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Abstract  
 

This paper applies nonlinear control methods to an HIV - 
1 model describing the interaction among CD4+ T cells, 
CD8+ T cells and HIV - 1. The problem is stated as an 
output feedback stabilization problem. At first a 
nonlinear observer is designed for the non measureable 
state variable of the model. Then two state feedback 
controllers are designed: the first is based on sliding 
mode control and the second on the receding horizon 
control. Practical forms of the output feedback schemes 
are finally tested via simulation in order to illustrate the 
robustness of the proposed methods. 
 
1. Introduction  
 

Human Immunodeficiency Virus (HIV) is the virus 
causing Acquired Immune Deficiency Syndrome (AIDS), 
a disease which compromises the immune system. The 
major target of HIV is a class of lymphocytes called 
CD4+ T cells and as a result their number is decreased, 
leading to the deficiency of the immune system. Thus, a 
patient is vulnerable to opportunistic infections. 
Normally, the number of the CD4+ cells is around 1000 
mm-3 and when it drops below 200 mm-3 the patient is 
classified as having AIDS [1],[2]. 

Currently, the most commonly applied treatment is 
HAART (Highly Active AntiRetroviral Therapy), a 
therapy consisting of a mixture of more than three 
antiretroviral drugs of at least two types: the protease 
inhibitors and the reverse transcriptase inhibitors. This 
treatment suppresses HIV viral replication and maintains 
high the CD4 counts, prolonging the patient’s life 
expectancy. However, there are some drawbacks; the 
high cost and the possible side effects.   

An important part during the therapy is measuring the 
concentrations of CD4, CD8 and viral load. The most 
typical measuring methods for the viral load are the 
polymerase chain reaction (PCR), the viral load assays 
and branches deoxyribonucleic acid test. Regarding the 
lymphocyte measurements, the most common technique 
is flow cytometry which can distinguish and count CD3, 
CD4, and CD8 T cells simultaneously. However, due to 
its high cost, laboratories often measure only the CD4 
concentration [3], [4]. 

Several dynamic models for HIV have been proposed 
including [1], [5], [6], [7] and [8]. These models aim to 

describe, with different accuracy, the interaction between 
the immune system and HIV. In this paper the model of 
[8] is used due to its simplicity and the relatively precise 
way of describing the interaction between the immune 
system and HIV. Several control methods have been used 
for the antiretroviral drug scheduling problem. In [9] 
several linear time delay control schemes are 
investigated, in [10] a backstepping controller is 
designed, in [11] a passivity based approach is used, in 
[12],[13] and [14] feedback linearization controllers are 
designed, in [15] a robust Lyapunov based controller is 
designed, in [16-18] receding horizon control techniques 
are used in a state feedback and output feedback 
formulation, in [19-21] a practical control algorithm is 
presented, in [22] a controller is designed using an 
approximation of immune system dynamics and in [23], 
[24] optimal control is used for the drug scheduling 
problem against HIV. 

The objective of control theoretic approaches, to HIV 
drug scheduling problems, is to use proposed drugs 
dosage as a guideline for clinical use. In this paper, we 
propose nonlinear control algorithms for the drug dosage 
scheduling problem for people infected by HIV, using a 
model form [8]. The control problem is stated as an 
output feedback stabilization problem assuming that only 
the CD4 cell concentration and the viral load are 
measured. Thus, a nonlinear observer is first designed. 
Then, two state feedback controllers are designed; a 
sliding mode controller and a receding horizon controller. 
For the sliding mode controller a separation principle is 
also proved.  

The paper is organized as follows. In section 2, a 
dynamical model presented in [8] is analyzed and some 
properties are proved. In section 3 a new nonlinear 
observer for the non directly measureable state variable 
of the model is designed. In section 4 two state feedback 
control schemes are designed. In section 4.1 a sliding 
mode controller is designed and in section 4.2 a receding 
horizon controller is designed. In section 5 the proposed 
control schemes are tested via simulation and some 
practical forms of these schemes are proposed. In section 
6 the results are summarized. This paper is largely based 
on an earlier work reported in [25]. 
 
2. Description and properties of the model 
 
2.1. Description of the model 



The model used [8] describes the interaction among 
the CD4+ T cells, the CD8 lymphocytes and the virus 
particles. The equations of the model are: 

 

                 
( )
( )

uyypyypy
yypyxpy
yypyxpy

−−=

+−=

−−=

3263153

32422032

31211011

!

!

!
                       (1)  

 
where 1y  is the CD4 population, 

2y  is the CD8 
population, 

3y  is the viral load. The parameters 
10x  and 

20x  are the normal values of the CD4 and CD8 counts 
respectively and u corresponds to the dosage of the drug 
used in the treatment. The parameters 

1 6,...,p p  are 
positive constants describing the interaction rates among 
the CD4 cells, CD8 cells and the virus particles. 
Identification procedures for HIV models may be found 
in [26], [27]. 
 The above model describes the following known facts 
about the interaction of the virus particles and the 
immune cells CD4 and CD8 [9], [8]: 

1) HIV utilizes the CD4 cells to replicate itself and 
high HIV load leads to CD4 cell count reduction.  

2) The number of CD8 cells increases responding to 
the increased HIV load, and CD8 cells attack to 
the virus. 

3) The growth rate of HIV increases proportional to 
the HIV and CD4 populations 

 
2.2. Some properties of the model 
 
 For 0=u , the model (1) has two equilibrium points. 
The first one with 

101 xy = , 
202 xy =  and 03 =y  

corresponds to the uninfected state and is unstable under 
the assumption 

206105 xpxp > . The second one with: 
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is stable [10].  
 We will examine only physically meaningful 
solutions of model (1) i.e. the solutions such that 

21, yy  
and 

3y  remain nonnegative and thus they have physical 
meaning. In the following, the more convenient form of 
the model is used:  
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where 
1011 xyx −= , 

2022 xyx −=  and 
33 yx = .  

 In [10] it is shown that physically meaningful 
solutions of model (3) belong to the set 

( ){ }0,0,0:,, 321103211 ≥≥≤<−= xxxxxxxD . Here it is 
shown that physically meaningful solutions belong to a 
smaller, bounded domain. 
 
Lemma 1: If ( )tu  is such that ( ) 03 ≥tx  for any 0≥t  then 
i) The sets:  
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with 01 >C , ( ) ( )2061012021 / xpxpxpC −−>  and 

( )1*
22 CCC >  for suitable function ( )1*

2 CC , are positively 
invariant. 
ii) The sets: 
 
       ( ) ( ){ }321132133 :,,, CAxxDxxxACD ≥+∈=            (5) 
 
with ( ){ }310313 /,0min pxppC −<  and 

204

34102

xp
Cpxp

A
−

> , 

are positively invariant. 
 
Proof: 
i) Let 

53211 / pxpxV += . For 
1C  satisfying the above 

conditions it will be shown that 01 <V!  for any 
( ) 1321 ,, Dxxx ∈  such that 

11 CV = .  It holds: 
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where ( ) 53262 /' pxxpupu += . The right hand side of the 
last inequality is linear in 1x  and thus by the conditions 
of the lemma 1V!  is negative for 0110 ≤≤− xx  and 

15321 / Cpxpx =+ . 
Let  

43422 / pxpxV += . It will be shown that for suitable 

2C , 02 <V!  for any ( ) 1321 ,, Dxxx ∈  such that 
22 CV = . It 

holds: 
( )2 3 2 5 1 10 3 4 6/V p x p x x x u p p= − + + −⎡ ⎤⎣ ⎦
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The second term of the last inequality depends only on 
1x  and 

3x . Thus it has a maximum value on ( )212 ,CCD  
depending only on 

1C . Let us denote by ( )1CM  that 
value. For ( ) ( ) 311

*
22 / pCMCCC =>  it holds 02 <V!  for 

any ( ) 1321 ,, Dxxx ∈  such that 
22 CV = . 

 
ii) Let 

213 AxxV += . It will be shown that 03 >V!  for 

( ) 1321 ,, Dxxx ∈  such that 
33 CV = . It holds: 
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The first term of the right hand side of the last equality is 
positive by the inequality ( ){ }310313 /,0min pxppC −<  
and the second is positive by the relation 

( ) 20434102 / xpCpxpA −> .                                    ◊  
  
The previous lemma implies that for every initial 
condition in 

1D  one may find suitable constants 
1 2 3, ,C C C  

and A  such that the solution remains in 
( ) ( )ACDCCDD ,, 33212 ∩=  and ( ) Dxx ∉− 310 ,0,  for 

every 03 ≥x . This result may be used for estimating a 
state variable given the other two with a single 
measurement, for obtaining bounds for the parameters in 
an identification procedure or for deriving bounds of the 
state variables for control use. 
 
3. Observer design  
 
 CD8 count measurements are not always available. In 
this section a simple nonlinear reduced order observer is 
designed for the state variable 2x  of the model (3). 
Another observer for this model is also available [4] but 
the convergence rate is slow.  
 The observer designed, is based in the following 
lemma, in which an observer is designed for a special 
class of systems. 
 
Lemma 2:  Consider the system 
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where y  is the measured output. Assume that there is a 
constant K  such that ( ) ( ) 0111121 <−<− εzKfzf  for every 

1z . Then an observer of the form: 
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may be designed such that the estimation error 
( ) ( ) ( ) 0ˆ22 →−= tztzte  faster than te ε− . 

 
Proof:  
For the estimation error it holds: 
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Thus: ( ) ( )[ ]ezKfzfe 111121 −=!                                            ◊  
 
 The above lemma may be used in order to design a 
reduced order observer for system (3). 

Corollary 3: Consider system (3) and the reduced order 
observer:          
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Let also 

64 / ppK −< . Then the estimation error 

( ) ( ) ( ) 0ˆ22 →−= txtxte  faster than tpe 3−                           
 
Proof:  
Lemma 2 applies with: 

,31 xz =  ,22 xz =  ( ) ,36311 xpxf −=  ( ) ,334321 pxpxf −=  

320422 xxpf = , [ ]Tuxv 1=  and 

( ) ( )( )12 3 1 5 1 10 6 20 3, ,f x x u p x x p x x u= + − − .                       

The dynamics of the estimation error is described by: 
( )[ ]expKppxxe 346322 ˆ ++−=−= !!!                                 ◊  

 
4. Controller design 
 
 In this section two state feedback control schemes are 
designed. The aim of the control schemes is to steer 
system (3) to the equilibrium point ( )0,0,0  which 
corresponds to the uninfected state. The parameters of the 
model are assumed to be exactly known and that all state 
variables are directly measurable. In case 2x  is not 
directly measurable, the observer designed in the 
previous section will be used. 
 In section 4.1 a sliding mode controller is designed 
and a receding horizon control scheme  is designed in 
section 4.2.  
 
4.1. Sliding mode controller 
 
 In this section a sliding mode controller for the model 
(3) is designed. The system may be written in the 
“regular form” [28]: 
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where [ ]Txx 21=η  and 

3x=ξ . A function ( )ηφ  such 
that ( )ηφξ =  stabilizes the origin of the η  subsystem is 
first determined. Consider the Lyapunov function: 
 
                              ( ) 2/2
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( )ηφ  will be designed such that: 
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with ( ) ]1,(mt ∈γ  and 0>m . A function ( )ηφ  that makes 
(11) hold is: 
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The sliding manifold for the state feedback scheme is: 
 
                           ( ) ( )txxxxs ,, 213 φ−=               (13) 
 
In the next lemma, it will be shown that the output 
feedback scheme including system (3), sliding mode 
controller with sliding surface ( ) 0=xs  and any observer 
satisfying some additional conditions, is asymptotically 
stable. 
 
Lemma 5: Let ( )tx2ˆ  be the output of an asymptotically 
stable observer for ( )tx2  such that ( ) 0ˆ2 ≥tx . Assume also 
that there is a constant M  such that ( ) Mtx ≤2

!̂  (in some 

region that the solution belongs). If ( ) Mt ≤γ!  then for 
every ( ) 10 Dx ∈  , the control law: 
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for a suitable value of 

maxU , makes the origin of the 
composite system including system (3) and the observer, 
asymptotically stable with a region of attraction 
containing ( )0x . 
Proof:  

For any initial condition ( ) 10 Dx ∈ , the state variable 
3x  

remains nonnegative and thus lemma 1 applies. 
Therefore, there exist constants ACCC ,,, 321

 such that the 

set ( ) ( )ACDCCDD ,, 33212 ∩=  is positively invariant, 

bounded, ( ) Dx ∈0  and ( ) Dxx ∉− 310 ,0,  for any 03 ≥x . 

One may claim that: 

Claim 1: ( )( )txx γφ ,, 21
 is continuous in D  and there is a 

constant 
2M  such that: 

( )( )
2

21 ,ˆ,
M

dt
txxd

≤
γφ .  

Claim 2: For any positive constant r, there is a time ( )rT   
such that: 

 ( )( ) ( )2/,,,ˆ, 2121 mxxtxx φγφ ≤   

for any 
rUDx −∈  where { }22

2
2
1: rxxxUr <+=  and 

( )rTt ≥ .  

Claims 1 and 2 are proved in Appendix 1. 

3. At first, it will be shown that there exist a constant 
maxU  and a time 

0t  such that any solution of (3) with 

( ) Dx ∈0  satisfies: ( ) ( ) ( )( ){ }txxxDxtPtx γφ ,ˆ,: 213 ≤∈=∈  
for every 

0tt ≥ . For x  such that ( ) 0ˆ >xs  it holds: 
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with 0>ε , it holds ( )
ε−<

dt
xds ˆ  if ( ) 0ˆ >xs .  Thus ( )tx  

reaches ( )tP  in finite time.  

4. It will be shown that for any 0>r , there is a time 1t  
such that any solution of (3) with ( ) Dx ∈0  satisfies: 

( )( ) 2rtxV ≤η
 for any

1tt ≥ . One may see that for 

( ){ }rTtt ,max 0≥ ,  it holds:  
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for any 
rUDx −∈ . Therefore the solution ( )tx  enters the 

set 
rU  in finite time. The set 

rU  is positively invariant in 
the 

21 xx −  plane for ( ){ }rTtt ,max 0≥ . 

5.  It will be shown that for every 01 >δ  there exist a 

02 >δ  such that: 

( ) ( ) ( ) ( )( ) 22321 0ˆ,0,0,0 δ<
∞

xxxx , ( ) Dxxx ∈321 ,,  and 

0ˆ2 ≥x  implies ( ) ( ) ( ) ( )( ) 12321 ˆ,,, δ<
∞

txtxtxtx .  

Continuity of φ  implies the existence of a positive 
constant r  such that ( )( ) 121 ,, δγφ ≤txx  for any 

rUx∈  and 

( ) )1,[mt ∈γ . From 4 and the proof of claim 2, one may see 

that there exist a positive constant 
3δ  such that 

322 ˆ δ<− xx  implies { }1,min δrU  is positively invariant for 

{ }rx ,min 13 δ< . From stability of the observer, there exist 

a positive constant 4δ  such that ( ) ( ) 422 0ˆ0 δ<− xx  

implies ( ) ( ) 322 ˆ δ<− txtx  for any 0>t . Thus 

( ) ( ) ( ) ( )( ) { }142321 ,2/,min0ˆ,0,0,0 δδ rxxxx <
∞

    implies     

( ) ( ) ( ) ( )( ) 12321 ˆ,,, δ<
∞

txtxtxtx . 

This implies the stability of the origin. 

6. Finally, from 4 one may see that ( ) ( )( ) 0, 21 →txtx  as 

∞→t . Furthermore, from the continuity of φ  and the 
facts 

 ( ) 02 →tx  and 
22ˆ xx → , we conclude: 



 ( ) ( ) ( ) ( )( ) 0,ˆ,0 213 →≤≤ ttxtxtx γφ  as ∞→t .                ◊  

In the next corollary it will be proved that observer (8) 
satisfies the conditions of Lemma (5). Thus the 
composite system (3), (8), with the controller (14) is 
asymptotically stable. 

Corollary 6: For any initial condition in 
1D , the 

controller (14), for a suitable value of 
maxU , with 

observer (8) for ( ) 00ˆ2 ≥x  makes the origin 
asymptotically stable with a region of attraction 
containing ( )0x . 
 
Proof:   
It is sufficient to show that: 
 i) 0ˆ2 ≥x   
ii) that there exist a constant M  such that Mx ≤2

!̂ .  

One may compute: 
( ) 326236320423342 ˆˆˆ xxKpxxKpxxpxpxpx −++−=!  

For (i), one may see that if ( ) 0ˆ2 =tx  then since 0<K , it 
holds: 
( ) 0ˆ 32632042 ≥−= xxKpxxptx!  

 
For (ii), one may observe that 

22ˆ xx →  monotonically 
and thus it has a maximum value: ( ) 222 max0ˆˆ xxx

Dxm
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Thus a constant M  satisfying (ii) is: 
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4.2. Receding Horizon Controller  
 
 In this section a discrete time receding horizon 
controller for the system (3) is designed.  
 In discrete time receding horizon control, at each 
step a finite horizon open loop optimal control problem 
is solved and the first component of the control 
sequence obtained, is applied to the plant [29].   
 A discrete time approximate model for the system 
(3) is first obtained using Euler discretization: 
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where δ  is the discretization time. 
  The cost function at step i  has a quadratic form:  
            ( )∑

−+

=++ ++=
1 2Ni

ik kkkk
T
kNi

T
Ni urxQxQxx V           (16)  

where 
kQ  and Q  are positive definite symmetric  

matrices, 
kr  positive constants and N  the horizon of 

optimization. The cost function (16) penalizes the 
deviations of state variables from their nominal values 
and high control input values. The constraints of the 
state variables and control are explicitly involved in the 
optimization problem.  

The procedure used for the receding horizon state 
feedback control scheme is the following: 
1.  At step i  an optimization problem of the form: 
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 is solved numerically.                                        
2. The control action 

iu is applied 
3. Measurements ( )ix  are taken 
4. Continue to step 1+i  

 

5. Simulation results and practical forms  

5.1 Simulation results 

 In this section the above control schemes are 
simulated using the parameter values from [8]: 

25.01 =p , 6
2 105 −⋅=p , 25.03 =p , 6

4 10−=p , 01.05 =p , 

0045.06 =p , 100010 =x  and 55020 =x .  

 At first the observer (8) is simulated and compared 
with an observer from [4]. The observer designed in [4] 
is based on the observer error linearization technique. 
The linear system obtained, after a transformation and an 
output injection, is detectable but not observable, having 
a not moving pole at 

3p− . Thus for the observer 
designed in [4] the convergence rate is not tunable. On 
the other hand the reduced order observer (8) has error 
dynamics given by: ( )[ ]expKppe 3463 ++−=! . Thus the 
convergence rate may be tuned using the  parameter K  
i.e. with a smaller K , the convergence if faster. 
 Figure 1 shows the simulation result for the reduced 
order observer in comparison with the observer presented 
in [4]. The observers start at time 7 (years). Reduced 
order observer (8) converges faster than the observer 
designed in [4].  
 In Figure 2 the simulation results for system (3) using 
the sliding mode controller are presented. In order to 
simulate the system, the discontinuity of the controller is 
approximated using hysteresis [30]. System has initial 
values ( ) ( ) 000 21 == xx  and ( ) 10003 =x . Control action 
starts at time 10=t  years.  
 For the sliding mode controller, state variables 
converge to their nominal values. The speed of 
convergence may be adjusted by the signal ( )tγ  i.e. using 
a bigger ( )tγ , the convergence is faster. Hysteresis 
approximation of the sliding mode controller 
discontinuity is not suitable for practical use due to the 
very fast changes in the input signal (Figure 2b) and the 
need for continuous time measurements. A practical form 



of sliding mode controller is presented in the next 
section. 
  Simulation results using receding horizon controller 
are reported in Figure 3. The state variables converge to 
their nominal values. The speed of convergence may be 
tuned by the matrices 

kQ  and Q , the  constants 
kr  , or the 

value of 
maxU  i.e. bigger values for 

kQ , Q  or 
maxU  lead 

to faster convergence and bigger values for 
kr  lead to 

slower convergence. 

5.2 Practical forms of the above control schemes 

 In this section practical forms of the above control 
schemes are proposed. We assume that measurements are 
taken only at discrete times (1 week), the control action is 
fixed during that period and the control input is quantized 
and can take a value from a finite set: { }bbb Nuuu ,...,2,,0 .  
 For the sliding mode controller input values in 
{ }max,0 U   may be used or input may take also some 
intermediate values. A practical form of the sliding mode 
controller that gives also intermediate values is:  
 

( ) ( )( ) ( )( )⎟
⎠

⎞
⎜
⎝

⎛ ++−+−+= 2/sgn 02026101531 bq uus
dt
dxxpxxpxuu φ

                                (18)  
where 

0u  is a small positive real and the function ( )1qu u  
is given by (19).  
 
 For the receding horizon controller a simple quantizer on 
the form: 
 
                        ( ) bNnbq nuuuuu −=

∈
minarg1

                    (19) 

may be used. 
 The simulation results using the practical forms of the 
control schemes are essentially the same except the input 
response. Figure 4 shows the response of the receding 
horizon controller and Figure 5 shows the input 
responses for the sliding mode controller. 

5.3 Robustness tests 
 
 In this section, robustness of the proposed control 
schemes is investigated via simulation. Controllers 
designed in previous sections are applied to a system in 
the form: 
 

                
( )
( )

( ) ( )[ ] uxxxpxxpx
xxxpxpx
xxxpxpx

−+−+=

++−=

+−−=

3202610153

32024232

31012111

!

!

!
          (20) 

 
Constants 

61,..., pp  have values: 
                         ( ) iii parp += 1                               (21) 
where constants 

ir  are random numbers chosen 
independently from the interval [ ]1,1−  with uniform 
distribution. Results from ten simulations for system (20) 

with controller (14) and 25.0=a  are presented in Figure 
6. Results from ten simulations for system (20) with 
receding horizon controller and 15.0=a  are presented in 
Figure 7.  
 
6. Conclusion 
 
 A nonlinear dynamic model describing the interaction 
among CD4 T cells, CD8 cells and HIV-1 was analyzed 
and the solutions of that model was proved that belong to 
a bounded positively invariant set. A nonlinear observer 
was designed for a special class of systems and applied to 
the dynamic model. The observer designed was 
compared to another observer for the same model [4] and 
appeared to converge faster. Then two control schemes 
for the model were designed. In the first control approach 
a sliding mode controller was designed, based on the 
observation that the system is in the regular form. A 
separation principle for sliding mode controller was also 
proved. In the second approach a receding horizon 
control scheme was designed using a quadratic cost 
function. Simulation tests for the control schemes 
designed show that controllers have a robust behavior 
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Figure 1:  Simulation of the reduced order observer. The solid line is 

the actual 2x state, line (-- -- --) is the reduced order observer 
output and line (-- . -- . --) is the output of the observer 

presented in [7] 
 

0 2 4 6 8 10 12 14 16 18 20
-1000

-800

-600

-400

-200

0

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8
x 105

 
Figure 2a:  Simulation of the sliding mode controller, system states. 

The control action starts at time 10 (years) 
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Figure 2b:  Simulation of the sliding mode controller: control input. 

The control action starts at time 10 (years) 
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Figure 3a:  Simulation of the receding horizon: control input. The 

control action starts at time 10 (years) 
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Figure 3b:  Simulation of the receding horizon: system states. The 

control action starts at time 10 (years) 
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Figure 4: Control input for the receding horizon controller 
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Figure 5a: Control input for sliding mode controller using only values 

in { }max,0 U  
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Figure 5b: Control input for the sliding mode controller using (18) 
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Figure 6: System response with sliding mode controller. Parameters 

differ at most 25% from the nominal 
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Figure 7: System response with receding horizon controller 

parameters differ at most 15% from the nominal 



Appendix 1 
 
Proof of claim 1: 

One may see that ( ) dttxxd /,ˆ, 21φ  is continuous and thus 

bounded in the set: rUD − . Let ( )rM 6
 be such a bound. 

In order to show that ( ) dttxxd /,, 21φ  is bounded in the set 

rU , this set is divided into: { }211 ˆ:ˆ xxUxU rr ≤∈=  and 

{ }122 ˆ:ˆ xxUxU rr ≤∈= . In 
rU1  it holds: 

( ) ( ) 20421012120242 ˆˆˆ xpxxxpxxxpx ≥+−+   
and thus: 

( )( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )( )

( ) { } ( )
( )2

2042

2
231

3
2204

2311

2204

2
231

2
1012120242

2
23

2
111110222204

1012120242

22311121

ˆ
ˆ

 
ˆp

ˆ,max4
M 

ˆp
ˆp

ˆˆ

2ˆˆ
  

ˆˆ

ˆˆ22,,

xpx
xpp

M
xx

xMpxp
xx
xp

xxpxxxpx

xpxpxxxpxxxp

xxpxxxpx

xxpxxp

dt
td

dt
txxd

+
++

+
≤

+−+

+−−+

+
+−+

+
+≤

!

!!

!!
φ

γγφ

Therefore: 

( )( ) ( ) { }

( )
( )

( )rM
xp
pp

M

x
Mpxp

x
p

dt
txxd

42
204

31
3

204

311

204

3121

                            

 
p

,max4
Mr 

p
p,,

=
+

+

+
+

≤
!γφ

 

where: { }11 sup xx
rUx
!!

∈
= , and  

( ) ( ){ }11102222043 2ˆˆ2sup xxxpxxxpM
rUx

!! −−+=
∈

. 

Similarly in 
rU2
 it holds: 

( ) ( ) ( )rxpxxxpxxxpx −−≥+−+ 10211012120242 ˆˆ   
and thus: 

( )( ) ( )
( )

{ }
( )

( )
( )( )21021

2
131

3

1021

1311

1021

2
13121

x
                            

 
x-

,max4
M 

x-
p,,

rxp
xpp

M

rxp
xMpxp

rxp
xp

dt
txxd

−

+
+

−
+

−

+
≤

!γφ

( )( ) ( )
( )

{ }
( )

( )( )
( )rM

rxp
pp

M

rxp
Mpxp

rxp
rp

dt
txxd

52
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3

102

311

102

3121

                            

 
,max4
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p

  
,,

=
−

+
+

−
+

−

+
≤

!γφ
 

 
Thus a constant satisfying claim 1 is: 

           ( ) ( ) ( ){ }rMrMrMM 6542 ,,max= .   
In the previous inequalities it was also shown that if 

rUx∈ , then 

( )( )
( )

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +

−
−

+
≤ m-1r

p
p,1max,,

204

31

102

31
21 x

pmr
rxp

pptxx γφFrom this fact, one may conclude that ( )( )txx γφ ,, 21
 

is continuous at 0 and thus ( )( )txx γφ ,, 21
 is 

continuous at D . 

Proof of claim 2: Since 
22ˆ xx →  it is sufficient to show 

that for any 0>r , there exist an 0>ε such that if 

ε<− 22 x̂x  then ( )( ) ( )2/,,,ˆ, 2121 mxxtxx φγφ ≤  for every 

rUDx −∈ .  

If ε<− 22 x̂x , for some 0>ε  and 
22ˆ xx < , it holds: 

( )( ) ( ) ( )( )
( ) ( ) ( )εε

γ
γφ

−+−+−+

−+
≤

20241101222024

3
23

2
11

21 2
1,ˆ,

xxpxxxpxxxp
txpxptxxThe function ( ) ( ) ( ) 1101222024211 , xxxpxxxpxxF +−+=  is 

positive in the set
rUD − . Let ( ){ } mUDx

dxxF
r

=
−∈

211 ,min . One 

has 0>md . If  

( ) ( )
2/1
2/2 2024 m

mtxxp
−

−
≤−+
γ

εε                                (22) 

for any 
rUDx −∈  then it holds: 

( ) ( )( )
( ) ( ) ( )
( )( )
( ) ( ) 1101222024

3
23

2
11

20241101222024

3
23

2
11

2/1

2
1

xxxpxxxp
mxpxp

xxpxxxpxxxp
txpxp

+−+

−+

≤
−+−+−+

−+

εε
γ

 

for any 
rUDx −∈ . Since ( ) mt ≥γ  and the set 

rUD −  is 
bounded, a value for ε , making (22) valid, always exists. 
Let 1ε  be such a value.  

If ε<− 22 x̂x , for some 0>ε  and 
22ˆ xx > , it holds: 

( )( ) ( )( ) ( )( )
( ) ( ) 1101222024

2
2

3
2
23

2
11

21
12

,ˆ,
xxxpxxxp
txpxpxp

txx
+−+

−+++
≤

γεε
γφ . 

The function ( ) 2
23

2
11212 , xpxpxxF +=  is positive in the 

set
rUD − . Let ( ){ } mUDx

nxxF
r

=
−∈

212 ,min . One has 0>mn . If   

( )
m

mnxp m 22
2 2

2
3 −

≤+ εε                                            (23) 

for any 
rUDx −∈  then it holds: 

( )( ) ( )( )
( ) ( )

( )( )
( ) ( ) 1101222024

2
23

2
11

1101222024

2
2

3
2
23

2
11

2/1

12

xxxpxxxp
mxpxp

xxxpxxxp
txpxpxp

+−+

−+

≤
+−+

−+++ γεε
 

for any 
rUDx −∈ . Since the set 

rUD −  is bounded, a 
value for ε , making (23) valid, always exists. Let 2ε  be 
such a value.  

One may choose: { }21,min εεε = .             ◊         
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