 4.2: Consider a set of strategies in the form (7) and (8) and suppose that this set 

of strategies is consistent. Then it constitute a Nash equilibrium.  

Proof: 
The strategy of the major player is optimal due to the Proposition 5.1 of [17]. The strategy of 

any minor player is optimal due to the Proposition 4.1 of [17].                                                     �  

 

Remark 4.3: The consistency conditions (12), (14) and (24 - 28) are Riccati equations with 

two types of coupling. The first type of coupling is though the A  matrices according to equations 

(12) and (14) and has the same nature as the coupled Riccati equations of the LQ games [27 

section 3], [24]. The second is through the Λ  variables and has the same nature as the 

interconnected Riccati equations in the study of LQ control of MJLS [1].                                    �  

 

5. Numerical Example 
 

In this section an algorithm for solving the consistency conditions is developed. The 

algorithm is applied to a simple example involving a major player and one type of minor players 

having time horizon 2. The dependence of the feedback gains on the Markov chain state variable 

is then numerically studied for several values of the parameters. 

The algorithm initially guesses a value for the feedback gains. With the assumed values it 

computes the matrices for the optimal control problems. Then the optimal control problems are 

solved and new feedback gains are computed. The new feedback gains are used to compute the 

system matrices and solve the optimal control problems and so on. The algorithm is the 

following: 

 

Algorithm 5.1:  
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Step 1: Take an initial guess for the vectors  ( )1 ,ML k y , ( )1 1, , ',L l l y , ( )1 ,L k y , ( )MML y  and 

( )1, ,M
L l y  for 1,...,y M=  0,1k =  and , ' 0,1l l = . 

Step 2: Compute the matrices ( )1 ,A k y�  for 1,...,y M=  0,1k =  using (14). 

Step 3:  Compute ( )1 ,M
L k y , ( )1 1, , ',L l l y  and ( )1 ,L k y  using (19 - 23) and (26 - 28).  

Step 4: Compute the matrix 
M

A�  using (12) 

Step 5: Set ( ) ( )MM MM

old
L y L y=  and ( ) ( )1, , 1, ,M M

old
L l y L l y=  for 1,...,y M=  0,1k =  and 

0,1l = . 

Step 6: Compute matrices ( ) ( ),K y yΛ  for 1,...,y M=  to satisfy (15) and (16) 

Step 7: Use (24) and (25) to update the values of ( )MML y  and ( )1, ,ML l y . 

Step 8: If ( ) ( ) ( ) ( )
1/2

2 21

1 1 0

1, , 1, ,
M M

MM MM M M

old old

y y l

L y L y L l y L l y
= = =

 
− + −  

 
∑ ∑∑   is small enough 

then halt. Else go to step 2.                                                                                                              �   

 
Remark 5.2: Step 6 may be implemented in several ways. Probably the simpler is to use the 

value iteration algorithm described in the proof of proposition A.1.4.1. Other numerical methods 

involve [1].                                                                                                                                      �            

 

Let us then apply the algorithm to the following example: 

 
Example 5.3:  In this example major and minor players have an one dimensional state 

equation. The time horizon of each of the minor players is 2 and the maximum number of minor 

players participating in the game at some time step is 4. At each time step either one or two new 

minor players enter the game. Thus the entrance dynamics is described by a Markov chain with 

maximum number of active players 4 and 4 states: ( ) ( ) ( )1 / 4,1 / 4 , 1 / 4,2 / 4 , 2 / 4,1 / 4  and 

( )2 / 4,2 / 4 . We use the enumeration ( )1/ 4,1/ 4 1→ , ( )1/ 4, 2 / 4 2→ , ( )2 / 4,1 / 4 3→  and 

( )2 / 4, 2 / 4 4→ . The transition matrix of the Markov chain is given by: 

0.9 0 0.1 0

0.2 0 0.8 0

0 0.3 0 0.7

0 0.8 0 0.2

 
 
 Π =
 
 
 

 

 

 The dynamic equation of the major player is given by: 

( ) ( ) ( ) ( ) ( )11
4

k

M M i M M

i I

c
x k x k x k u k w k

∈

+ = + + +∑  

and the dynamic equation for a minor player is given by: 

( ) ( ) ( ) ( ) ( ) ( )1
11

4
k

i i M j i i

j I

c
x k x k c x k x k u k w k

∈

+ = + + + +∑  

where by 1
c  we denote all the coupling coefficients. Thus the parameters of the state equations 

are given by: 1
M

A = ,  
1

1

MF c=  , 1
M

B = , 
1

1A = , 
1

1G c= , 
11

1F c= , and 
1

1B = .  
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The Q  matrices are given by ( ) ( ) ( ) 3
1 1 3Q Q Q I= = =   and ( ) ( )2 3

4 1Q c I= + . Assume 

also that the matrices ( )1
Q y  are given by: ( ) ( )1 1

4f
Q y Q y I= =  for 1,..., 4y =  and the R

 
matrices are all units. The discount factor is 0.95a = .  

For example if 
1 2

1c c= = , after 20 steps of the algorithm, the gain matrices change less than 

1210− . The gain matrices for the major player are given by: 

( ) ( ) ( ) ( )1 0.6461,     2 = 0.6982,     3 = 0.7862,   4 = 0.7301
MM MM MM MM

L L L L= − − − −  

( ) ( ) ( ) ( )0.8668,    0,2 0.9867,    0,3 0.9836,  0,4 0.93610,1
M M MM L L LL = − = − = − = −  

( ) ( ) ( ) ( )0.6461,    1,2 0.6982,     1,3 0.7862 ,   1, 4 0.73011,1
M M MM L L LL = − = − = − = −  

 

Figure 5.1: Dependence of the feedback gains on the coupling coefficients  

 

 
Figure 5.2: Dependence of the feedback gains on the Q  matrices. 

 

We then study the dependence of the feedback gains on the Markov chain state space for 

several values of 1 2
,c c . The Algorithm 5.1 is applied for [ ]1

0,10c ∈  and 2
0c =  as well as for 

[ ]2
0,10c ∈  and 

1
0c = . The results are presented in the Figures 5.1 and 5.2 respectively.  

The numerical results illustrate that the feedback gains depend on the Markov chain state 

variable due to two reasons. The first is the coupling in the dynamic equations and the second is 

the dependence of the Q  matrices on y .                                                                                       �   

 

 

 

0 1 2 3 4 5 6 7 8 9 10
-1.4

-1.3

-1.2

-1.1

-1
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-0.7
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1
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0 1 2 3 4 5 6 7 8 9 10
-0.9

-0.85
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c
2
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L
MM
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6. Large Population Case 
  

 In this section we use a mean filed approximation in order to study games with a very large 

number of players. This approach involves the statement of some approximate optimal control 

problems that correspond to the limit of those in section 3 as the scale variable tends to infinity 

i.e. the number of new minor players at each time step tends to infinity. The Markov chain with a 

large number of states is approximated by a Markov process with a continuum of states and thus a 

notion of convergence of Markov processes is first recalled in section 6.1. Then the solution of 

the approximate optimal control problems for the major and minor players is characterized by 

appropriate Riccati equations and consistency conditions analogous of those of section 4 are 

stated. Finally it is proved that a set of feedback strategies satisfying those consistency conditions, 

constitute an ε–Nash equilibrium for a game with a very large number of players. 

Another motivation for the use of the continuous approximation is computational. The state 

space of the Markov chain that describes the random entrance grows fast as the maximum 

number of players increases. For example if there is only one type of minor players that has a 

time horizon 5 and the new minor players in each step belong to the set { }1,2,..., N   then the 

state space of the Markov chain describing the entrance has 
5N  points. Thus the equations 

characterizing a Nash equilibrium (Ded. 4.1) depend on many parameters and thus are very 

complicated. On the other hand in several cases the situation is much simplified using the 

continuous approximation (example 6.3 and section 6.4).   

 

6.1 Convergence of stochastic kernels 
 

The approximation of the Markov chain with a Markov process with a continuum of sates is 

based on the notion of weak convergence of Markov processes (Def 6.2). The continuous state 

space of the Markov process is defined as a subset of 
n
�  that contains the values of the Markov 

chain.  

The dimension of the vector 
k

y  as defined by (1) depends on the time horizon of each of the 

types of players involved in the game. Particularly it holds ( ) 1
dim ...

k p tot
y T T T= + + = . Thus 

the state space of the Markov chain is a subset of: 

( )1

1

,..., : 1, 0, 1,...,
tot

tot

tot

T
T

T i i tot

i

D y y y y i T
=

 
= ∈ ≤ ≥ = 
 

∑�          (29) 

The Markov chain may be described using the notion of a stochastic kernel.  

Definition 6.1: Let { }1
' ,...,

M
D d d D= ⊂  and [ ]

ij
P p=  a M M×  stochastic matrix. The 

stochastic kernel that corresponds to the Markov chain with state space 'D  and transition matrix 

P  is defined as: 

( ) ( )1

:

, Pr |
j

k k ij

j d B

K y B y B y y p+
∈

= ∈ = = ∑  

where { }{ }min arg min l
l

i y d= − , y D∈  and B  a Borel subset of D .                                  �  

A notion of convergence of stochastic kernels is then recalled form [16] and a notion of 

continuity of stochastic kernels from [19].  

Definition 6.2: (i) We shall say that a sequence of stochastic kernels Kν  converges weekly 

to a stochastic kernel K  if for any sequence yν  of elements of D  converging to an element y  

of D  and any continuous function g  it holds: 
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( ) ( ) ( ) ( )' , ' ' , '
D D

g y K y y g y K y yν ν →∫ ∫ .            (30) 

(ii) A stochastic kernel K  is called Feller continuous if ( ) ( ), ,K y K yν ⋅ ⇒ ⋅  when y yν → .   �  

Let us turn back to games described by the relationships (2–6) and a large number of minor 

players. To do so we consider a sequence of games with increasing number of minor players. Let 

us denote the ν -th game by g
ν

 and its parameters by 
, , , , , , ,, , , , , , , ,M i i m i M i

cx x u w w s z J Jν ν ν ν ν ν ν ν ν�  

in the place of , , , , , , , ,M i i m i M i

cx x u w w s z J J� . For the scale variable it holds: 
csν →∞  as 

ν →∞ . The state of the Markov chain describing the entrance is denoted by 
k

y
ν

, the number of 

states of the Markov chain by M
ν

 and the corresponding stochastic kernel is denoted by K
ν

. 

Conclusions about the final part of this sequence of games are obtained under the assumption that 

the stochastic kernels K
ν

 converge weakly to a stochastic kernel K  of a Feller continuous 

Markov process. The stochastic kernel K , thus, approximates the final part of the sequence of 

Markov chains. We also suppose that the matrices ( ) ( ) ( ), ,
j j

i f i i
Q y Q y Q y

ν ν ν
 for 1,...,i M

ν=   

are samples of continuous matrix functions ( ) ( ) ( ), ,j j

f
Q y Q y Q y , for y D∈ . 

Example 6.3: Consider games involving one type of minor players of time horizon 2. At each 

time step each one of ν  players enters the game with probability p . Thus the new minor players 

at each step follow a binomial distribution. The entrance dynamics is thus described by the 

Markov chain 
1,0, 1,1, /

k k k c
y N N s
ν ν ν ν =   , 2csν ν=  and  it holds:  

 ( ) ( )1Pr 1
ii

kN i p p
i

νν ν −

+

 
= = − 

 
.  

Let us denote by K
ν

 the stochastic kernel describing the Markov chain kyν
.  

The random variable 
1,0, /k cN sν

 converges weakly to the value pν . Thus the Markov  chain kyν
 

may be approximated by a Markov process which has a stochastic kernel: 

( )( ) ( )1 2 1
, , / 2,K y y p yδ⋅ = , 

where δ  denotes the Dirac measure and it holds K Kν →  weakly. This example shows that for 

the large number of players case the approximate description of the Markov process in several 

cases may be much simpler than the original                                                                                  �   

  

6.2 Approximate Optimal Control Problems  
 

In this subsection an approximate optimal control problem for each one of the players 

involved in the game is stated. We suppose that every player assumes that the other players use 

feedback strategies in the form (7) and (8) as well as that the game has an infinite scale i.e. the 

Markov process has the approximate stochastic kernel and the scale variable 
c

s  has an infinite 

value. The approximate optimal control problems are, thus, stated in terms of the approximate 

dynamics for which, for simplicity, we use again the symbols , , , , ,M i i m ix x u w w z� . 
 

Approximate optimal control problem for the major player: 

The optimal control problem is stated in terms of the state vector ( )
T

T
M T

x z 
  

. The 

evolution of this vector is given by (11). The optimal control problem for the major player is the 
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same as in section 3 except that ( )1
~ ,

k k
y K y+ ⋅ . The solution of the problem is given in terms of 

the following quantities [17]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1

/
T T TTM M M M M MK y Q y A y a y a y B R a B y B B y A y

− = + Λ − Λ + Λ Λ 
 

� �� � � �   (31) 

( ) ( ) ( ) ( )1 | ' , 'k k
D

y E K y y y K y K y dy+Λ = = =   ∫                                                          (32) 

The policy given by: 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )
1

/
T

T T T
M M M M M T

k k k k
u B y B R a B y A y x k z k

−
 = − Λ + Λ   

�� � �           (33) 

is optimal provided that with this control law the cost is finite. A sufficient condition for the 

finiteness of the cost is derived in terms of the spectral radius [3] of a certain operator 
,M

clA K
T T= �  

defined in the Appendix A.1 where ( )M

clA y�  is the closed loop matrix:  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1

/
T T

M M M M M M M

cl
A y A y B B y B R a B y A y

−

= − Λ + Λ� � �� � � � .  

 

Approximate optimal control problem for a minor player: 

Consider a minor player 0
i  with entrance time 

0i
t . The evolution of the quantities 

Mx , 

z�  and 0ix  may be described by:  

( )
( )
( )

( )
( )

( )
( )

( ) ( )0 0 0 0

0

0 0

1

1 ,

1

M M

j j i i

i k

i i

x k x k

z k A k t y z k B u k W k

x k x k

   +
   

+ = − + +   
   

+   

� �� �         (34) 

where:  
00 ij Z=  and  

( ) ( )0

0
,M M

j M M MM

i k kx x
A k t y A B L y− = +�

, 
( ) ( )0

,
0
, , ,M j l

j Mj M M

i k kx z
A k t y F B L j l y− = +�  

( ) ( )( )0
, 1

0

,
, ,j l M

j j l j j jM

i k k kz x
A k t y y G B L l y+ − = +�  for 1 1l + ≥ , 

( )0
,0

0
, 0j M

j

i kz x
A k t y− =�

( ) ( )( ) ( )( )0
, 1 ', '

0

, , '

, ' ',, , ', ', ,j l j l

j j j l j j j l jj j j

i k k k j j l l k kz z
A k t y A y B L l y y F B L j l l yδ δ+ − = + + +�

        
    (35) 

    

( ) ( ) ( )0 0 0
,0 ', ' ,0 00 0 0

, , , 0j j l i iM j l

j j j

i k i k i kz z x x z x
A k t y A k t y A k t y− = − = − =� � � , 

( )0 0

0 0
, i

i M

Zj

i kx x
A k t y G− =�   ( )0

,0 0

, ',i j l

i j j

i kx z
A k t y F− =�

 
( )0 0

0 0 0
, i

i i

Zj

i kx x
A k t y A− =�  ,  

0

0

0

0

i

j

Z

B

B

 
 

=  
 
 

�   and 
1 1

,

... 1j

j l

k T T ly ye
−+ + + +=  

We observe that the matrix 0jA�  does not depend on time as well as that it has simpler 

expressions than (14).  

The solution may be computed recursively using the following relations [17]: 

( ) ( )0 0

0j

j j

T f
K y Q y=                               (36) 
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( ) ( ) ( ) ( )0 0 0

0 0
1 1 1 1| ' , '

i i

j j j

k k k t k t k
D

y E K y y y K y K y dy+ + + + + +
 Λ = = =
  ∫             (37) 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

0 0 0

0 0 0 0 0 0 0 0 0

1

1

1 1 1               

T
j j j

k k

T T
j j j j j j j j j

k k k

K y Q y A y y

y B R B y B B y A y

+

−

+ + +

= + Λ −


−Λ + Λ Λ 



�

�� � � �
                  (38) 

The optimal control is then given by: 

( ) ( )( ) ( ) ( )( )0 0 0

0 0 00 0i i

T T
i j iM T

k t k k t i i iu L y x k t z k t x k t+ +
 = + + +  

�          (39) 

where: 

( ) ( ) ( )( ) ( ) ( ) ( )0 0 0 0 0

0

1

1 1

T T
j i i i i

k j k k
L y R B y B B y A y

−

+ += − + Λ Λ �� � �            (40) 

 

6.3 Consistency conditions and ε–Nash equilibrium 
  

 Consider a set of strategies in the form that is given by (7) and (8). We first give 

consistency conditions for the approximate optimal control problems. 

Definition 6.4: Consider the set of feedback strategies (7) and (8) assume that depend 

continuously y . Compute the matrix 
M

A�  and the set of matrix functions ( )j
A y�  given by (12) 

and (35) for 1,...,j p=  and  y D∈ . Then the set of feedback strategies  is called approximately 

consistent if: 

(a) There exist matrix functions ( ) ( ),K y L y , y D∈  satisfying  (31) and (32) and moreover it 

holds: 

( ) ( ) ( )( ) ( ) ( ) ( )
1

/ 0 ... 0
M

T T T
MM M M M M

n
L y B y B R a B y A y I

−

 = − Λ + Λ  
�� � �              (41) 

and  

( ) ( ) ( )( ) ( ) ( ) ( )
1

, , / 0 ... 0 0 ... 0
j

TT T
M M M M M

nL j l y B y B R a B y A y I
−

 =− Λ + Λ  
�� � �         (42) 

for 1,...,j p=  and  y D∈ . In (42), 
jn

I  appears after 1 11 ... jT T l−+ + + +  zero matrices of 

appropriate dimensions (in the same place as 
,j l

z  in 
T

TT
x z 

 
� ).  

(b) The operator 
,M

clA K
T T= �  has a spectral radius less that 1/ a . 

(c) For any type { }0 1,...,j p∈  if the vectors ( )0j

k
L y  for y D∈  and 0,..., 1jk T= −  computed 

by (19 - 23)  satisfy: 

( ) ( ) [ ]0 0, 0 ... 0 0
M

T
j M j

k nL k y L y I =                    (43) 

( ) ( )0 0, , , 0 0 ... 0 0 ... 0 0
j

T
j j

k n
L j l k y L y I  =   

          (44) 

( ) ( ) [ ]0 0

0

, 0 0 ... 0
j

T
j j

k n
L k y L y I =                     (45) 

where 
jn

I  in (44) appears after 
1 11 ...

j
T T l−+ + + +  zero matrices of appropriate dimensions (in 

the same place as 
,j l

z  in ( )0

T
T

iT T
x z x 

  
).                                                                            �  
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A set of approximately consistent policies is applied a game with a large number of players 

g
ν

. This set of policies constitute an ε-Nash equilibrium i.e. for any player, given the strategies 

of other players, its strategy has a cost at most ε far from the optimal provided that the closed 

loop system is mean square stable. This property is illustrated by the following Theorem 6.5 and 

its Corollary 6.6. Let us denote by ( ) ( )( ),

7 , 8

M
J

ν π  and ( ) ( )( ),

7 , 8

i
J

ν π  the value of the cost functions 

using the policies (7) and (8) for the major player and player i  respectively. Denote also by 

( )( )( )*
,

7 ,

M

M
J

ν π −  the optimal value of the cost function for the major player when the minor 

players apply the policy given by (7) and ( )( )( )*
,

7 ,(8),

i

i
J

ν π −  is the optimal value of the cost 

function for the minor player i  when the major player uses strategy (8) and other minor players 

use the strategy given by (7).   

Theorem 6.5: Consider a set of feedback strategies given by (7) and (8) and assume that it is 

approximately consistent. Then for any positive ε , there exist a positive integer 0ν  such that: 

 ( ) ( )( ) ( )( )( )*
, ,

7 , 8 7 ,

M M

M
J J

ν νπ π ε−≤ +  

( ) ( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )0

2*
, ,

7 , 8 7 ,(8),
1

TT ii i M T

i i ii
J J E x t z t x t

ν νπ π ε−

   ≤ + +      
�  

for every 0ν ν≥ .  

Structure of the proof: 
The proof of the second inequality is based on the fact that the optimal policies for a minor player 

involve continuous functions of the state vector and Markov chain and properties of the weak 

convergence.   

A basic step in the proof of the first inequality is given in Appendix A.2 where it is shown that 

some stability properties of MJLS are preserved under weak convergence. It is then shown that 

the final part of the series involved in the costs is small in some sense, uniformly in the initial 

conditions, and thus it suffices to compare finite series. The result for finite series is similar to the 

proof of the second inequality.  

The detailed proof is relegated to Appendix. More general results are first shown in section A.3 

and particularly in Propositions A.3.1 and A.3.2. Theorem 6.5 is then proved as a consequence of 

these Propositions in section A.4.                                                                              �  

Corollary 6.6: If in addition of the assumptions of Theorem 6.5, the spectral radius of the 

operator 
,M

clA K
T T= �  is less than 1 i.e. it holds ( ) 1r T < , then the set of strategies given by (7) 

and (8) constitute an ε-Nash equilibrium for large ν  i.e.: for any positive ε , there exist a positive 

integer 0ν  such that: 

( ) ( )( ) ( )( )( )*
, ,

7 , 8 7 ,

M M

M
J J

ν νπ π ε−≤ +  

( ) ( )( ) ( )( )( )*
, ,

7 , 8 7 ,(8),

i i

i
J J

ν νπ π ε−≤ +  

for every 0ν ν≥ .  

Proof: The first inequality is the same as in Theorem 6.5. For the proof of the second inequality 

we apply the stability results from Corollary A.2.3.              �  

Remark 6.7: Approximate consistency conditions involve nonlinear matrix integral 

equations and in general are not simpler than the consistency conditions of Section 4. However in 
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several cases the situation is extremely simplified as illustrated in the example of the next section.

�  

 
6.4 Numerical Example 
 

This example considers a game with a large number of minor players and no major player. 

There is only one type of minor players. Each one of the minor players i∈Λ has time horizon 

two and has a dynamic equation of the form:  

( ) ( ) ( )1 /
k

i i i i

c k

i I

x k x k x s u k w
∈

+ = + + +∑ . 

At each time step, each one of ν  minor players tosses a fair coin and with probability 1/2 

enters the game. The cost function is given by (6), the vector ( )i
x k�  by 

( ) ( ) ( ) ( )
T

T
i T i

x k z k x k =   
� �  and the matrices  by: 

1

3
4 ,

f
Q y I=  

312 TQ yy I=  and 1R =  

respectively where we use the notation 
1 0, , , ,

f
Q Q R y y  instead of 

1 1 1 1,1 1,0, , , ,
f

Q Q R y y . The 

scale variable has a value 2
c

s ν= . The approximate description of the Markov chain when 

ν →∞  is given by the stochastic kernel: 

( )( ) ( ) ( )1
1 2 1/ 4,
, ,

y
K y y δ⋅ = ⋅ , 

where δ  is the Dirac measure.  We first find a policy that satisfies the approximate consistency 

conditions. Due to the absence of a major player the consistency conditions involve (35 - 38), 

(40), (44) and (45). The unknown quantities may be expressed in terms of the functions 

( ) ( )1

1
1,0,0,L y L y= , ( ) ( )1

2
1,1,0,L y L y= , ( ) ( )1

3
1,0,1,L y L y= , ( ) ( )1

4
1,1,1,L y L y= , 

( ) ( )1

5
0,L y L y=  and ( ) ( )1

6
1,L y L y= .  

Due to the form of the approximate Markov process the integral in the equation (36) is 

simplified as following: 

( )( ) ( ) ( ) ( ) ( )( )
0 0

1 1 2 1 1 1 1 1, | ' , ' ,
i ik k k t k t k k

D
y y E K y y y K y K y dy K y y+ + + + + + +

 Λ = = = =
  ∫  

where 1/ 4y = .  

Thus the form of the Markov process implies a decoupling in the consistency conditions. 

Particularly for ( ),y y y=  the consistency conditions do not depend on other values of y . 

Writing the consistency conditions for some ( )1
,y y y=  the equations depend only on 

( )( ) ( )( )1 1 6 1
, ,...., ,L y y L y y  and ( )( ) ( )( )1 6

, ,...., ,L y y L y y . Furthermore  for some 

( )1 2
,y y y=  the consistency equations depend only on ( )( ) ( )( )1 1 2 6 1 2

, ,...., ,L y y L y y  and 

( )( ) ( )( )1 1 6 1
, ,...., ,L y y L y y . This structure of the consistency conditions suggests the following 

procedure: Compute the values of ( )( ) ( )( )1 6
, ,...., ,L y y L y y   solving a system of six equations 

with six unknowns. Then for each y D∈ , in the form ( )1
,y y y=  the values of 

( ) ( )1 6
,....,L y L y  may be computed as a solution of six equations with six unknown variables 

involving ( ) ( )1 6
,....,L y L y  and ( )( ) ( )( )1 6

, ,...., ,L y y L y y . Finally for some 

( )1 2
,y y y D= ∈  the values of ( ) ( )1 6

,....,L y L y  may be computed as a solution of six 
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equations with six unknown variables involving ( ) ( )1 6
,....,L y L y  and 

( )( ) ( )( )1 1 6 1
, ,...., ,L y y L y y . 

The solution for ( ),y y y=  is given by: 

( )1
0.8133L y = − , ( )2

0.68L y = − , ( )3
0.5L y = − , ( )4

0.5L y = − , ( )5
0.6667L y = −  and  

( )5
0.5L y = − . 

As an example to compute the values of ( ) ( )1 6
,....,L y L y  for [ ]0.2 0.6y = , we first 

compute ( ) ( )1 6
' ,...., 'L y L y  for [ ]' 0.2y y= .  

( )1
' 0.8133L y = − , ( )2

' 0.68L y = − , ( )3
' 0.4444L y = − , ( )4

' 0.4444L y = − , 

( )5
' 0.6667L y = −  and  ( )5

' 0.4444L y = − . 

The values of ( ) ( )1 6
,....,L y L y  are thus given by: 

( )1
0.7543L y = − , ( )2

0.66L y = − , ( )3
0.4444L y = − , ( )4

0.4444L y = − , ( )5
0.6261L y = −  

and  ( )5
0.4444L y = − . 

The behavior of the system with the control law obtained is described by the closed loop 

matrix ( )M

cl
A y� . It holds k

y y=  a.s. for 3k ≥ . On ( ),y y y= , ( )M

cl
A y�  is: 

( )
0 0

0.88 0.08

M

clA y
 

=  
 

�  . 

It holds ( )( )max
0.08 1M

cl
A yλ = <� . Thus operator 

,M
clA K

T T= �  has spectral radius less than one 

and the control laws obtained are approximately consistent. Thus for any 0ε >  there exist an 

0
ν ∈�  such that the control laws obtained constitute an ε  Nash equilibrium for any 

0
ν ν≥ . 

Remark 6.8: When there is an independent random entrance, the approximate consistency 

conditions are decoupled. The solutions to the approximate optimal control problems could, thus, 

be obtained taking into advance this special form.                                                                         �  
 

7. Conclusion and future work 
 

Games with a major player and many minor players of several time horizons, a random 

number of which enters at each time step were considered. Sufficient conditions for a set of 

symmetric linear feedback strategies to constitute a Nash equilibrium were derived. For the large 

number of players case, a notion of convergence of Markov processes was used in order to 

approximate a Markov chain which has a large number of states with a Markov process with a 

continuum of states. Approximate optimal control problems are then stated. The form of 

approximate control problems is Linear Quadratic problems for a MJLS with a Markov process 

with a continuous state space. A set of symmetric linear feedback strategies that is optimal for the 

approximate system is proved to constitute an ε-Nash equilibrium when the scale is sufficiently 

large and under some additional stability conditions. An example of a game with a large number 

of players is also studied where the use of mean field approximation simplifies the analysis.  

Some possible directions of future work involve extensions to the case that there exists also a 

random exit or the case where the players have the choice to enter or leave the game and the 

study of algorithms that solve the equations for the consistency conditions for the finite as well as 
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the mean field case. Existence and uniqueness of a Nash equilibrium questions for games in the 

form studied in this paper are clearly of interest.  

 
Appendix 
 

The Appendix contains the proof of Theorem 6.5 and some propositions needed to prove the 

result. In the first section A.1 we recall some results from [17] about the stability of MJLS. 

Section A.2 studies the properties of a sequence of MJLS systems when the sequence of Markov 

chains converges weakly to a Feller continuous limit. The basic result of section A.2 is 

Proposition A.2.1 which shows that if the limit system is stable then a tail of the sequence of 

systems consists of stable systems. Section A.3 proves that policies optimal for the limit system 

are ε-optimal for a tail of the sequence. The basic results are Proposition A.3.1 and Proposition 

A.3.2, where the result is proved for the finite and infinite horizon problems respectively. In 

Section A.4 the proof of theorem 6.5 is completed.  

 

A.1 MJLS with general state space 
 

In this section we recall some results for MJLS with general state space. The proofs of the 

results as well as further details could be found in [17].  

Let D

 

be a compact set and ( ),K ⋅ ⋅  a stochastic kernel on D . Consider a system in the form: 

( ) ( )1 1,     ~ ,k k k k kx A y x y K y+ += ⋅   

The exponential mean square stability of a system in this form is equivalent to the fact that 

the spectral radius of an operator 
,A K

T T=  is less than 1. The operator is defined using the 

following quantities ( ): n n

k
P D R ×ℜ →  where ( )Dℜ  is the set of Borel measurable subsets of D  

and ( )
k

T

k k k y CP C E x x χ ∈
 =    for any C  Borel measureable subset of D . The operator is defined 

such that  
1k k

P TP+ =

 

. In the case of a Markov chain with finite state space, the operator T

 

takes 

the form of the matrix defined by (18).  

The exponential mean square stability is a uniform on the initial conditions. Thus it is 

equivalent to the existence of a constant ( )0,1a∈

 

 and a positive integer 
0k  such that 

0 0 0 0

T T

k kE x x ax x  <   for any 
0 0,x y  non-random initial conditions. Furthermore it is equivalent to 

the existence of positive constants 0M >
 
and 0 1a< <

 
such that 

0 0

T k T

k kE x x Ma E x x   <     
for 

any initial conditions. 

A.2 Weak convergence and mean square stability 
 

Consider a sequence of systems: 

( ) ( )1 1,     ~ ,k k k k kx A y x y K y
ν ν ν ν
+ += ⋅                                                                                             (A1) 

and a limit system: 

( ) ( )1 1,     ~ ,k k k k kx A y x y K y+ += ⋅ .                                                                                             (A2) 

Suppose that K K
ν →  weakly, K  is Feller continuous and that for the limit system it holds 

( ),
1

A K
r T < . Suppose also that ( )A ⋅ is a continuous matrix function. Finally assume that (A2) is 

exponentially stable. It will be shown that (A1) is also exponentially stable for large ν . 

 For any ( )0,1a∈ , there exist an integer k  such that: 
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0 0

T T

k k
E x x aE x x   <                                                                                                                    (A3) 

for any 
0 0,x y  initial conditions. Choosing 

0x  to be any non-random initial condition the last 

inequality may be written as:  

( ) ( ) ( ) ( )0 0 1 1 0 0 0 0... ...T T T T T T

k k
x E A y A y A y A y x ax x− −  <  . 

Thus it holds:  

( ) ( ) ( ) ( )0 1 1 0... ... 0T T T T

k k
aI E A y A y A y A y− − − >  .                                                                 (A4) 

The positive definiteness of the matrix in (A4) is equivalent due to the Sylvester criterion to a 

set of inequalities in the form:  

( )

( )2

1 0 1

0 1

,...,

0

,...,

k

j

kn

f y y

f E

f y y

−

−

  
  

>  
     

�                                                                                                    (A5) 

for 1,...,j n= , where if  
2

1,...,i n=  correspond to the elements of the matrix in (A4) and are 

continuous and jf  are multinomials arising using Sylvester criterion. Inverse process shows that 

conditions (A5) imply a relationship in the form of (A3) and thus imply ( ),
1

A K
r T < .  

Proposition A.2.1: Under the assumptions stated above, ( ),
1

A K
r T <  implies the existence of 

0
ν  such that: ( ),

1
A K

r T ν <  for every 
0

ν ν≥ . 

Before proving the proposition a lemma will be stated. This lemma illustrates a uniformity 

property of the weak convergence. The uniformity is expressed in terms of the Bounded Lipschitz 

metric [23 section 17] which is defined by: 

( ) { }1 2 1 2
, sup : 1

BL
P P fdP fdP fβ = − ≤∫ ∫  

where ( ){ } { }sup inf :  is - Lipschitz
BL

y D

f f y L f L
∈

= + . D  is separable and thus ( ),β ⋅ ⋅  

metrizes the weak convergence of probability measures [23 section 17].  

 

To state the lemma consider the functions: 

( ) ( )( ), : , ,
k

D D
ν βΞ Ξ → ∏  

where ( )k
D∏  is the space of probability measures on 

k
D  and for any ( )k

A D∈ℜ  has the 

form ( )( )( ) ( )( )0 1Pr ,...,
k

y A z z A
ν

−Ξ = ∈  where 
0

z  has the a distribution concentrated to y  

and ( )1
~ ,

i i
z K z

ν
+ ⋅ . In the same way the values of ( )( )( )y AΞ  are defined. Thus Ξ  maps the 

initial condition 
0

y
 
to the distribution of ( )0 1 1

, ,...,
k

y y y − . 

We may show that Ξ  is continuous. To do so we observe that it holds K K→  weakly. 

Thus y y
ν →  implies ( ) ( )y y

νΞ ⇒ Ξ  [16]. Therefore Ξ  is continuous. The next Lemma 

A.2.2 shows a uniformity property on the convergence of  
νΞ  to Ξ . Particularly it is shown that 

for sufficiently large ν , the distribution of ( )0 1 1
, , ...,

k
y y y
ν ν ν

−  is close to ( )0 1 1
, ,...,

k
y y y −  for 

0 0y yν = , uniformly in 
0

y . 
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Lemma A.2.2: For any positive constant ε  there exist a positive integer 0ν  such that 

( ) ( )( ),y y
νβ εΞ Ξ <  for any 0

ν ν≥  and any y D∈ . 

Proof: To contradict suppose that there exist a positive constant ε  such that for any 
0

ν ∈� , 

there exist a 0
ν ν≥  with ( ) ( )( ),y y

νβ εΞ Ξ > . Then there exist sequences , mm y
νν such that 

mν ν≥ , 1
m mν ν −≥  and ( ) ( )( ),

m

m m
y yν

ν ν
β εΞ Ξ > . my

ν
 is a sequence on a compact set and 

thus there exist a converging subsequence 
l

m
y y

ν
→ . Theorem 1 of [16] implies 

( ) ( )( ), 0l

l

m

my yν

ν
β Ξ Ξ → . However triangle inequality implies: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

, , ,

                                 > ,  

l l

l l l l

l

m m

m m m m

m

y y y y y y

y y

ν ν

ν ν ν ν

ν

β β β

ε β

Ξ Ξ ≥ Ξ Ξ − Ξ Ξ

− Ξ Ξ
 

Continuity of Ξ  implies that ( ) ( )( ), / 2l

l

m

my yν

ν
β εΞ Ξ >  which contradicts 

( ) ( )( ), 0l

l

m

my yν

ν
β Ξ Ξ → .                                                                                                          �  

Proof of Proposition A.2.1:  The quantities: 

( )
( )

( )2

1 0 1

0

0 1

,...,

, ...,

k

j j

kn

f y y

g y f E

f y y

−

−

  
  

=   
     

�  

may be seen as continuous functions of 
0

y . Thus, due to the compactness of D  there exist a 

positive constant 
1
ε  such that: 

( )0 1j
g y ε> , 

for any 0
y D∈ . The functions jf  are uniformly continuous. Thus there exist a constant 1

0δ >  

such that ( )1 1j
f v ε>  implies ( )2

0
j

f v >
 
for any 

2

k
v D∈  such that 1 2 1

v v δ− <  and any 

1,...,j n= . 

Choose 
0 0y yν= . Then  

( )

( )2

1 0 1

0 1

,...,

,...,

k

kn

f y y

E

f y y

−

−

 
 
 
 
 

�  and 

( )

( )2

1 0 1

0 1

,...,

,...,

k

kn

f y y

E

f y y

ν ν

ν ν

−

−

 
 
 
 
  

�  

may be written in the form: 

( ) ( )( )( )

( ) ( )( )( )2

1 0

0n

f w y dw

f w y dw

 Ξ
 
 
 

Ξ  

∫

∫
�  and 

( ) ( )( )( )

( ) ( )( )( )2

1 0

0n

f w y dw

f w y dw

ν

ν

 Ξ
 
 
 

Ξ  

∫

∫
� . 

Let us first prove the claim: For large ν  it holds: 
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 ( ) ( )( )( ) ( ) ( )( )( ) 2

0 0 1
/

i i
f w y dw f w y dw n

ν δΞ − Ξ <∫ ∫  

for any 0
y D∈  and 

2
1,...,i n= . 

To prove the claim recall that any uniformly continuous function may be approximated by a 

Lipschitz one.  Let 
2: ,   1,...,k

i
f D i n′ → =�  be Lipschitz functions such that 

( )2

1 / 4i if f nδ
∞

′ − < . Denote by L  the maximum bounded Lipschitz norm of the functions 

i
f ′  i.e 

21,...,

max i
i n BL

f
=

′ . Then  

( ) ( )( )( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( ) ( )

0 0 0

0 0 0

2

0 0 1

              

                          / 2

i i i i

i i i i

i i

f w y dw f w y dw f w f w y dw

f w y dw f w y dw f w f w y dw

f w y dw f w y dw n

ν

ν ν

ν δ

′Ξ − Ξ ≤ − Ξ +

′+ Ξ − Ξ + − Ξ

≤ Ξ − Ξ +

∫ ∫ ∫

∫ ∫ ∫

∫ ∫
Appling Lemma A.2.2 an integer 0

ν  may be found such that: 

( ) ( )( ) ( )2

1, / 2y y n L
νβ δΞ Ξ <  

for any 0ν ν≥  and any 0y D∈ . This completes the proof of the claim.  

Thus for 0
ν ν≥  it holds: 

( )

( )2

1 0 1

0 1

,...,

0

,...,

k

j

kn

f y y

f E

f y y

ν ν

ν ν

−

−

  
  
  > 
  
    

�  

for any 0y Dν ∈  and 1,...,j n= . Thus for any 0y Dν ∈  it holds:  

( ) ( ) ( ) ( )0 1 1 0... ... 0T T T T

k kaI E A y A y A y A y
ν ν ν ν

− −
 − >  . 

Therefore: 

( ) ( )0 0 0 0 0 0| , | ,
T T

k kE x x x y aE x x x y
ν ν ν ν ν ν ν ν   <      

. 

Integrating over the distribution of 
0 0,x y
ν ν  we conclude: 

( ) ( )0 0

T T

k kE x x aE x x
ν ν ν ν   <      

. 

Thus ( ),
1

A K
r T ν <  for any 

0ν ν≥ .                                                                                                   �  

Corollary A.2.3: Consider the systems described by (A1) and (A2). Assume that K Kν →  

weakly and K  is Feller continuous. Let 1a <  and suppose that 
,A K

T T=  has spectral radius less 

than 1/ a . Then for any 0ε > , there exist positive integers 0 0
,k ν  such that: 

( ) ( )( )
0

1 0 0 1
T

k

k k

k k

E a x x E x x
ν ν ν νε

∞ Τ

=

     < +         
∑  

and:  
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( ) ( )
0

1 0 0 1
Tk T

k k

k k

E a x x E x xε
∞

=

     < +      
∑  

Proof: Consider the operators 
,A K

T T=  and 
,A K

T T
νν = . By the spectral formula and proposition 

A.2.1, there exist positive integers 0
m  and 0

ν  such that 

0

0
1

m

m
T

a
ε < − 

 
 such that 

0

0
1

m

m
T

a
ν ε < − 

 
 for some 0ε > and any 0

ν ν≥ . Denote by 
01 1,..., mc c −  some constants such 

that 1i

i
T cν ≤ > , for 0

1,..., 1i m= − . Thus  

[ ]0 0

0 0 0

/

1 1 1 1

1 1 1
... ...

m i m i

i

m m m
T c c c c

a a a
ν ε ε− −

   ≤ − ≤ −   
   

.  

Denote by 
0 0

1 1

1
... m m

C c c
a

−= .  Let ( ) ( )
k

T

k k k y BP B E x x
ν ν ν χ ∈

 =   
. Then it holds:  

( ) 111
1

1 0 0

1

1 1 /1

1 1 /

kkk
k i

k

i

a
P T P W T C P W C

a a

ν ν ν
ν ν

ε
ε

ε

+++
+

+
=

− − ≤ + ≤ − +  + − 
∑ . 

Therefore it holds: 

( ) ( )

( ) ( )
0 0

0 0
0

0

0

1 1
1 1 / 1 1 /

1 1
               

1 1 / 1 1 / 1

k kk k

k

k k k k

k k k

W C W C
a P C P a a a

a a

W C W Ca a a
C P

a a a a a

ν ν

ν

ε ε
ε ε

ε ε
ε ε ε ε

∞ ∞

= =

 
≤ − + − + + − + − 

− −
≤ + +

+ − + − −

∑ ∑
 

On the other hand ( )0 0 0

T

E x x P
ν ν ν  ≤  

. Thus: 

 
( ) ( ) ( )0 0

0

0

0 0

1 1

1 1 / 1 1 / 1

k k k
T

k

k

k k

W C W Ca a a
a P C E x x

a a a a a

ν ν νε ε
ε ε ε ε

∞

=

   − − ≤ + +         + − + − −   
∑  

Each of the terms 
( ) ( )0 0

01 1
  and  

1 1 / 1 1 / 1

k k kW C W Ca a a
C

a a a a a

ε ε
ε ε ε ε

   − −
+      + − + − −   

 could 

become smaller than 1ε  for sufficiently large 0k .                               �  

A.3 Convergence of stochastic kernels and ε-Optimality  

 

In the following suppose that Kν →Κ  weakly, Κ  is Feller continuous and the functions 

( ) ( ) ( ), , , ,A y k A y k A yν
 are continuous on the y  argument.  
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Notation: Consider the system: 

( ) ( ) ( )1 1' , ,              ' ,
k k k k k k k k

x A y k x B y u w y K y+ += + + ⋅∼ , 

and the feedback control law ( )k k k k
u L y x= . Then we denote by: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0 0 0 00 0 0 1 1 1 1', , ',
0

,
k k k k

k
T k T T

k k k k k k k k k k k kK k A u L y x

k

J x y E x Q y x a x L y R y L y Q y x+ + + +=
=

 
 = + +  

 
∑

and ( )
0

*

0 0', ',
,

K A k
J x y  the optimal value, where 'K may take the values K  or K

ν
. The time 

horizon is allowed to take the infinity value. We use the notation ( ) ( )
0 0 0', ,

,
k k k kK k u L y x

J x y=
 and 

( )
0

*

0 0',
,

K k
J x y  for ( ) ( )' ,

kk
A y k A y= .                                                                                         �  

The basic topic of this section is the proof of the following two propositions about ε-

optimality in the finite and infinite horizon case respectively.  

Proposition A.3.1: Let ( ),
k

A y kν
 for each k  be a sequence of continuous matrix functions. 

Suppose that   ( ) ( ), ,
k k

A y k A y kν →  as ν →∞ .  Denote by ( )k k k k
u L y x=  the optimal 

feedback strategy that attains ( ) ( ) 00

*

,, , , ,k k k k k K kK k A y k u L y x
J J= = . Then for any 0ε >  there exists a 

positive integer 
0

ν  such that: 

( ) ( ) ( ) ( ) ( )
0 0

*

0 0 0 0, , , , , , ,
, 1

k k k k k k

T

K k A y k u L y x K A y k k
J x y J x xν ν ν ε

=
< + +  

for any 0
ν ν≥ .                                                                                                                                �  

Proposition A.3.2: Denote by ( )k k k
u L y x=  the optimal feedback strategy that attains 

( )
*

,, , k k k KK u L y x
J J ∞∞ = =  and suppose that is continuous on 

k
y . Then for every 0ε >  there exist a 

positive integer 0
ν  such that 

( ) ( ) ( ) ( )*

0 0 0 0 0 0, , ,
, , 1

k k k

T

K u L y x K
J x y J x y x xν ν ε

∞ = ∞
≤ + +  

for any 0
ν ν≥ .                                                                                                                                �  

The proof of propositions A.3.1 and A.3.2 depends on the following lemmas. 

Lemma A.3.3: Consider the feedback control law: ( )k k k k
u L y x= . Then for any 0ε > , 

there exist a positive integer 0
ν  such that: 

( ) ( ) ( ) ( ) ( )
0 0

0 0 0 0 0 0, , , ,
, , 1

k k k k k k k k

T

K k u L y x K k u L y x
J x y J x y x xν ε= =

− ≤ + . 

for any 
0

ν ν≥ .  

Proof: Denoting by [ ]0 1
...y y y=�  and 

0 1 ...y y y
ν ν ν =  �  with straightforward 

calculation we may compute:  

( ) ( ) ( )( ) ( )
0

0 0 0 1 0 2, ,
,

k k k k

T

K k u L y x
J x y x E a y x E a y= = +      � � � � . 

and:   

( ) ( ) ( )( ) ( )
0

0 0 0 1 0 2, ,
,

k k k k

T

K k u L y x
J x y x E a y x E a yν

ν ν
=

   = +   � � � � , 

where functions ( )1
a ⋅�  and ( )2

a ⋅�  are continuous functions of the variables: ( )
00 1, ,...,

k
y y y  and 

( )
00 1, ,...,

k
y y y
ν ν ν

 respectively. Thus they are continuous functions ( )1 2, : ,
D

a a D ℑ →
�

� � �  with 

the product topology. Thus [16] implies that ( ) ( )1 1E a y E a y
ν  →    � � � �  and 
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( ) ( )2 2E a y E a y
ν  →    � � � � . Therefore for any 0ε > , there exist a positive integer 0

ν  such that 

( ) ( )1 1
E a y E a yν ε  − <   � � � �  and ( ) ( )2 2

E a y E a yν ε  − <   � � � �  for any 0
ν ν≥ . Thus for any 

0
ν ν≥  it holds: 

( ) ( ) ( ) ( ) ( )
0 0

0 0 0 0 0 0, , , ,
, , 1                                               

k k k k k k k k

T

K k u L y x K k u L y x
J x y J x y x x

ν
ε= =− ≤ + �

Lemma A.3.4: Let : lf Dν →�  a sequence of continuous functions and :
l

f D →�  a 

continuous function such that: ( ) ( )f y f yν →  for any y D∈ . Then it holds: 

( ) ( ) ( ) ( )' , ' ' , '
D D

f y K y dy f y K y dy
ν

ν →∫ ∫  

Proof: Since D  is compact, the convergence is uniform. Thus for any 0ε > , there exist a 

positive integer 01
ν such that ( ) ( ) / 2f y f yν ε− <  for any y D∈  and 01

ν ν≥ . Thus for 

01
ν ν≥  it holds: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )' , ' ' , ' ' , ' ' , '
2D D D D

f y K y dy f y K y dy f y K y dy f y K y dy
ν ν

ν

ε
− ≤ + −∫ ∫ ∫ ∫

Weak convergence implies the existence of a positive integer 02
ν such that: 

( ) ( ) ( ) ( )' , ' ' , ' / 2
D D

f y K y dy f y K y dyν ε− <∫ ∫   

for any 02
ν ν≥ . Choose { }0 01 02

max ,ν ν ν= .                                                                               �  

Lemma A.3.5: For any 0ε > , there exist a positive integer 0
ν  such that: 

( ) ( ) ( )
0 0

* *

0 0 0 0 0 0, ,
, , 1

T

K k K k
J x y J x y x xν ε− ≤ + . 

for any 0
ν ν≥ .  

Proof: The optimal costs may be computed recursively using the relations (10–14) in [17]. The 

computation involve the functions:, ( )k k
K y

ν
, ( )k k

K y , ( )1k k
y

ν
+Λ , ( )1k k

y+Λ , ( )k k
c y
ν

, ( )k k
c y , 

( )
0

*

0 0,
,

K k
J x yν , ( )

0

*

0 0,
,

K k
J x y . The functions involved are continuous on their arguments. Thus 

using Lemma A.3.4 we may show inductively that ( ) ( )1 1k k k k
y yν

+ +Λ → Λ  as ν →∞ , thus 

( ) ( )k k k k
K y K y

ν →  and ( ) ( )0 0k k
c y c y
ν → . Thus for any 0ε > , there exist a positive integer 

0
ν  such that: ( ) ( )0 0k k

c y c y
ν ε− <  and  ( ) ( )k k k k

K y K y
ν ε− <  for any for any 

0
ν ν≥ . Thus  

( ) ( ) ( )
00

* *

0 0 0 0 0 0,,
, , 1

T

K kK k
J x y J x y x xν ε− < +                                                                               �  

Proof of proposition A.3.1: 

Lemma A.3.3 implies that there exists a positive integer 01ν  such that: 

( ) ( ) ( ) ( ) ( )
( ) ( )

00

0

0 0 0 0 0 0, , ,, , ,

*

0 0 0 0, ,

, , 1 / 2

                                                 , 1 / 2

k k k kk k k k

T

K k A u L y xK k A u L y x

T

K A k

J x y J x y x x

J x y x x

ν ν ε

ε

==
< + + =

= + +
 

for any 01
ν ν≥ . Lemma A.3.5 implies that there exists a positive integer 02

ν  such that: 

( ) ( ) ( )
0 0

* *

0 0 0 0 0 0, , , ,
, , 1 / 2T

K A k K A k
J x y J x y x xν ν ε< + +  
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for any 02
ν ν≥ . Thus choosing { }0 01 02

max ,ν ν ν=  we have: 

( ) ( ) ( )
0 0

*

0 0 0 0, , , , ,
, 1

k k k k

T

K k A u L y x K A k
J x y J x xν ν ν ε

=
< + + .                                                                     �  

Proof of Proposition A.3.2: 
The proof is based on a series of comparisons: 

( ) ( ) ( ) 000 0

1 2 3 4 5* * *

, , ', ,, , , , , '

6 *

,

k k kk k k k k k
K K kK k u L y xK u L y x K k u L y x K k

K

J J J J J J

J

ν ν ν

ν

∞=∞ = =

∞

→ → → → →

→
 

Set 
0 1 0kQ + = . For comparison 1, using continuity of K , Corollary A.2.3 imply that for any 

0ε >  there exist positive integers 
0

k  and 
01

ν  such that: 

( ) ( ) ( ) ( ) ( )
0

0 0 0 0 0 0, , , ,
, , 1 / 4

k k k k k k

T

K u L y x K k u L y x
J x y J x y x xν ν ε

∞ = =
≤ + + , 

for any 01
ν ν≥ . 

For comparison 2, Lemma A.2.3 implies the existence of a positive integer 02
ν  such that: 

( ) ( ) ( ) ( ) ( )
00

0 0 0 0 0 0, ,, ,
, , 1 / 4

k k kk k k

T

K k u L y xK k u L y x
J x y J x y x xν ε==

< + +  

Comparison 3 holds with ≤  i.e. it holds: 

 ( ) ( ) ( )
0

*

0 0 0 0,, ,
, ,

k k k KK k u L y x
J x y J x y∞= ≤  

To obtain an inequality for comparison 4, we observe that k
K K→  and k

c c→  uniformly as 

k →∞ , where k
K  and k

c  as in the proof of the Proposition 5.1 of [17]. We also have: 

( ) ( ) ( )*

0 0 0 0 0 0,
,

T

k kK k
J x y x K y x c y= +  and ( ) ( ) ( )*

0 0 0 0 0 0,
,

T

K
J x y x K y x c y∞ = + . Thus for any

0ε > , there exist a positive integer 0
'k  such that ( ) ( ) ( )* *

0 0 0 0 0 0, ,
, , 1 / 4T

K K k
J x y J x y x xε∞ < + + . 

Using this value 0
'k  Lemma A.3.5 implies the existence of a positive integer 03

ν  such that  

( ) ( ) ( )
0 0

* *

0 0 0 0 0 0, ' , '
, , 1 / 4

T

K k K k
J x y J x y x xν ε< + + . 

Comparison 6 holds with ≤  i.e.  

( ) ( )
0

* *

0 0 0 0, ' ,
, ,

K k K
J x y J x y

ν ν ∞≤ . 

Thus choosing appropriate 
0

k , 
0
'k  and { }0 01 02 03

max , ,ν ν ν ν=  we have: 

( ) ( ) ( ) ( )*

0 0 0 0 0 0,, ,
, , 1

k k k

T

KK u L y x
J x y J x y x x

νν
ε∞∞ = ≤ + +  

for any 0
ν ν≥ .                                �  

 

A.4 Proof of Theorem 6.5 

At first observe that optimal control problems involve continuous matrix functions. For the 

first inequality apply proposition A.3.2. For the proof of the second inequality observe that 

( ) ( )0 0

0 0

,
, ,

j j

i k i k
A k t y A k t y

ν − → −� �  as ν →∞ . Then apply proposition A.3.1 and take 

expectations.                                �  
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