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Abstract—We consider dynamic games on large networks,
motivated by structural and decision making issues pertaining
in the area of Systems of Systems. The players participating
in the game do not know the network structure and the
characteristics of the dynamics and costs of the players
involved. Instead, they know some local characteristics of the
topology, as well as a statistical description of the network. An
approximate equilibrium concept is introduced and a complexity
notion that describes the minimum amount of structural and
feedback information needed for the players in order to behave
approximately in Nash equilibrium, is defined. An example of
a Linear Quadratic game on a ring is finally studied and an
asymptotic upper bound for the complexity of the game is
derived.

I. INTRODUCTION

Several features characterizing Systems of Systems, such

as operational and managerial independence, geographical

distribution, heterogeneity of systems and networks of systems

[1] can be captured by Dynamic Game models. In this work we

study dynamic games on large random interaction structures

where the players participating in the game have only partial

information about the other agents participating in the game.

Particularly, the agents interact on a network and they have

information about their neighborhood as well as a statistical

model (ex. [2]) for the network. An example of a System of

Systems, where the game theoretic analysis is quite suitable,

is the smart grid where several producers / consumers are

connected to the same network.

Two kinds of approaches have been mainly used to predict

the behavior of the participants in large games. The first

approach is based on equilibrium concepts. The dominant

notion in this approach is the Nash equilibrium and a complete

knowledge of a large amount of information is needed. The

second kind of approaches assumes limited rationality for

the participants and it is based on dynamic formulations. In

particular, some deterministic or stochastic rules describing
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the future actions of the agents as a function of their current

actions are postulated and then evaluated experimentally

or theoretically. This kind of approach does not require a

complete knowledge of the game. However, the dynamic rules

used are not universal, in the sense that there is no reason

to believe that all the players will follow some specified

rule to determine their future actions. This work aims to

stand between these two approaches, assuming only a partial

knowledge of the game and players of a full rationality.

A. Related Topics

The interest for the games with large number of players

is not new. In [3], games with a continuum of players,

called Oceanic Games, were introduced and a value for such

games was defined. The Mean Field Games [4] have been

recently introduced to study games with large number of

players. The closely related methodology of Nash Certainty

Equivalence was also developed, in order to obtain asymptotic

Nash equilibrium results, as the number of players tends to

infinity [5],[6]. These approaches study games, where each

player interacts with the mass of the other players, which

is approximated by a continuum. Large games involving a

coordinator (major player) were studied in [7] and some

extensions of the Mean Field game models are presented in

[8].

Another related topic is Games with Local Interactions, in

which each player interacts with some players important to

him/her on some organized structure. In [9], equilibria for

complete and incomplete information Local Interaction Games

were found, based on contraction mapping ideas. The dynamic

game counterpart is presented in [10]. Models with discrete

choice were introduced in [11].

Games where players move on a graph were analyzed

in [12] and finite games on graphs, where each node

corresponds to a participant of the game, were studied in

[13]. Repeated games with random matching of the opponents

were introduced in [14], in the context of sustainability of

cooperation and social norms. The probability of existence of

a Nash equilibrium for games on random graphs is studied

in [15]. A quadratic game on networks is studied in [16],

using centrality notions. Games on networks with incomplete
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information are studied in [17]. Dynamic games on evolving

(state dependent) graphs were studied in [18] and stochastic

games in [19]. A review of network games is given in [20].

Dynamic rules for updating the actions of the agents

on lattices were studied in the context of Interacting

Particle Systems [21] and in [22]. Several dynamic rules for

games on graphs were introduced and studied analytically

and computationally [23]. Several social applications of

evolutionary games on graphs were studied in [24].

The impact of the quality of information that the agents

receive on their costs is studied in [25]. The notion of the

price of uncertainty was introduced in [26] and [27], in

order to describe the difference in the costs of the players

under different information using dynamic and equilibrium

formulations respectively. The price of information was

introduced in [28] to describe the difference of the cost that the

players have in deterministic dynamic games under different

information patterns (feedback and open loop).

B. Our Approach

We assume that the agents have a statistical knowledge

about the game they are involved, instead of a full knowledge.

Particularly, there is an ensemble (set, collection) of possible

games that the players may participate in. A probability

measure on the ensemble, common to all players, is assumed.

The players can also measure the interaction structure locally,

i.e. they know the characteristics and the interactions of some

players, that are important for them. A model that divides the

stochasticity into two parts is introduced. Specifically, the one

type of stochasticity is due to the lack of predictability in the

dynamics of the game and the other is the uncertainty due to

the lack of information.

Based on such a model, a new approximate equilibrium

concept is defined. Specifically, we study sets of strategies

depending only on local information that constitute an ε -

Nash equilibrium with very high probability. A new notion

of complexity for an ensemble of games is defined as the

minimum amount of information needed, in order to achieve

an approximate equilibrium. Let us note that the current paper

extends our previous work [29], where the static case was

analyzed.

C. Organization

The rest of the paper is organized as follows: In Section

II, the game is described. In section III, an approximate

equilibrium concept is defined and compared with other

equilibrium concepts. In Section IV, the complexity function

for an ensemble of games is defined. Section V contains

an example of a Linear Quadratic games on a ring and

derives some bounds on the complexity functions. Section VI

concludes.

D. Notation

A directed or undirected graph will be denoted by G =
(V,E), where V is the set of vertices and E the set of edges.

For a v ∈ V , the neighborhood of v is defined as N1
v (G) =

{v} ∪ {v′ ∈ V : (v′, v) ∈ E}. The neighborhood of order n
of v is defined as Nn

v (G) = ∪j∈N1
v (G)N

n−1
v (G). For a set

of real numbers or functions ui, i = 1, . . . , N we denote by

(ui)i the ordered tuple (u1, . . . , uN ) and by u−i the tuple

(u1, . . . , ui−1, ui+1, . . . , uN ).
The asymptotic notation will be also used. For the real

functions f and g, we write f(x) ∈ O(g(x)), if there exists a

constant c > 0, such that |f(x)| ≤ c|g(x)| for large x.

II. GAME DESCRIPTION

The game for a specified interaction structure is first defined

and the ensemble of interaction structures, as well as the

information available to the players are then described.

The dynamics and the cost functions of the players

participating in the game depend on an interaction structure.

Each player i has a type θi, belonging to a set of types Θ. The

interaction structure contains a set of N players, p1, . . . , pN
and is described as:

S = (Π, G), (1)

where Π = ((p1, θ1), . . . , (pN , θN )) and G = (V,E) is a

graph (directed or not), describing the interactions. Each vertex

of the graph G represents an agent from {p1, . . . , pN} and

each edge represents the influence of an agent to another.

Each player i has his/her own state variable denoted by

xi. The evolution of the state variables is described by the

following equation:

xi
k+1 =

∑
j∈N1

i (G)

f
θi,θj
1 (xi

k, x
j
k, u

i
k, u

j
k, w

i
k)

+
∑
j∈V

f
θi,θj
2 (xi

k, x
j
k, u

i
k, u

j
k, w

i
k), (2)

where ui
k is the control variable of player i at time step k and

wi
k are ranom variables. The random variables wi

k and xi
0 are

defined on a probability space (Ω,F , P ).
The cost functions of the players participating in the game

have the form:

Ji = EP

⎧⎨
⎩

T∑
k=0

ρk

⎡
⎣ ∑
j∈N1

i (G)

L
θi,θj
1 (xi

k, x
j
k, u

i
k, u

j
k)+

+
∑
j∈V

L
θi,θj
2 (xi

k, x
j
k, u

i
k, u

j
k)

⎤
⎦
⎫⎬
⎭ (3)

where the time horizon T can be finite or infinite, L1, L2 ≥ 0
and ρ ∈ (0, 1) is the discount factor. The cost function of the

player pi depends differently on the players with whom he/she

has a direct connection, than the rest of the players.

Before stating the assumptions on the information structure

of the game, we shall describe the knowledge that the agents

have about the game. The players instead of possessing a

full knowledge of the interaction structure, they know that

it belongs to an ensemble of possible interaction structures

denoted by E . The players also have a probability measure Q
on E . We assume that the ensemble E and the measure Q are
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common knowledge among the players, i.e. we study games

with “known statistics”. For an interaction structure S ∈ E ,

let us denote by gS the corresponding game.

Apart from the statistical model, each agent has also some

local information about the interaction structure and the state

variables of the participants of the game. Particularly, we

assume that the player i knows the structure of the subgraph

of its neighborhood of order n, denoted by Nn
i (G), as well

as the types of the players involved in that subgraph and their

state variables. Thus, the information available for the player

i at the time step k is:

Ii,nk = (Nn
i (G), (θj)j∈Nn

i (G), (x
j
t )

t=0,...k
j∈Ni

n(G)), (4)

i.e. the information available to the agent i at time step k
depends on the size of the information neighborhood n.

The strategy of each agent is a function of the information

available to him/her. We consider symmetric sets of strategies,

where players with the same information (and hence type)

behave the same. Furthermore, we focus on feedback (without

memory) time invariant strategies. The strategies under

consideration have thus the form:

ui
k = γ(Īi,nk ), (5)

where:

Īi,nk = (Nn
i (G), (θj)j∈Nn

i (G), (x
j
k)j∈Ni

n(G)). (6)

Remark 1: (i) The dynamics and the cost functions given

by equation (2) and (3) describe two types of interactions.

The first sum corresponds to local interactions and the

second term to mean field interactions.

(ii) The members of the ensemble do not need to have the

same number of players.

(iii) There are two types of stochasticity presented in the

model. The first is due to the lack of predictability and

it is described by the probability space (Ω,F , P ). The

second is the uncertainty due to the lack of information

and it is described by the probability space (E ,A, Q).
The elements of E contain the structural features of the

game.

Remark 2: There are some possible extensions of the model

studied. For example:

(i) Models involving graphs with information on their edges

could also be studied, as well as structures more general

than the graphs relating more than two agents (ex. [30]).

(ii) The probability measure P could depend on the

interaction structure.

(iii) Continuous time modes could also be considered.

In the following sections, asymptotic results for large

interaction structures are derived. In order to do so, we define

a sequence of ensembles describing games with increasing

number of players. Let us denote by Eν the ν-th member of

that sequence. The results of the next sections will refer to the

final part of the sequence Eν .

III. APPROXIMATE EQUILIBRIUM

Consider a large game in which the actions of the players

depend only on local and statistical information. Due to the

fact that the agents do not know in which game they participate

in, it is reasonable to expect that a set of strategies in the

form (5) could not typically constitute a Nash equilibrium. An

approximate equilibrium concept is thus defined, based on the

concept of ε - Nash equilibrium. We first recall the definition

of the ε - Nash equilibrium for a single game.

Definition 1: Consider a game gS with S ∈ E and the set

of dynamics and cost functions given by (2) and (3). Then a

set of strategies (ui)i in the form (5) constitute an ε - Nash

equilibrium, if for every player i it holds:

Ji(ui, u−i)−min
u

Ji(u, u−i) < ε, (7)

where the minimum is considered within the set of full state

measurement closed loop strategies.

An approximate equilibrium concept is then defined for the

ensemble E . Particularly, we are interested on sets of strategies

that constitute an ε - Nash equilibrium for most of the games

in E .

Definition 2: Consider an ensemble of interaction structures

E and the set of dynamics and cost functions as before. Then

a set of strategies (ui)i in the form (5) is ε - fine if it holds:

Q({S ∈ E : (ui)i is an ε- Nash equilibrium}) > 1− ε, (8)

i.e. (ui)i constitutes an ε - Nash equilibrium with high

probability.

The agents act without knowing in which game they play.

Thus, the best they could expect is to play well in many of

the possible games. For large information neighborhoods, i.e.

for large n, we may expect that, under some conditions, there

exists an ε - fine set of strategies with small ε and that ε→ 0 as

the information of the players approaches the full information.

Remark 3: The reason for studying ε - fine sets of strategies

with small ε is that, with a very high probability, no player

has non-negligible benefit from changing his/her strategy.

Particularly, if a player i is allowed to measure the whole

interaction structure S, as well as the state variables of all

the other players, he/she could only improve his/her cost by

at most ε, assuming that the strategies of the other players

remain the same.

Remark 4: Definition 2 transfers some ideas from

Statistical Physics to games. A widely used model in

Statistical Physics considers an ensemble of systems with a

probability measure on that ensemble (ex. [31]). The actual

system under consideration is one of the systems of the

ensemble. Several properties dealing with some statistic of

the state variables of the particles of the system are then found

to have a value very close to a deterministic constant, for all

but a set of systems with a very small measure. This situation

is transferred to an ensemble of games in Definition 2. Let us

note that the idea to transfer concepts from Statistical Physics

to Game Theory or Multiagent Systems is not new (see for

example [21], [22], [4], [5]).
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Remark 5: An alternative way to model the uncertainty is to

use a common probability structure for both the unpredictable

disturbances and the structural information, i.e. to use a single

probability space to describe wi
k, G and θi. In that case, the

notion of Bayesian Nash equilibrium could be used. Some

differences among the two approaches are then listed:

(i) It is very difficult to compute a Bayesian Nash

equilibrium even for simple dynamic games. In the

case of LQ stochastic Dynamic Games with imperfect

state feedback information, Nash equilibria have been

computed only for special information patterns [32].

In the case where the structural information is also

incomplete, the optimization problems are vey difficult

even for single person games (control problems) due to

the fact that the dual control problem arises [33].

(ii) In contrast to Bayesian Nash equilibrium, an ε - fine set of

strategies is insensitive to new information. Particularly,

assume that (ui)i is an ε - fine set of strategies and some

players receive more information I ′i ⊃ Ii. Then (ui)i
remains ε - fine.

(iii) In contrast to an ε - fine set of strategies, a Bayesian Nash

equilibrium could not typically constitute of feedback

(memoryless) functions.

IV. COMPLEXITY

With a small amount of information it is probably not

possible to have an ε - fine set of strategies. Thus, we are

interested in the following question:

Question 1: “Given a positive constant ε, what is the

minimum amount of information that the agents need to have

in order to achieve an ε - fine set of strategies?”

Based on the answer to this question, a complexity notion

for an ensemble of games is defined. In several cases, it is

easier to answer Question 1, when the game has a large number

of players. The following definition refers to a sequence of

ensembles Eν and a complexity function is defined.

Definition 3: (i) Consider an ensemble E and the cost

functions given by equation (3). Let us define the

following function:

n̄(m) = inf{n ∈ N : ∃(ui)i, ui = γ(Īi,nk ) which

is an 2−m - fine set of strategies}. (9)

The Necessary Information Complexity (NIC) function is

defined as:

C(m) = max{#N
n̄(m)
i }, (10)

where the maximum is taken over the players and over

the games of the ensemble where (ui)i is a 2−m - Nash

equilibrium.

(ii) Consider a sequence of ensembles Eν with cost functions

Jν
i and dynamics described by f ·,·,ν1 , f ·,·,ν2 . Denote

by Cν(·) the NIC function of the ν-th ensemble. The

Asymptotic Necessary Information Complexity (ANIC)

function is given by:

Ca(m) = lim sup
ν→∞

Cν(m). (11)

The sequence of ensembles will be called asymptotically

simple if the function Ca(m) is bounded and

asymptotically complex if for some m ∈ N it holds

Ca(m) =∞.

Remark 6: Several static and dynamic games, that have

only mean field interactions, have been studied in the literature

[4], [6]. In these cases, under some conditions, each player

interacts with the mass of the other players which behaves

asymptotically deterministically, as the number of players

increases. Thus, each player needs to know only his/her type in

order to behave nearly optimally. Thus, the Mean Field Games

is a first example of simple games.

V. A LQ GAME ON A RING

This section studies an example of a game with a known

number of players N = ν lying on a ring having interactions

only with their nearest neighbors. Specifically, there is a set of

players p1, . . . , pN and each player pi has a connection with

pi−1 and pi+1, where the convention N + l ≡ l is used. Each

agent pi has a type θi ∈ [0, 1]. The random variables θi are

independent and distributed uniformly on [0, 1].

The dynamics of the state vector of the player i is described

by the following equation:

xi
k+1 = axi

k + ui
k + wi

k, (12)

where xi is the scalar state variable of the agent i, ui
k the

control variable of the agent i and wi
k are zero mean i.i.d.

random variables with finite second moments. The initial

conditions are given by xi
0 = wi

−1.

The cost function for the player i is given by:

J i = E

{(
ziT

)2
+

T−1∑
k=0

[(
zik

)2
+ ri

(
ui
k

)2]}
, (13)

where ri = (1 + θi)/2 and

zik = xi
k − λ

(
xi−1
k + xi+1

k

)
. (14)

Thus, a Linear Quadratic game with coupling only through

the cost functions is considered.

Remark 7: The random variables θi are defined on

(E ,A, Q) and the disturbances wi
k on (Ω,F , P ).

It will be shown that the ANIC is at most linear under

some specified conditions. To do so, we shall use simultaneous

dynamic programming from the time step k = T − 1,

backwards to k = 0. Consider the last step of the simultaneous

dynamic programming. The cost functions are given by:

J i
T−1 = E

[
(ziT−1)

2 +
(
xi
T − λ

(
xi−1
T + xi+1

T

))2
+ri

(
ui
T−1

)2 |xT−1

]
. (15)

It is not difficult to see that the equilibrium condition is

given by:

ui
T−1 = W i

T−1((u
j
T−1)

N
j=1), (16)
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where the mapping W i
T−1((u

j
T−1)

N
j=1) is given by:

W i
T−1((u

j
T−1)

N
j=1) =

λ

1 + ri

[
ui−1
T−1 + ui−1

T−1

]
+

+
a

1 + ri

[−xi
T−1 + λ(xi−1

T−1 + xi+1
T−1)

]
. (17)

The proof of the following Proposition 1 is based on the

contractivity of the following mapping:

WT−1((u
j
T−1)

N
j=1) =

(
W i

T−1((u
j
T−1)

N
j=1)

)N

i=1
. (18)

Analogous mappings are then defined for the other time steps

T − 2, . . . , 0.

Proposition 1: For small coupling constant λ, the ANIC of

the ensemble of games described by (12) and (13) is at most

linear, i.e. Ca(m) ∈ O(m).
Proof: For simplicity reasons the proof is given for T =

2. The proof starts at k = 1 and then moves backwards to k =
0. If |λ| < 1/2, then the mapping given by (18) is contractive

for the infinity norm. Consider the feedback strategies obtained

after m iterations of (18) with zero initial strategies. These

strategies have the form:

ui,m
1 =

m∑
l=−m

ki,l,m1 xi+l
1 . (19)

Then the equation (18) is also a contraction in the space

of the vectors of feedback gains with the infinity norm, i.e.

the mapping (ki,l,m1 )Ni=1 �→ (ki,l,m+1
1 )Ni=1 is a contraction.

Therefore:∥∥∥(ki,l,m+1
1 )Ni=1 − (ki,l,m1 )Ni=1

∥∥∥
∞
≤ (2λ+ 1)a

1.5

(
2λ

1.5

)m

(20)

Before going back to the step k = 0, let us compute the form

of the cost functions J i
1 when in the last step the strategies with

feedback gains (ki,l,m1 )Ni=1 are applied. Equation (15) implies:

J i
1 =

(
m∑

l=−m

ξi,l1 xi+l
1

)2

+

(
m∑

l=−m

ki,l,m1 xi+l
1

)2

+ (zi1)
2 +Ci,

where:

ξi,l1 = aδl,0 − λa(δl,1+δl,−1) + ki,l,m1 −
− λ(ki+1,l−1,m

1 + ki−1,l+1,m
1 ). (21)

It is not difficult to show that it holds:

J i
1 =

∑
l1,l2

qi,l1,l21 xi+l1
1 xi+l2

1 , (22)

where qi,l1,l21 = qi,l2,l11 , |qi,l1,l21 | < Mβ|l1|+|l2| and β > 0.

Furthermore, β → 0 as λ→ 0. Let us now go back one step

to k = 0 and assume that the players at time step k = 1 will

follow the strategies with feedback gains given by ki,l,m1 . The

cost functions have the form:

J i
0 = (zi0)

2 + Ci + ri(u
i
0)

2 +
∑
l1,l2

qi,l1,l21 xi+l1
1 xi+l2

1 (23)

The equilibrium condition is, thus, given by:

ui
0 = − 1

(qi,0,01 + ri)

⎡
⎣∑

l2

aqi,0,l21 xi+l2 +
∑
l2 �=0

qi,0,l21 ui+l2
0

⎤
⎦ ,

and the mapping in the feedback gains by:

ki,l,m
′+1

0 = − 1

(qi,0,01 + ri)

⎡
⎣aqi,0,l1 +

∑
l2 �=0

qi,0,l21 ki+l2,l−l2,m
′

1

⎤
⎦

(24)

For small β, the mapping (24) is contractive with Lipschitz

constant 2Mβ/(1− β). Therefore:

∥∥∥(ki,l,m′+1
0 )Ni=1 − (ki,l,m

′
0 )Ni=1

∥∥∥
∞
≤ aM

(
2Mβ

1− β

)m′

. (25)

To complete the proof, let us introduce some quantities. Let

J̄ i,m
1 (x1) be the minimum cost to go for player i at time step

k = 1, assuming that the other players use the strategies given

by (19), J i,m
1 (x1) be the cost to go if all the players use the

strategies given by (19) and:

J i,m
0 (x0, u

i
0) = (zi0)

2 + (ui
0)

2 + E[J i,m
1 (x1)|x(0)],

J̄ i,m
0 (x0, u

i
0) = (zi0)

2 + (ui
0)

2 + E[J̄ i,m
1 (x1)|x(0)],

where we assume that the other players use the strategies given

by (19).

The proof is based on the following facts:

Fact 1: Let γ > (2λ/1.5)2. For large m it holds:

J i,m(x1) ≤ J̄ i,m(x1) + γm(1 + ‖x1‖2∞,i,m),

where ‖x1‖∞,i,m = max{|xj
1| : j = i−m, . . . , i+m}.

The proof of Fact 1 is immediate from equations (15) and

(20).

Fact 2: Let γ > (2λ/1.5)2. For large m it holds:

min
ui
0

J i,m(x0, u
i
0) ≤ min

ui
0

J̄ i,m(x0, u
i
0) + γm(1 + ‖x0‖2∞,i,m).

To prove Fact 2, let us observe that:

J i,m
0 (x0, u

i
0) = (zi0)

2 + (ui
0)

2 + J i,m
1 (f(x0, u

i
0)) + c0,

where f(x0, u
i
0)) is the expected value of x1 given x0 if the

player i uses ui
0 and the other players use the strategies given

by (19). Furthermore, it holds:

J̄ i,m
0 (x0, u

i
0) = (zi0)

2 + (ui
0)

2 + J̄ i,m
1 (f(x0, u

i
0)) + c̄0.

Fact 1 implies that |c0 − c̄0| < γm, for large m. Denoting by

v(x0) the value of ui
0 that minimizes J̄ i,m

0 (x0, u
i
0) we have:

min
ui
0

J i,m
0 (x0,u

i
0) ≤ J i,m

0 (x0, v)

≤ min
ui
0

J̄ i,m
0 (x0, u

i
0) + 2γm(1 + ‖x0‖2∞,i,m).

And using a small abuse of notation (choosing a smaller value

for γ) we conclude to Fact 2.
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Fact 3: Let m > (2Mβ/(1− β))2. For large m it holds:

J i,m
0 (x0,

m∑
l=−m

ki,l,m0 xi+l
0 ) ≤

≤ min
ui
0

J i,m
0 (x0, u

i
0) + γm(1 + ‖x0‖2∞,i,m).

The proof of Fact 3 is immediate from (25).

For a small value of λ, there exist a constant γ̃ >
max{(2Mβ/(1−β))2, (2λ/1.5)2} and γ̃ < 1 such that Facts

2 and 3 apply with γ = γ̃. Thus, if γ̄ > γ̃, for large m it

holds:

E

[
J i,m
0 (x0,

m∑
l=−m

ki,l,m0 xi+l
0 )

]
≤ E

[
min
ui
0

J i,m
0 (x0, u

i
0)

]
+ γ̄m

Thus, the strategies given by the feedback gains k·,·,·0 and k·,·,·1

are γ̄m - fine for large m. Thus, the ANIC function is at most

linear.

Remark 8: The proof of Proposition 1 shows that in

some cases the assumption of a common knowledge of the

probability measure Q can be weakened.

VI. CONCLUSION

A model of Dynamic Games on random interaction

structures was introduced and information and complexity

issues were examined. Results dealing with ensembles of

games instead of single games were derived. The stochasticity

was divided into two parts using different probability

structures. The first part describes the lack of predictability due

to random disturbances and the other the lack of information

of the participants of the game about their opponents. The ε -

fine concept was defined to describe sets of strategies that

constitute an ε - Nash equilibrium with probability higher

than 1 − ε. The complexity functions NIC and ANIC were

introduced to describe the minimum amount of information

needed in order for the players to have an ε - fine set of

strategies. Finally, an example of a LQ game on a ring was

studied and the ANIC function was shown to be asymptotically

at most linear.
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