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Abstract

This paper applies nonlinear control methods to an HIV -
1 model describing the interaction among CD4+ T cells,
CDS8+ T cells and HIV - 1. The problem is stated as an
output feedback stabilization problem. At first a
nonlinear observer is designed for the non measureable
state variable of the model. Then two state feedback
controllers are designed: the first is based on sliding
mode control and the second on the receding horizon
control. Practical forms of the output feedback schemes
are finally tested via simulation in order to illustrate the
robustness of the proposed methods.

1. Introduction

Human Immunodeficiency Virus (HIV) is the virus
causing Acquired Immune Deficiency Syndrome (AIDS),
a disease which compromises the immune system. The
major target of HIV is a class of lymphocytes called
CD4+ T cells and as a result their number is decreased,
leading to the deficiency of the immune system. Thus, a
patient is vulnerable to opportunistic infections.
Normally, the number of the CD4+ cells is around 1000
mm™ and when it drops below 200 mm™ the patient is
classified as having AIDS [1],[2].

Currently, the most commonly applied treatment is
HAART (Highly Active AntiRetroviral Therapy), a
therapy consisting of a mixture of more than three
antiretroviral drugs of at least two types: the protease
inhibitors and the reverse transcriptase inhibitors. This
treatment suppresses HIV viral replication and maintains
high the CD4 counts, prolonging the patient’s life
expectancy. However, there are some drawbacks; the
high cost and the possible side effects.

An important part during the therapy is measuring the
concentrations of CD4, CD8 and viral load. The most
typical measuring methods for the viral load are the
polymerase chain reaction (PCR), the viral load assays
and branches deoxyribonucleic acid test. Regarding the
lymphocyte measurements, the most common technique
is flow cytometry which can distinguish and count CD3,
CD4, and CDS8 T cells simultaneously. However, due to
its high cost, laboratories often measure only the CD4
concentration [3], [4].

Several dynamic models for HIV have been proposed
including [1], [5], [6], [7] and [8]. These models aim to

describe, with different accuracy, the interaction between
the immune system and HIV. In this paper the model of
[8] is used due to its simplicity and the relatively precise
way of describing the interaction between the immune
system and HIV. Several control methods have been used
for the antiretroviral drug scheduling problem. In [9]
several linear time delay control schemes are
investigated, in [10] a backstepping controller is
designed, in [11] a passivity based approach is used, in
[12],[13] and [14] feedback linearization controllers are
designed, in [15] a robust Lyapunov based controller is
designed, in [16-18] receding horizon control techniques
are used in a state feedback and output feedback
formulation, in [19-21] a practical control algorithm is
presented, in [22] a controller is designed using an
approximation of immune system dynamics and in [23],
[24] optimal control is used for the drug scheduling
problem against HIV.

The objective of control theoretic approaches, to HIV
drug scheduling problems, is to use proposed drugs
dosage as a guideline for clinical use. In this paper, we
propose nonlinear control algorithms for the drug dosage
scheduling problem for people infected by HIV, using a
model form [8]. The control problem is stated as an
output feedback stabilization problem assuming that only
the CD4 cell concentration and the viral load are
measured. Thus, a nonlinear observer is first designed.
Then, two state feedback controllers are designed; a
sliding mode controller and a receding horizon controller.
For the sliding mode controller a separation principle is
also proved.

The paper is organized as follows. In section 2, a
dynamical model presented in [8] is analyzed and some
properties are proved. In section 3 a new nonlinear
observer for the non directly measureable state variable
of the model is designed. In section 4 two state feedback
control schemes are designed. In section 4.1 a sliding
mode controller is designed and in section 4.2 a receding
horizon controller is designed. In section 5 the proposed
control schemes are tested via simulation and some
practical forms of these schemes are proposed. In section
6 the results are summarized. This paper is largely based
on an earlier work reported in [25].

2. Description and properties of the model

2.1. Description of the model



The model used [8] describes the interaction among
the CD4+ T cells, the CD8 lymphocytes and the virus
particles. The equations of the model are:

9= p (g =3)=-payys

. 1
Py = 3 (e = 32)+ Payays M
V3 =PsV\Vs — DoV, — U

where y is the CD4 population, j is the CD8

population, . is the viral load. The parameters x —and
x,, are the normal values of the CD4 and CD8 counts

respectively and u corresponds to the dosage of the drug
used in the treatment. The parameters Dprens Dy 8TC

positive constants describing the interaction rates among
the CD4 cells, CD8 cells and the virus particles.
Identification procedures for HIV models may be found
in [26], [27].

The above model describes the following known facts
about the interaction of the virus particles and the
immune cells CD4 and CD8 [9], [8]:

1) HIV utilizes the CD4 cells to replicate itself and
high HIV load leads to CD4 cell count reduction.

2)  The number of CDS cells increases responding to
the increased HIV load, and CD8 cells attack to
the virus.

3) The growth rate of HIV increases proportional to
the HIV and CD4 populations

2.2. Some properties of the model

For u =0, the model (1) has two equilibrium points.
The first one with V=X Vo =Xy and Vs =0

corresponds to the uninfected state and is unstable under
the assumption DsXip > PeXop- The second one with:

y(@) _ P1PyPsXig T Py PsP3¥a0
=
Ps (p2p3 + D, )
() _ P1P4Ps + PaPsP3Xy
V' =
Po(p2ps + p1py)
(e) _ p1p4(p5x10 - psxzo)
=
P1P4PsXg T PrPsP3Xa0

2

is stable [10].
We will examine only physically meaningful
solutions of model (1) i.e. the solutions such that y .

and y, remain nonnegative and thus they have physical

meaning. In the following, the more convenient form of
the model is used:

X =-px -p, (xl + X )x3
X, = —p3X, + p4(x2 + Xy )x3

Xy =[p5(x1 +x10)_p6(x2 +x20)]x3 —u

)

where Xy =V =X X =V, — Xy and X3 =)y

In [10] it is shown that physically meaningful
solutions of model (3) belong to the set
D, ={(xl,x2,x3):—x10 <x,=0,x,20,x, 20}- Here it is
shown that physically meaningful solutions belong to a
smaller, bounded domain.

Lemma 1: If 4(¢) is such that x,(z)= 0 forany ¢= 0 then
i) The sets:

DZ(CI,C2)={(X1,)C2,X3 )EDl X, +&x3 =C,x, +&x3 <C2}

Ps Ps
“)

with € >0, € >~(pyxy = p, v /pgxy,)  and
C, > C,(c,) for suitable function C;(C,), are positively
invariant.

i) The sets:
D3(C3,A)={(xl,x2,x3)€Dl (X, + Ax, 2C3} (%)

with G < min{O, (pl - P )xlo /pz} and Pa¥iy = PGy

PaXa

b
are positively invariant.

Proof:

i) Let ¥, =x, + p,x,/ p,- For C, satisfying the above
Vl <0 for any
(x,,x,,x, JED, such that = C,. It holds:

conditions it will be shown that
Vi ==DiX, = P PeXaoXs | ps —u'
Vi ==X, + DeXogX, = PeXpeC) —1t'

Vi = =piX + PeXagXy = PeXa0C

where y'= p. (u + p,x,x, )/ p,- The right hand side of the
last inequality is linear in x and thus by the conditions
of the lemma p, is negative for — x,=<x <0 and
X+ p,x;/ ps=C,-

Let V, =x, + p,x,/p, It will be shown that for suitable
C,» V, <0 for any (x,, x,,x,)ED, such that y, = C,. It
holds:

szl= —DX, + I:p5 (3, +x,0) %, —u]p4 / ps

D%‘s —-D3X, +p4p§(xl +xlo)x3 ! ps

Dgzls -p:C, + p, [p3 +ps(x, +x10)]x3 !/ ps -

The second term of the last inequality depends only on
x, and ;. Thus it has a maximum value on p,(C,,C,)

depending only on (. Let us denote by ps(cC,) that
value. For ¢, >(;, (C1)=M(C1)/P3 it holds y, < for
any (x,,x,,x, )ED, such that , = C,.

ii) Let 7, = x, + Ax,- It will be shown that V3 > for
(x,,x,,x, JED, such that p, = C,. It holds:



V3 ==-P1X— D> (xl T X )x3 - Apsx, + Ap, (xz + Xy )x3
V} = [(p3 — P )xl - PG, ]"'

+ [p4Ax20 +p,Cy = pyxyp - (p4 + P, )x] ]Xs .
The first term of the right hand side of the last equality is
positive by the inequality C, < min{O, (p, = ps %1y /Pz}
and the positive by the relation
A>(p2x10 - PG )/p4x20- 0

second is

The previous lemma implies that for every initial
condition in p one may find suitable constants C,C,,C,
and 4 such that the solution remains in
D=D2(C1’C2)mD3(C3’A) and (_xIO’O’x3)$5 fOr
every x, (. This result may be used for estimating a
state variable given the other two with a single
measurement, for obtaining bounds for the parameters in

an identification procedure or for deriving bounds of the
state variables for control use.

3. Observer design

CD8 count measurements are not always available. In
this section a simple nonlinear reduced order observer is
designed for the state variable x, of the model (3).

Another observer for this model is also available [4] but
the convergence rate is slow.

The observer designed, is based in the following
lemma, in which an observer is designed for a special
class of systems.

Lemma 2: Consider the system

Z = fll(Zl )Zz + flz(zl"’)
Z, = f21(zl )Zz +f22(21’V)
Y=z
where y is the measured output. Assume that there is a
constant K such thatle(zl)—Kﬁl(Zl)<—€<0 for every
z,. Then an observer of the form:

(6)

§=fz](zl)(§+l<zl)+f22(zlav)_
_K(.fll(zl )(§+KZI)+fi2(Zl’v))
22 =§+K21

(M

may be designed such that the estimation error
e([) =z, (t)— 22 ([)—) 0 faster than e .

Proof:
For the estimation error it holds:

é=z, _éz = f2|(21 )Zz +fzz(zlav)_

_le(zl )(§+1(Zl)_.f.22(zl7v)+K(.fil(ZlX§+[<Zl)+< 12(213"))_
_K(fn(zl)zz + IZ(Z]’V))

Thus: é=[f21(21)_Kf11(21 )} 0

The above lemma may be used in order to design a
reduced order observer for system (3).

Corollary 3: Consider system (3) and the reduced order
observer:

ée (p4x3 _ps)(é:"' Kx3) + PyXpeX3 —
_K(_psxs (5+KX3)+ (ps (‘xl +x10)_p6‘x20)x3 —u)
X, =&+ Kx,

®)

Let also the estimation error

K<_p4/p6. Then
e([) =X, ([)_ )%2(1‘) — (0 faster than ¢ 7

Proof:
Lemma 2 applies with:

Zy =X Zp =Xy, fu(x3 )= WZRED f21(x3) = DsX5— D5
S = PaXogXss v =[x] ”]T and

Ji (xpxl’”) = (ps (xl +x10)_pox20)x3 —u-

The dynamics of the estimation error is described by:
é=X2—)é2=[—p3+(p6K+p4)x3} 0

4. Controller design

In this section two state feedback control schemes are
designed. The aim of the control schemes is to steer
system (3) to the equilibrium point (0,0,0) which
corresponds to the uninfected state. The parameters of the
model are assumed to be exactly known and that all state
variables are directly measurable. In case x, is not

directly measurable, the observer designed in the
previous section will be used.

In section 4.1 a sliding mode controller is designed
and a receding horizon control scheme is designed in
section 4.2.

4.1. Sliding mode controller

In this section a sliding mode controller for the model
(3) is designed. The system may be written in the
“regular form” [28]:

n=1,0.§) 9)
§=1,n.6)-u

where =[x, x,| and E=x,. A function g(p) such
that £=g(p) stabilizes the origin of the 5 subsystem is
first determined. Consider the Lyapunov function:

v, =(x? +x2)2: (10)
#(7) will be designed such that:
v, < —(ple + paXs )y(t) (11)

with y(r)E(m,1] and m > 0. A function g(7) that makes
(11) hold is:



(plxlz + P33 Xl - 7(1))

if (x,,x,)=0

¢(xl,x2,y(t))= xzp4(x2+x20)—x,pz(x,+xm) ( 1 2)
0 if (x,,x,)=0
(12)

The sliding manifold for the state feedback scheme is:

s(x)=x3 —¢(xl,x2,t) (13)

In the next lemma, it will be shown that the output
feedback scheme including system (3), sliding mode
controller with sliding surface ¢(x)=( and any observer

satisfying some additional conditions, is asymptotically
stable.

Lemma 5: Let £ (r) be the output of an asymptotically
stable observer for x (¢) such that % (¢)= 0. Assume also
that there is a constant }/ such that ‘ i, (tX < 37 (in some
region that the solution belongs). If b}(t} < M then for

every x(O)E D. , the control law:

{0
u=
Umax

for a suitable value of U

it x, sg(x,. %, 7(1))

(14)
it x> g(x,. %, ()

, makes the origin of the

composite system including system (3) and the observer,
asymptotically stable with a region of attraction
containing x(0).

Proof:

For any initial condition x(O)E D, the state variable x,

remains nonnegative and thus lemma 1 applies.

Therefore, there exist constants C,,C,,C,, A4 such that the
set D=D, (CI’C2 )mD3 (C3,A) is positively invariant,
bounded, x(O)ED and (-x,,.,0,x,)¢D for any x 0.

One may claim that:

Claim 1: g(x,,x,,y(r)) is continuous in D and there is a

constant jf, such that:

d¢(xl,5€2,}/(t)) <M.

dt

Claim 2: For any positive constant r, there is a time T(r)

such that:
¢(x19)2257’(t))5 ¢(x1,x2,m/2)

for any xeD-U, where Ur={x:x12+x22<r2} and
t= T(r)~

Claims 1 and 2 are proved in Appendix 1.

3. At first, it will be shown that there exist a constant
U, and a time ¢ such that any solution of (3) with

x(O)ED satisfies: x( )EP {XED X3 <¢(xl,x2,y(t))}
for every > ¢,. For x such that 4(%)> 0 it holds:

g;go);r]lés (xl + Xy )x3 ~Ps (x2 + Xy )x3 - M —u

U > %X{ps (xl + X0 )x3 —Ps (xz + Xy )x3}+M2 +é€

with ¢ 0, it holds 4(E) __, if §(3)>0. Thus x{;)
dt

reaches p(r) in finite time.

4. It will be shown that for any r > 0, there is a time ¢,

such that any solution of (3) with x(0)Ep satisfies:

p, (o)<

t= max{to, T(r)}, it holds:

for anyf>¢. One may see that for

v, (x(t)) v,

r a’;'f(ﬂ, (xl,xz,t))s

_(Plxl2 + p3x22 )%

forany yep - U, Therefore the solution x(t) enters the

set {/, in finite time. The set {7 is positively invariant in

the x, — x, plane for ; > max{to,T(r)}-

5. Tt will be shown that for every 6,>0 there exist a

6,>0 such that:

I(x, (002, 0).x, (0).2,(0))]. <&,>  (xp,x,x,)ED  and
%, 20 implies (x, ().x, (c).x, (0). £,(0)), <o,

Continuity of ¢ implies the existence of a positive
constant  such that g(x,, x,, y(¢))= 6, for any xeu, and
y(¢)E[m,1)- From 4 and the proof of claim 2, one may see
that there exist a positive constant ¢, such that
‘xz —fcz‘ < ¢, implies U inr} is positively invariant for
X, < min{él, r}. From stability of the observer, there exist
a positive constant §, such that x, (0)-%, (()] <4,
x, (t)-%, (t} <o, for any Thus
15 (0) ,0) ,(0) z(o)x\w - mln{a4,r/f 2,6, implies
e, () e, (), (2 %, ()], <

This implies the stability of the origin.

implies t>0.

6. Finally, from 4 one may see that (x,(¢) x,(s))—0 as
t — . Furthermore, from the continuity of ¢ and the

facts

X, (t)—>0 and %, — x,, we conclude:



0 x,(0)= 9l (0).2, () y (1)) > 0 a8 £ = oo 0

In the next corollary it will be proved that observer (8)
satisfies the conditions of Lemma (5). Thus the
composite system (3), (8), with the controller (14) is
asymptotically stable.

Corollary 6: For any initial condition in D, the
controller (14), for a suitable value of y _ ., with
observer (8) for £ (0)=0 makes the origin

asymptotically
containing x(0).

stable with a region of attraction

Proof:
It is sufficient to show that:
)%, =0

i) that there exist a constant A/ such that |§ |<j7.

One may compute:

)éz = (p4x3 2 )fcz + DyXogXy + Kpex; X, — Kpox,x;

For (i), one may see that if t,(r)=0 then since K <0, it
holds:

%,(t) = PyXypX; = Kpex,xy 20

For (ii), one may observe that 3 —s x, monotonically

and thus it has a maximum value: ¢ —3 (0)+ maxx,-
XD

Thus a constant A/ satisfying (ii) is:

M =xenﬁlax ‘(p4x3 —Ps ))22 + P Xy X; + KpexyX, _Kp6x263‘

4.2. ﬁ%é%’ﬂing Horizon Controller

In this section a discrete time receding horizon
controller for the system (3) is designed.

In discrete time receding horizon control, at each
step a finite horizon open loop optimal control problem
is solved and the first component of the control
sequence obtained, is applied to the plant [29].

A discrete time approximate model for the system
(3) is first obtained using Euler discretization:

xl(k +1)= X (k)+‘5(_ P (k)_pz (x] (k)+xm )xs (k))
Xy (k +1)= X5 (k)"' ‘5(_ P3X, (k)—p4(x2 (k)"'xzo )x3 (k)) (15)
W}(ére 1$=i33ﬂj}‘é fif%(@'?@lé’fl)(im’%ﬁ?@(k)— Ps (xz (k) + Xy )xs (k))
The cost function at step ; has a quadratic form:
V=x,0x,, + 2::/71(x[Qkxk + rkukz) (16)
where @ and (Q are positive definite symmetric
matrices, 5, positive constants and N the horizon of

optimization. The cost function (16) penalizes the
deviations of state variables from their nominal values
and high control input values. The constraints of the
state variables and control are explicitly involved in the
optimization problem.

The procedure used for the receding horizon state
feedback control scheme is the following:
1. Atstep i an optimization problem of the form:

. T
minimize V(xiui""’uHN—l) =X, yO%, v+
i+N-1{ 1 2)
+ Ek:i (xk Ox, +nu;
subj. to  (17)
Osu, =U,,.

x,(k)=0,

k=i,..,i+ N-1

a7
is solved numerically.
2. The control action y;, is applied

3. Measurements ;) are taken

4. Continue to step i +1

5. Simulation results and practical forms
5.1 Simulation results

In this section the above control schemes are
simulated using the parameter values from [8]:
p, =025.p,=5-10"° p, =025, p, =10, p, =0.01,

P =0.0045, x,, =1000 and x, = 550.

At first the observer (8) is simulated and compared
with an observer from [4]. The observer designed in [4]
is based on the observer error linearization technique.
The linear system obtained, after a transformation and an
output injection, is detectable but not observable, having
a not moving pole at _ . Thus for the observer

designed in [4] the convergence rate is not tunable. On
the other hand the reduced order observer (8) has error
dynamics given by: ¢ = [_ ps+(pK +p, )x3]g. Thus the
convergence rate may be tuned using the parameter K
i.e. with a smaller K, the convergence if faster.

Figure 1 shows the simulation result for the reduced
order observer in comparison with the observer presented
in [4]. The observers start at time 7 (years). Reduced
order observer (8) converges faster than the observer
designed in [4].

In Figure 2 the simulation results for system (3) using
the sliding mode controller are presented. In order to
simulate the system, the discontinuity of the controller is
approximated using hysteresis [30]. System has initial
values x, (0)=x,(0)=0 and x,(0)=100- Control action
starts at time ¢ =10 years.

For the sliding mode controller, state variables
converge to their nominal values. The speed of
convergence may be adjusted by the signal y(t) i.e. using
a bigger y(t), the convergence is faster. Hysteresis
approximation of the sliding mode controller
discontinuity is not suitable for practical use due to the
very fast changes in the input signal (Figure 2b) and the
need for continuous time measurements. A practical form



of sliding mode controller is presented in the next
section.

Simulation results using receding horizon controller
are reported in Figure 3. The state variables converge to
their nominal values. The speed of convergence may be
tuned by the matrices 0, and O, the constants 7, 5 Or the

value of ¢y i.e. bigger values for 9 , 0 or y_lead
to faster convergence and bigger values for , lead to

slower convergence.
5.2 Practical forms of the above control schemes

In this section practical forms of the above control
schemes are proposed. We assume that measurements are
taken only at discrete times (1 week), the control action is
fixed during that period and the control input is quantized
and can take a value from a finite set: {oyub’zub,_,,,Nub }

For the sliding mode controller input values in
{O’Umax} may be used or input may take also some

intermediate values. A practical form of the sliding mode
controller that gives also intermediate values is:

d
U=U,|X; (ps (xl + Xy )_ Ps (x2 + Xy ))_f + sgn(s)(uo + ”1({%2)
where 4, is a small positive real and the function U, (u)

is given by (19).

For the receding horizon controller a simple quantizer on
the form:

(19)

uql(u)= u, argrgl‘u —nub‘

may be used.

The simulation results using the practical forms of the
control schemes are essentially the same except the input
response. Figure 4 shows the response of the receding
horizon controller and Figure 5 shows the input
responses for the sliding mode controller.

5.3 Robustness tests

In this section, robustness of the proposed control
schemes is investigated via simulation. Controllers
designed in previous sections are applied to a system in
the form:

X, =-p X~ p, (xn +x10)‘x3
. _ _ ) (20)
Xy ==P3Xy + Py (xz T X0 X3
X, =[ﬁ5 (xl +x10)_ﬁé(x2 + Xy )]’Ca —u
Constants p ... b, have values:
ﬁi=(]+ari) i (21)
where constants r, are random numbers chosen

independently from the interval [_1,1] with uniform
distribution. Results from ten simulations for system (20)

with controller (14) and g =0.25 are presented in Figure
6. Results from ten simulations for system (20) with
receding horizon controller and ¢ = (.15 are presented in
Figure 7.

6. Conclusion

A nonlinear dynamic model describing the interaction
among CD4 T cells, CD8 cells and HIV-1 was analyzed
and the solutions of that model was proved that belong to
a bounded positively invariant set. A nonlinear observer
was designed for a special class of systems and applied to
the dynamic model. The observer designed was
compared to another observer for the same model [4] and
appeared to converge faster. Then two control schemes
for the model were designed. In the first control approach
a sliding mode controller was designed, based on the
observation that the system is in the regular form. A
separation principle for sliding mode controller was also
proved. In the second approach a receding horizon
control scheme was designed using a quadratic cost
function. Simulation tests for the control schemes
designed show that controllers have a robust behavior

400

o 5 10 15 20 25 30

Figure 1: Simulation of the reduced order observer. The solid line is
the actual x, state, line (-- -- --) is the reduced order observer

output and line (-- . -- . --) is the output of the observer
presented in [7]
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Figure 2a: Simulation of the sliding mode controller, system states.
The control action starts at time 10 (years)
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Figure 2b: Simulation of the sliding mode controller: control input.
The control action starts at time 10 (years)
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Figure 3a: Simulation of the receding horizon: control input. The
control action starts at time 10 (years)
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Figure 5b: Control input for the sliding mode controller using (18)

-200

-400

-600

-800

-1000
0

-

12 14 16 18 20

okt e
0 2 4 6 8 10

Figure 6: System response with sliding mode controller. Parameters
differ at most 25% from the nominal
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Appendix 1
Proof of claim 1:

One may see that |dp(x,, %)/ i is continuous and thus

bounded in the set: DU, . Let M, (;») be such a bound.

In order to show that g )/ di is bounded in the set

Xp, Xy,

U,, this set is divided into: ¢/ ={fc€U, || Sffz} and

U, ={)€EU, %, SM}. In U, itholds:

X P, ()Acz + Xy )_ X1P, (xl + X ) = X, P4y

and thus:

‘2171)‘1561 + 2173)22;52‘

(dglx,. %, r(0) _|dr(o)
@ | a

P+~

+
XDy ()22 + Xy )_x1p2 (‘xl +x10)
T e‘fg‘f)org'fz )ffz _pz(xlo -2x, )).‘1‘(171)‘512 +p3x22)
()ezp4 (3%2 + Xy )‘x1p2 (xl + Xy ))2

Ldﬂ&x] w ;g?)) : (Pmt)l{ﬁ).jwﬂﬁl}ﬁx{l’lgl (M }73 )i
p4ﬂztofc2 p4x2(p4x20;c -5%3 X

3 4 (x2p4x20 )2
e rn) )
(p4x20)

}, and

where: T - sup{[fcl
xeU,

M, = fgup{p4 (xzo +2%, ))?2 - P (xlo -2x, )xl H
Similarly in U/, it holds:

x,p, ()%2 + Xy )_xlpz (xl + xlo)2 XD, (xl() - r)
and thus:

N 4max{pl;cl ,pﬂ\?}‘xl‘

)

d¢(x,,x2,}/(l))< (p1+p3)x12)

dt - 'lez(xl -r 'XL.pz(qu_
d¢(x,,x2,y(t)) < (p1 +Q% Z ;tf)i?max{plxl:psM

o, e e
Y VI T — VS

’ (pz(xm —r))

Thus a constant satisfying claim 1 is:

M, = maX{M4(r),M5(r),M6(r)}~

In the previous inequalities it was also shown that if
x€EU,, then

ﬁo\(écfﬁxﬁfig(gf T, 'One jxconc,h)dgz that) ¢(p: ;%,y(gl) }
is continuous at 0 and thus ¢(x1,x2,}/(t)
continuous at D .

Proof of claim 2: Since 3, — x, it is sufficient to show

that for any >0, there exist an g>0Qsuch that if

‘xz _)A‘z‘ <e then ¢(x1,fcz,)/(t))s¢(x1,x2,m/2) for every
xeD-U,-

If ‘xz _)22‘<g, for some ¢ > 0 and £, <X, it holds:

(P]xl + P, Xl

'?{lé ﬁifl%{ E)H an xx =)x£)4—(p2 # x—ﬁ)ﬁf "'@zé@”ﬁ xl@)oxr

positive in the set D —/ . Let min {F (x,,x )}: d - One
r ey, % "

has d,>0- If

;/(t)—m/2
1-m/2

p.e(2x, +x, - 5) < (22)

forany xyep - U, then it holds:

(p? + pxs J1- ()
p4(x2 +x20)x2 _pz(xl +x10)x1 — P4
(plxlz + Psxs Xl - m/2)

D, (x2 + Xy )x2 - D, (xl + X )‘xl

<

(2x2 + Xy — e)

for any xep-u, . Since y(t)=m and the set p_y is
bounded, a value for ¢, making (22) valid, always exists.
Let ¢, be such a value.

If ‘xz _);2‘<g,forsome £>0 and £, > X, it holds:

(plxlz + p3x22 + P (52 + 2x2€)Xl - V(t))
Py (xz + Xy )xz - D (xl + xl(})xl

¢(x1 , X, V(t)) =

The function F(x,,x,)= p,x? + p,x? is positive in the

setD - U, Let Xer%% {F2 X, X, }=nm. Onehas p >0.If

e (23)

p3(£2 +2gx2)s o

forany xyep - U, then it holds:

(plxlz + p3x22 + 7 ('92 + 2x28)XI - 7(1))
yn (xz + Xy )xz - D> ('xl + X )xl
X7+ p3x22 Xl - m/2)

Py (x2 + Xy )xz P (xl + X )xl

for any xe& D-U,. Since the set D-U, is bounded, a
value for ¢, making (23) valid, always exists. Let ¢, be

such a value.

One may choose: ¢ = min{81,52 } 0
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