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Abstract— This work studies the problem of designing a
Network such that a set of dynamic rules, in a class of
repeated games, converges quickly to the Nash equilibrium.
Particularly a very simple class of repeated games with mean
field interactions is considered and we assume that the actions
of the participants are determined using some simple myopic
gradient based dynamic rules. The information about the
actions of the other players is transmitted through a Network,
using a consensus type dynamics. The speed of the convergence
to equilibrium is characterized, using the Lyapunov equation
involving a Laplacian like matrix. A topology optimization
problem for the communication graph is then stated and an
algorithm, based on the effects of new edges to the speed of
convergence, is proposed. Numerical results are also given.

I. INTRODUCTION

This work considers a Network Design problem for the
fast convergence of dynamic rules in a class of repeated
games. Network design problems were already studied in
Multiagent Systems and Cooperative Control literature (ex.
[1]). In this class of problems, several subsystems such as
sensors, mobile robots or local controllers cooperate in order
to achieve a certain common goal, such as to agree on a
certain quantity to estimate a value or to form a certain
shape. The graph design for the fast convergence of the
consensus dynamics was studied in literature using several
techniques and several criteria [2], [3], [4]. Another related
problem is the graph topology design to optimize the network
coherence, [5] - [6]. Other related network design problems
include the Markov chain fastest mixing problem [7], the
minimization of the effective resistance of a graph [8], the
design of optimal synchronization [9] and the design of
optimal sparse feedback gains [10].

In the last several years there is a large and growing
literature for large Aggregative Games. In this class of
games, each one of the individuals interacts with the
aggregate actions of the rest of the players [11]. When the
number of players is large the Mean Field Games approach
was proposed [12], [13]. There are several applications of
large aggregative games, such as the charging of electric
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vehicles [14], [15] and the demand response in the smart
grid [16], [17].

The use of several of dynamic rules for the participants of
large aggregative games was studied in [18], [19], [20], [21].
In many of these works, the dynamic rules use a network
structure to transmit the necessary information. In the current
work we focus on a variant of the dynamic rule presented
in [21] and study the problem of designing the information
network such that there is a fast convergence to the Nash
equilibrium.

The network design problem is studied in a very simple
class of repeated quadratic aggregative games. A slightly
modified version of the set of dynamic rules used in [21]
is proposed (see Rem. 1). The dynamics of the overall
system depends on a variant of the Laplacian matrix.
Assuming a random structure for the parameters of the
game, the speed of convergence is characterized using the
Lyapunov equation. Using this characterization, the problem
of choosing the network structure such that the dynamic
rules converge to the Nash equilibrium as fast as possible
is stated as an optimization problem. An algorithm based
on the approximate effect of new links is proposed. The
algorithm aims, at each iteration, to find the edge that
reduces the cost more and add that link to the existing graph.
The optimization technique used closely parallels [4]. Some
numerical examples are then given. It turns out that the
speed of convergence of the dynamic rules, at least in some
cases, may be much faster when the communication graph
is designed using the algorithm, compared to the case where
a random graph is used.

A. Notation

For a matrix A ∈ Rm×n, Aij denotes the ij-th element.
The standard basis vectors are denoted by ei, i.e. ei is a
column vector having zeros in all its entries except entry i,
which has the value 1. A column vector consisting of units
is denoted by 1, i.e. 1 = [1 1 . . . 1]T .

For any pair of matrices A ∈ Rm×n and B ∈ Rq×r, the
Kronecker product A⊗B is defined as:

A⊗B =

A11B . . . A1nB
...

. . .
...

Am1B . . . AmnB

 . (1)

The vectorization of a matrix A = [A1|A2| . . . |Am], where
Aj is the j-th column of A, is denoted by vec(A) and is
given by [AT

1 A
T
2 . . . A

T
m]T . The identity (ex. [22]):

vec(AXB) = (BT ⊗A)vec(X) (2)



will be used.
We denote by G = (V,E) an undirected graph, where

V = (v1, . . . , vN ) is the set of vertices and E the set of
edges. The adjacency matrix is denoted by A, i.e. Aij = 1 if
there exists an edge between vertices i and j and 0 otherwise.

We denote by di the degree of the node i, i.e. the number
of edges adjacent to vertex i. The Laplacian of the graph is
given by L = ∆−A where ∆ = diag(d1, . . . , dN ).

B. Organization

The rest of the current work is organized as follows: In
Section II the game among the players is described and a
set of dynamic rules is proposed for the convergence to the
Nash equilibrium. In Section III the speed of convergence
is characterized by a Lyapunov equation and the network
design problem is stated. In Section IV a simple Algorithm
is developed based on the derivative approximation of the
influence of a new edge to to the designers cost. Section V
presents some numerical results and Section VI summarizes
the main contributions of the current work and proposes
some future directions.

II. GAME DESCRIPTION AND DYNAMICS

Let us first describe the game among the players. There
are N players, each one having a type θi. The cost for player
pi is given by:

Ji = (xi − θi)2 + wi

xi − 1

N − 1

∑
j 6=i

xj

2

, (3)

where xi ∈ R is the action of player pi. For simplicity, we
assume that wi = 1, for all the players. We also assume
that each player is not informed about the types of the other
players and that the types of the players belong to a bounded
interval [θ, θ̄].

The game is played repeatedly over time and each player
holds an estimation of the mean value of the actions of the
players. Let us denote by x̂i(k) the estimation of player pi
for the mean value of the action of the players.

The players exchange information through a network G =
(V,E) in which each player corresponds to a node of the
graph G. At every time step k, each player is informed for
the estimated values x̂i(k) of her neighbors. We, further,
assume that the graph G is connected.

A set of dynamic rules for the participants of the game is
then described. At each time step, the action of each player
is updated in order to reduce her cost, using an approximate
gradient decent rule:

xi(k + 1) = xi(k)− α(∂Ji/∂xi)
aprox, (4)

where (∂Ji/∂xi)
aprox is an approximation of of ∂Ji/∂xi.

The approximation of ∂Ji/∂xi is derived substituting the
last term of:

∂Ji
∂xi

=

(
4 +

2

N − 1

)
xi − 2θi −

2

N − 1

N∑
j=1

xj , (5)

by 2N
N−1 x̂i. Thus, the dynamic rule for player pi is given by:

xi(k + 1) = (1− ᾱ)xi(k) + β̄x̂i + 2αθi (6)
xi(0) = θi,

where ᾱ = α(4 + 2/(N − 1)) and β̄ = 2αN/(N − 1).
At every time step, the players update their estimates

according to:

x̂i(k + 1) = (1− diδ)x̂i(k) + δ
∑
j∈Ni

x̂j(k)+

+ (−ᾱxi(k) + β̄x̂i + 2αθi) (7)
x̂i(0) = θi.

The first two terms correspond to the consensus dynamics
and the last to the fact that xi is actually changing.

Remark 1: The dynamic rule proposed, closely parallels
the rule described in [21]. The basic differences are that
[21] considers a time varying stochastic pairwise information
exchange and a Stochastic Approximation type decreasing
step-size (αk → 0) is used. Thus, the convergence
rate may be slow. On the other hand the current work
analyzes a simpler problem, in which there is a synchronous
communication with all the neighbours. Hence, a constant
step size may be used and the dynamic rule converges
exponentially to the Nash equilibrium.

The dynamics can be written in compact form as:

x̃(k + 1) = Px̃(k) +BΘ (8)

x̃(0) =

[
Θ
Θ

]
where x = [x1 . . . xN ]T , x̂ = [x̂1 . . . x̂N ]T , x̃ = [xT x̂T ]T ,
Θ = [θ1 . . . θN ]T and

B =

[
2αI
2αI

]
, P =

[
(1− ᾱ)I β̄I
−ᾱI (1 + β̄)I − δL

]
. (9)

The dynamics of the overall system depends on the matrix
P , which depends on the Laplacian matrix. Some properties
of matrix P are studied in the following lemma.

Lemma 1: The dynamics (8) have the following
properties:

(i) The matrix P has an eigenvalue 1 with left eigenvector
[1T − 1T ] and a unique right eigenvector

d =

[
1

(ᾱ/β̄)1

]
(ii) The subspace:

C = {x̃ : [1T − 1T ]x̃ = 0}, (10)

is invariant under (8)
(iii) If (8) converges to a fixed point:

x̃N =

[
xN

x̂N

]
,

then xN is the unique Nash equilibrium of the game
and x̂N = (1TxN/N)1.



Proof : (i) It holds:

[1T − 1T ]P = [1T − 1T + δ1TL].

Due to the fact that L = ∆ − A, we have 1TL = 0. Thus,
the matrix has left eigenvector [1T − 1T ] with eigenvalue
1.

A vector [xT x̂T ]T is a right eigenvector of 1 if and
only if: ᾱx = β̄x̂ and Lx̄ = 0. Due to the fact that the
graph is connected, the Laplacian has a unique eigenvector
1 corresponding to the 0 eigenvalue [1]. Thus, there is a
unique (up to scalar multiplication) right eigenvalue of P
corresponding to 1 which has the form:

d =

[
1

(ᾱ/β̄)1

]
(ii) If x̃(k) ∈ C, then:

[1T − 1T ]x̃(k + 1) = [1T − 1T ]Px̃(k) + [1T − 1T ]BΘ

[1T − 1T ]x̃(k) + [1T − 1T ]BΘ = 0.

Thus, C is invariant under (8).
(iii) Simple manipulations show that the game has a unique

Nash equilibrium given by:

xi =
N − 1

2N − 1
θi +

1

2N − 1

N∑
j=1

θj , (11)

or in matrix form:

xN =
1

2N − 1

(
(N − 1)I + 11T

)
Θ (12)

If x̃ = [xT x̂T ]T is a fixed point of (8) and x̃(k)→ x̃ with
the given initial conditions, then x̃ ∈ C, i.e. 1Tx = 1T x̂ and:

x = (1− ᾱ)x+ β̄x̂+ 2αΘ

x̂ = −ᾱx+ (1 + β̄)x̂− δLx̂+ 2αΘ

Subtracting the first from the second, we obtain Lx̂ = 0. Due
to the fact that the graph is connected, the Laplacian has a
unique right eigenvector 1 corresponding to the eigenvalue
0. Furthermore, x̃ ∈ C implies x̂ = (1Tx/N)1. Thus, the
i-th component of x satisfies:

xi =
β̄

ᾱ
x̂+ 2αθi/ᾱ. (13)

Equation (13) is for each i is equivalent to (11). �
Using (12), the vector x̃N can be computed by:

x̃N =

[
1

2N−1
(
(N − 1)I + 11T

)
11T /N

]
Θ = DΘ (14)

Lemma 1 shows that both span{d} and C are P -invariant.
Furthermore, R2N = C+span{d}. The dynamics (8) evolve
in C. Thus, an equivalent description of (8) in C could be
obtained using a matrix P̃ such that P̃ x̃ = Px̃ if x̃ ∈ C and
P̃ d = 0. The following lemma shows this possibility.

Lemma 2: Consider the matrix P̃ = P (I +M) where M
is given by:

M =
1

N(ᾱ− β̄)

[
β̄11T −β̄11T

ᾱ11T −ᾱ11T

]
. (15)

(i) It holds, P̃ x̃ = Px̃ if x̃ ∈ C and P̃ d = 0.
(ii) Dynamics (8) has the same trajectories with:

x̃(k + 1) = P̃ x̃(k) +BΘ, (16)

under the initial conditions described.
Proof : (i) It is not difficult to see that Md = −d. Thus, P̃ d =
0. Then consider an x̃ = [xT x̂T ]T ∈ C. Then, 1Tx = 1T x̂.
Then,

Mx̃ =

[
β̄1(1Tx− 1T x̂)
ᾱ1(1Tx− 1T x̂)

]
= 0.

(ii) C is invariant under (8) and P̃ x̃ = Px̃ in C. �
We may observe that the matrix P̃ has the same

eigenstructure with P except the eigenpair (1, d) which in
P̃ becomes (0, d).

The network will be designed such that the matrix P̃ is
stable. Under this assumption, the dynamics (8) converges
to the vector x̃N corresponding to the Nash equilibrium.
The distance form equilibrium y(k) = x̃(k) − x̃N evolves
according to:

y(k + 1) = P̃ y(k), (17)

and the initial conditions are given by:

yi(0) = yi+N (0) =
(N − 1)θi −

∑N
j=1 θj

2N − 1
. (18)

III. THE NETWORK DESIGN PROBLEM

Let us turn to the network design problem. The network
transmitting the information is designed centrally and the aim
of the planner is to design a network such that the dynamic
rules of the players converge quickly to the Nash equilibrium,
without using too many links. However, the planner does
not know the types Θ of the players. Furthermore, the same
topology is designed for many repetitions of the game. Thus,
a stochastic model for the types of the players is introduced.

We assume that the type of each player is given by:

θi = µi + wi, (19)

where µi is the mean of player pi’s type and wi a zero mean
random vector. In compact form:

Θ = µ+ w. (20)

We, further, assume that the vector of means µ and the
covariance matrix Σ = E[wwT ] are known to the planner.

The network design problem has two objectives. At first
the matrix P̃ should be stable and thus the actions of the
players converge to the Nash equilibrium, for any set of
types. The second objective is the expected distance from the
Nash equilibrium to decrease as fast as possible. A quadratic
criterion, called the “designer’s cost”, quantifying the speed
of convergence, is thus introduced:

Jd = E

[ ∞∑
k=0

N∑
i=1

(xi(k)− xi,N )2

]
. (21)

The criterion can be written as:

Jd = E

[
yT (0)

( ∞∑
k=0

(P̃ k)TQP̃ k

)
y(0)

]
, (22)



where:
Q =

[
I 0
0 0

]
. (23)

If P̃ is stable then the matrix X =
∑∞

k=0(P̃T )kQP̃ k is
the unique solution of the Lyapunov equation:

P̃TXP̃ −X +Q = 0, (24)

which can be expressed in terms of the Kronecker product
as:

f(P̃ , vec(X)) =
(
I − P̃T ⊗ P̃T

)
vec(X)− vec(Q) = 0

(25)
Remark 2: Let us note that the solution of the Lyapunov

equation depending on the graph Laplacian, appears also in
the network coherence literature ex. [5].

The designer’s cost can, thus, be written as:

Jd =

2N∑
i=1

2N∑
j=1

XijE
[
yi(0)yj(0)

]
= vec(S)T vec(X), (26)

where S = E[y(0)y(0)T ].
In order to compute S, let us observe that x̃N = DΘ and

x̃(0) =

[
I
I

]
Θ. Hence,

S = E[y(0)y(0)T ] = D̄E[ΘΘT ]D̄T

= D̄(µµT + Σ)D̄T , (27)

where D̄ =

[
I
I

]
−D.

Let us then state the network design problem. Assume
that there is a graph G0 = (V,E0) describing the existing
links among the N players. Then, the designer should choose
where to introduce additional links to the graph, such that
the dynamic rule converges as fast as possible and the total
number of edges does not exceed a maximum number Emax.
The minimization problem for the designer is, thus, given by:

minimize
A

vec(S)T vec(X)

subject to P̃ = P̃ (A)(
I − P̃T ⊗ P̃T

)
vec(X) = vec(Q)

Aij ∈ {0, 1}
N∑
i=1

i−1∑
j=1

Ai,j ≤ EMax

Aij = 1 if (i, j) ∈ E0

P̃ : Stable
A: Symmetric with zero diagonal

(28)

where P̃ = P̃ (A) is given by P̃ = P (I +M), (9) and (15).
Remark 3: The parameters α and δ (describing the

gradient decent step size (6) the consensus dynamics
constant (7)) could be also considered as design parameters.
Furthermore, different players could have different δ and α.
However, in order to keep the analysis simple we consider
only the network design problem with given δ and α.

The optimization problem (28) is a nonlinear mixed
integer programming problem [23]. Thus, in general it could
be difficult to solve. In the following section a simple
algorithm which leads to suboptimal solutions is proposed.

IV. ALGORITHM FOR THE NETWORK DESIGN PROBLEM

A simple algorithm based on the approximate influence
of new edges is proposed. In order to do so, the binary
variables Aij are temporarily assumed to have continuous
values in [0, 1] and the derivative of the cost with respect
to Aij is considered. We assume that Aij with j < i are
the free variables and that Aji = Aij . For a given matrix
A for which matrix P̃ is stable, the effect of adding a
link (i, j) to the cost is approximated by the derivative
∂Jd(P̃ (A), X(P̃ (A)))/∂Ai,j . The detailed computations for
this derivative are first given.

If the matrix P̃ (A) is stable, implicit function theorem
implies that there is a function vec(X) = g(P̃ ) such that
f(P̃ , g(P̃ )) = 0, locally and the partial derivative of Jd

with respect to the elements of the adjacency matrix is given
by:

∂Jd(P̃ (A), g(P̃ (A)))

∂Ai,j
=− (vec(S))

T

(
∂f

∂vec(X)

)−1
·

·
2N∑

i′.j′=1

∂f

∂P̃i′j′

∂P̃i′j′

∂Aij
, (29)

for 1 ≤ j < i ≤ N .
The first two terms satisfy:

(vec(S))
T

(
∂f

∂vec(X)

)−1
=

=

((
I − P̃ ⊗ P̃

)−1
vec(S)

)T

= vec(Y )T (30)

where Y satisfies the Lyapunov equation:

(P̃T )TY (P̃T )− Y = S. (31)

For the other terms it holds,

∂f

∂P̃i′j′
= −

(
ej′e

T
i′ ⊗ P̃T + P̃T ⊗ ej′eTi′

)
vec(X) (32)

and:

∂P̃

∂Aij
=

∂P

∂Aij
=

[
0 0
0 δ

(
eie

T
j + eje

T
i − ejeTj − eieTi

)] .
(33)

Furthermore, ∂P̃
∂Aij

= ∂P
∂Aij

due to the fact that ∂P
∂Aij

M = 0.
Equation (33) implies that:

∂ ˜Pi′j′

∂Aij
=



δ if i′ = i+N, j′ = j +N

δ if i′ = j +N, j′ = i+N

−δ if i′ = i+N, j′ = i+N

−δ if i′ = j +N, j′ = j +N

0 otherwise

(34)

Thus, only four terms contribute to the summation in (29).



Algorithm 1 uses the derivative approximation to add
new edges to the graph. Particularly, at each time step, the
approximate reduction that the cost would have by adding
each one of the possible edges is computed. The edge which
reduces more the designer’s cost is added and the process is
repeated.

Remark 4: The Use of the solution of the Lyapunov
equation (31) simplifies the computations, due to the fact
that we avoid the matrix inversion which is much more
computationally consuming.

Algorithm 1
1: Get an initial graph G = (V,E0).
2: Compute the matrices P̃ and X .
3: For every pair of vertices i, j such that (i, j) 6∈ E use (29)
- (34) to compute ∂J/∂Aij .
4: Find a pair (i?, j?) such that:

(i?, j?) ∈ arg min
(i,j) 6∈E

∂J/∂Aij

5: Set E ← E ∪ (i?, j?)
6: If

∑N
i=1

∑i−1
j=1Ai,j < EMax then go to Step 2. Else halt.

Remark 5: At each iteration of the algorithm the
Lyapunov equation (31) and the partial derivatives ∂f

∂P̃i′j′
are

computed only one time. Only the matrix given by (34) is
different among the candidate edges.

Remark 6: At each iteration of the algorithm one new
edge is introduced and the maximum number of edges is
finite. Thus, Algorithm 1 always terminates. Furthermore,
numerical results show that in all the executions of Algorithm
1 the cost reduces in any iteration.

V. NUMERICAL RESULTS

In this section three examples of the application of the
algorithm are presented in order to illustrate the effectiveness
of the proposed scheme. In these examples we assume that
there is an initial communication graph, such that each player
is connected with the previous and the next one, that is Aij =
1 if |i− j| = 1 and there are N = 40 players.

Example 1: In the this example µ = 0 and W = I .
The algorithm will add 15 more edges. The designers cost
after the network design is Jd = 68.65. Figure 1 illustrates
the designed network. Figure 2 illustrates the cost of the
designed graph compared with 100 graphs in which 15 edges
were drawn uniformly at random.

Example 2: In this example the types of the players
remain uncorrelated but the mean values depend on the
position. We further assume that the variance of the types
is small. Particularly, W = I/20 and µi = 2(i − N/2)/N .
The designed graph is illustrated in Figure 3. The designers
cost in the designed graph, compared to 100 graphs in which
the 15 edges were drawn uniformly at random is illustrated
in Figure 4.

Example 3: In this example, the types of the players are
correlated and the mean values are zero. Particularly, we
assume that the Σ = LL′ where L is a row vector with

Fig. 1. The graph designed in Example 1

Fig. 2. The designer’s cost for the graph designed in Example 1 compared
with 100 graphs drown at random

Fig. 3. The graph designed in Example 2

Fig. 4. The designer’s cost for the graph designed in Example 2 compared
with 100 graphs drown at random



Fig. 5. The graph designed in Example 3

Fig. 6. The designer’s cost for the graph designed in Example 3 compared
with 100 graphs drown at random

values chosen uniformly at random from [0, 1]. The designed
graph is illustrated in Figure 5 and the designers cost in
the designed graph, compared to 100 graphs in which the
15 edges were drawn uniformly at random is illustrated in
Figure 6.

Remark 7: The designed networks are performing at least
in some cases much better than the networks chosen at
random, despite the fact that random graphs and small world
networks are known in the literature to have fast convergence
in the consensus dynamics [24].

Remark 8: It seems that there is a relationship between
the statistical description of the types and the optimal
network design. The graph of Figure 1 is quite regular. In
the graph of Figure 2 “opposite” players are connected and
in the graph of Figure 3, many edges are concentrated in
around some players.

VI. CONCLUSION

We considered a simple class of repeated quadratic games
with mean field interactions. A set of simple gradient
based dynamic rules was proposed. The overall dynamics
depends on a variant of the Laplacian matrix. Using a
stochastic model for the type of the players the quadratic
criterion for the speed of convergence was stated its

value was characterized using the Lyapunov equation. The
minimization problem for this criterion was stated and a
local search algorithm was proposed. Numerical results
show that the designed graphs achieve a significantly faster
convergence to the Nash equilibrium than a graph chosen at
random.

There are several possible extensions of the current work.
At first, the class of games under consideration could be
generalized. For example it is possible that not all the
players influence the overall system the same or that the
different players do not care the same about the actions
of the others. Furthermore, the decisions of the players
may be multidimensional or constrained and the costs may
be non-quadratic. Another interesting extension is to study
games in which the players are influenced by the actions
of their neighbours instead of the aggregate action all the
players. Furthermore, the total number of players could be
also a design variable. Finally, the optimization with respect
to the parameters δ and α, as well as the use of alternative
search techniques for the optimization problem (28) are of
certain interest.
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[13] M. Huang, R. P. Malhamé, and P. E. Caines, “Large population
stochastic dynamic games: closed-loop mckean-vlasov systems and the
nash certainty equivalence principle,” Communications in Information
& Systems, vol. 6, no. 3, pp. 221–252, 2006.

[14] Z. Ma, D. Callaway, and I. Hiskens, “Decentralized charging control
for large populations of plug-in electric vehicles,” in Decision and
Control (CDC), 2010 49th IEEE Conference on. IEEE, 2010, pp.
206–212.



[15] F. Parise, M. Colombino, S. Grammatico, and J. Lygeros, “Mean field
constrained charging policy for large populations of plug-in electric
vehicles,” in Decision and Control (CDC), 2014 IEEE 53rd Annual
Conference on. IEEE, 2014, pp. 5101–5106.

[16] Q. Zhu and T. Başar, “A multi-resolution large population game
framework for smart grid demand response management,” in Network
Games, Control and Optimization (NetGCooP), 2011 5th International
Conference on. IEEE, 2011, pp. 1–8.

[17] F. Bagagiolo and D. Bauso, “Mean-field games and dynamic demand
management in power grids,” Dynamic Games and Applications,
vol. 4, no. 2, pp. 155–176, 2014.

[18] A. C. Kizilkale and P. E. Caines, “Mean field stochastic adaptive
control,” Automatic Control, IEEE Transactions on, vol. 58, no. 4,
pp. 905–920, 2013.

[19] S. Grammatico, F. Parise, M. Colombino, and J. Lygeros,
“Decentralized convergence to nash equilibria in constrained
deterministic mean field control,” IEEE Transactions on Automatic
Control, vol. PP, no. 99, pp. 1–1, 2016.

[20] F. Parise, S. Grammatico, B. Gentile, and J. Lygeros, “Network
aggregative games and distributed mean field control via consensus
theory,” arXiv preprint arXiv:1506.07719, 2015.

[21] J. Koshal, A. Nedic, and U. V. Shanbhag, “A gossip algorithm for
aggregative games on graphs,” in Decision and Control (CDC), 2012
IEEE 51st Annual Conference on. IEEE, 2012, pp. 4840–4845.

[22] R. A. Horn and C. R. Johnson, “Topics in matrix analysis, 1991,”
Cambridge University Presss, Cambridge, vol. 37, p. 39.

[23] L. A. Wolsey and G. L. Nemhauser, Integer and combinatorial
optimization. John Wiley & Sons, 2014.

[24] R. Olfati-Saber, “Ultrafast consensus in small-world networks,” in
American Control Conference, 2005. Proceedings of the 2005. IEEE,
2005, pp. 2371–2378.


