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ABSTRACT

We study Dynamic Game situations with incomplete struc-
tural information, motivated by problems arising in electricity
market modeling. Some Adaptive strategies are considered
as an expression of the Bounded Rationality of the partici-
pants of the game. The Adaptive strategies are typically not
in Nash equilibrium. Thus, in order to assess those strate-
gies, two criteria are stated: Firstly, how far the cost of each
player is from the cost of her best response in the sense of the
Nash equilibrium. Secondly, we consider the case where the
first player follows the adaptive strategy and the second player
implements the best response to the first player. Then, the cri-
terion depends on the difference of the cost of the first player
comparing with the cost in case where both players follow
their adaptive control laws. This difference may be positive
or negative. We then examine a smaller class of strategies,
called the pretender strategies, where each player acts as if
she had different, not real, preferences. It turns out that un-
der certain technical conditions, if only one player is pretend-
ing, she can achieve the same cost as if she were Stackelberg
leader. The situation where all the players are pretending is
then considered. The effects of adaptation and cheating, when
the number of players in the game becomes large, is examined
in a simple example.

Index Terms— Adaptive Games, Cheating, Bounded Ra-
tionality, Electricity Markets - Power Grid.

1. INTRODUCTION

In a number of real game situations there is a number of deci-
sion makers that interact strategically over time but each one
of them has only a partial knowledge of the intentions of the
others. A particular example is an electricity market where
several producer firms are competing repeatedly over time
and each firm knows its own costs but not the costs of the
other firms ex. [1], [2]. Such strategic interactions over time
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can be described by dynamic games with incomplete struc-
tural information.

Two difficult problems arise in the problem of finding a
Nash equilibrium in the case of dynamic games with incom-
plete structural information. The first is due to the “Witsen-
hausen effect” [3], i.e. the current action of each player affects
the future state estimation of the other players. The second is
due to the “Dual Control effect” [4], i.e. that the current ac-
tion of a player affects the quality of his own future parameter
estimation. Due to the later difficulty, the Optimization prob-
lem has not been solved analytically even for the single player
(control) case, except only of a few special cases [5].

In this context, theory of Adaptive Games was introduced
[8] - [10]. Each player solves an optimal control problem us-
ing an estimated value for the gains or the types of the other
players and then updates the estimated values based on the
measurements. The adaptive strategies that try to approxi-
mately solve the optimization problems are an expression of
the Bounded rationality [6], [7] of the players and they are not
in equilibrium. These works prove finiteness of the costs and
under certain conditions, the asymptotic convergence of the
adaptive strategies to the full information Nash strategies.

Are these adaptive strategies a reasonable prediction for
the evolution of the game? Particularly, if the players knew
that they are going to implement those strategies, would they
stick on them? When a player is implementing an adaptive
control law, she may be viewed by another player as a sys-
tem under control. That is, the other player may “cheat”, i.e.
use the knowledge of the adaptation law of the first player to
manipulate her. The topic of this work is to study phenom-
ena like “cheating” and the implications that may have to the
costs of the participants of the game.

2. ADAPTIVE STRATEGIES AND ASSESSMENT

In this section, we define two criteria in order to assess a set
of adaptive strategies. At first, a general form of strategies is
considered. For simplicity reasons, the criteria are stated for
two player games.

Let us first define formally the game. There are two play-
ers of types θ1, θ2. Each player knows her own type and
θ1, θ2 are part of a random vector θ̄ = [θ1 θ2 θ]T ∈ Θ̄ =
Θ1 ×Θ2 ×Θ having a commonly known distribution.



The dynamics have the form:

xk+1 = f(xk, θ̄, u
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random disturbance.
The cost functions have the form:
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where ρ ∈ (0, 1] is a discount parameter and T can have a
finite or infinite value. An alternative formula for the costs is:
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Equations (1), (2) or (1), (3) can describe dynamic games as
well as repeated static games.

Each player receives at each time step an information vec-
tor according to:
Information Structure 1: Īi,newk = (xk, u

i
k−1), or

Information Structure 2: Īi,newk = (xk, u
i
k−1, u

−i
k−1).

The information that each player possesses at time step k has
the form Iik = (Īi,new0 , . . . , Īi,newk ).

Let us now describe a general form of strategies of the
players: si = (γi1, γ

i
2, . . . ), i = 1, 2, where γik is a function

having the form:

γik : (x0, x1, . . . , xk, θi) 7→ uik ∈ U i.

We shall focus on “state feedback” strategies, where
all the previous information is used only for “adaptation”.
Specifically,

uik = γik(xk, θi, θ̂
i
k), (4)

where θ̂ik is the adapted parameter of player i. We assume
that the adapted parameter evolves according to a dynamic
equation:

θ̂ik+1 = φi(θ̂ik, Ī
i,new
k+1 , θi). (5)

For infinite horizon games, the following property is quite
interesting see for example [11]:
Property 1: The adapted values θ̂1

k, θ̂
2
k converge to some lim-

its θ̂1
∞, θ̂

2
∞, such that the feedback (no memory) strategies

γik(xk, θi, θ̂
i
∞), i = 1, 2 constitute a Perfect Nash equilib-

rium for the complete information game.
The criteria depend on the best response of each player to

the opponent’s strategy. Thus, in order to state the criteria, the
best response s̄i, i = 1, 2 of each player given the strategy of
the other player s−i, is considered.

The first criterion states that each player does not have a
lot to profit from moving to her best response. We call it the
opportunity criterion.
Opportunity Criterion with parameter a: For some a > 0 it
holds:

J i(si, s−i) ≤ J i(s̄i, s−i) + a, (6)

for any θi, i = 1, 2.
The second criterion states that if the other player moves

to her best response, the first player does not have a lot to lose.
Let us call it the conservative criterion.
Conservative Criterion with parameter b: For some b > 0, it
holds:

J i(si, s̄−i) ≤ J i(si, s−i) + b, (7)

for any θi, i = 1, 2.

Definition 1 A pair of strategies s1, s2 is a, b - not sensitive
to cheating if either the Opportunity Criterion with parameter
a or the Conservative Criterion with parameter b holds.

Remark 1 Definition 1 borrows some ideas form satisficing
based decision making [6], where the values of a, b have roles
related to the satisfactory levels.

Remark 2 Definition 1 corresponds to conservative players.
Particularly, it states that each player believes either that the
opponent will not have enough motivation to change her strat-
egy or that if she has, this change would not increase the cost
of the former player a lot. For less conservative players, the
“either, or” of the definition should be replaced by “and”. An
alternative definition would involve any “better response” s̃i

instead of the best response s̄i.

Remark 3 A class of games which satisfy Definition 1 is
Team Games. More generally, ifmax|J1(s1, s2)−J2(s2, s2)|
≤ max{a, b}, then the game is a, b not sensitive to cheating.

The verification of Definition 1 is not easy due to the fact
that the optimal control problems involved are quite difficult.
This definition can be numerically checked in some exam-
ples, however the analysis is quite lengthy and thus, it is not
included in this paper.

3. PRETENDERS STRATEGIES

In this section we concentrate on a special class of cheating
strategies. Namely, the pretenders’ strategies. Particularly,
the cheating player pretends to have a false type. For simplic-
ity, we assume that the θ is commonly known, i.e. Θ = {θ}.

The general form of a pretender’s strategy that corre-
sponds to (4) is:

uik = γik(xk, θ
i,pr
k , θ̂ik), (8)

where the pretended type θi,prk is given as an output of a sys-
tem:

zik+1 = φi,pr(zik, Ī
i,new
k+1 , θi), (9)

θi,prk = ψi(θi, z
i
k). (10)

Equations (8)-(10) represent a cheating player who pretends
to have a type that depends on her real type and a new, prob-
ably augmented, adapted parameter zik. That is, in order to
pretend adequately, it is probably useful to accumulate more
information.



3.1. Optimal Stationary Pretending

We consider the possible limit points of the pretending strate-
gies, assuming games with infinite horizon and long run aver-
age cost. In the spirit of Property 1, we analyze the following
situation. Player 1 has revealed all the useful information for
θ2 and the pretended type of player 1 has converged to θ1,pr

∞ .
Player 2 reacts to a player of type θ1,pr

∞ . Furthermore, the
pair of strategies γ1(xk, θ

1,pr
∞ , θ̂1

∞), γ2(xk, θ2, θ̂
2
∞) constitute

a Perfect Nash equilibrium for the game with full information
and types θ1,pr

∞ , θ2.
In order to define the Optimal Stationary Pretending, the

following assumption is made:
Assumption 1: For any pair of types θ1, θ2, there exist a
unique Perfect Nash equilibrium of the full information game.
Let us denote by γi,Nθ1,θ2(xk), i = 1, 2 the pair of strategies
constituting the Nash equilibrium.

Assumption 1 is not unusual in static or dynamic games.
The optimal pretending for the player 1 is given by:

θ1,pr
∞ = arg min

θ̃1∈Θ1

J1(γ1,N

θ̃1,θ2
, γ2,N

θ̃1,θ2
) (11)

It is interesting to compare the cost that the cheating
player 1 attains with the cost of the full information game hav-
ing 1 as Stackelberg leader. Let us denote by γi,Sθ1,θ2 , i = 1, 2,
a pair of strategies constituting a feedback Stackelberg equi-
librium with 1 as leader.

Proposition 1 It holds:

J1(γ1,S
θ1,θ2

, γ1,S
θ1,θ2

) ≤ J1(γ1,N

θ1,pr∞ ,θ2
, γ1,N

θ1,pr∞ ,θ2
). (12)

An equality is attained is there exist a θ̃1 ∈ Θ1 such that
γ1,S
θ1,θ2

= γ1,N

θ̃1,θ2
.

The proof of Proposition 1 is easy and thus it is omitted.

Remark 4 Proposition 1 roughly says that if there is enough
uncertainty and only one player pretends, then:
“The pretender becomes the leader”.

3.2. Pretenders’ Equilibrium

The case where both players are pretending is then analyzed.
Particularly, it is defined the notion of pretenders equilibrium,
under the Assumption 1.

Definition 2 A pair of pretending types (θ1,pr
∞ , θ2,pr

∞ ) and
a pair of strategies (γ1,p

θ1,θ2
, γ2,p
θ1,θ2

) constitute a pretenders’
equilibrium if (γ1,p

θ1,θ2
, γ2,p
θ1,θ2

) is a Nash equilibrium for the
full information game with types (θ1,pr

∞ , θ2,pr
∞ ) and it holds:

θi,pr∞ = arg min
θ̃i∈Θi

Ji(γ
i,N

θ̃i,θ−i
, γ−i,N
θ̃i,θ−i

), (13)

for i = 1, 2.

Remark 5 The definitions and the reasoning of Section 3 can
be extended to the many players case.

Fig. 1. The blue line corresponds to best response with no
pretending players, the red with player 1 pretending, the pur-
ple with player 2 and the green with both players pretending.

4. SPECIAL CASES

4.1. Two Player Quadratic Games

A two players, static, quadratic game is studied. The cost
function is given by (3) and the instantaneous costs by:

L1 = (u1 − θ1)2 + (u1 − u2)2, (14)

L2 = (u2 − θ2)2 + (u2 − u1)2, (15)

where (θ1, θ2) ∈ R2. We assume an information structure of
type 2. The full information (static) game has a unique Nash
equilibrium:

ui,N =
2

3
θi +

1

3
θ−i, i = 1, 2 (16)

Several adaptive (iterative) techniques for the incomplete
information game were studied in [12]. Probably, the simplest
one is the best response map:

uik = (θi + θ̂ik)/2, (17)

θ̂ik = u−ik−1. (18)

If both players follow their best response maps, their ac-
tions will converge to the Nash equilibrium of the full infor-
mation static game.

Let us then analyze the situation of player 1 cheating
against player 2 and player 2 following (17), (18). Due to the
fact that the map θ1 7→ u1,N in (16) is onto, Proposition 1
applies. Thus, the feedback Stackelberg cost for player 1 is
feasible through pretending.

The optimal pretending for player 1 is given by:

θ1,pr
∞ =

6

5
θ1 −

1

5
θ2. (19)

Player 1 can use several ways to learn θ2 in order to im-
plement her cheating policy. One way is to use only the last
iteration. Particularly:

z1,1
k+1 = z1,2

k , (20)

z1,2
k+1 = u1

k, (21)

θ1,pr
k =

6

5
θ1 −

1

5
(2u2

k−1 − z
1,1
k ). (22)

An alternative way is to use Recursive Least Squares (RLS).
Figure 1 shows the action trajectories when no player, one

player and both players are pretending. The parameters are
θ1 = 1 and θ2 = −1.3.



4.2. A Quadratic Game With Many Players

In this subsection, we study the pretenders’ equilibria of an
N players generalization of the game studied in the previous
subsection. The instantaneous costs have the form:

Li = (ui − θi)2 + (ui −
N∑
j=1

aju
j)2, (23)

where
∑N
j=1 aj = 1 and aj represents the “strength” of the

player j.
The unique feedback Nash equilibrium of the full infor-

mation game has the form:

ui = (θi +

N∑
j=1

ajθj)/2 (24)

Simple but lengthy calculations show that if all the play-
ers are pretending, the conditions for optimal pretending are
given by:

θi,pr∞ =
1 + ai

1 + a2
i /2

θi −
ai

1 + a2
i /2

∑
j 6=i

ajθ
j,pr
∞ , (25)

for i = 1, . . . , N . Equation (25) shows that weak players tend
to be truthful. It is not difficult to show that:

Proposition 2 Denoting by a = maxi=1,...,N{ai} it holds:

|θi,pr∞ − θi| ≤
2a

1− a
max

i=1,...,N
|θi| (26)

Proposition 2 is proved using contraction mapping ideas and
shows that if there exist a large population of weak players
(ex. ai ∼ 1/N ) then the benefit from pretending is not big.

5. FUTURE WORK

Future work involves the numerical study of Definition 1
in simple examples and the derivation of sufficient condi-
tions. The study of more examples, such as cheating in
Linear Quadratic games with unknown cost parameters and
the study of games with local coupling is also of interest.
Another possible point is the extension of the pretenders’
equilibrium definition for cases with multiple equilibria and
the study of the possibility of equilibrium selection through
cheating. Finally, the convergence analysis of the schemes
proposed is of certain interest.
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