
Cover Page

Mapping Applications onto Reconfigurable Architectures using Dynamic

Programming 1

Kiran Bondalapati, George Papavassilopoulos and Viktor K. Prasanna

Department of Electrical Engineering Systems, EEB-200C

University of Southern California

Los Angeles, CA 90089-2562

USA

Contact Author

Viktor K. Prasanna

Email: prasanna@usc.edu

Tel: +1-213-740-4483

Fax: +1-213-740-4480

http://ceng.usc.edu/˜prasanna/

1This work was supported by the DARPA Adaptive Computing Systems Program under contract DABT63-96-C-0049 monitored by Fort Hauchuca.

1

Mapping Applications onto Reconfigurable Architectures using Dynamic
Programming

Kiran Bondalapati, George Papavassilopoulos and Viktor K. Prasanna

Introduction

Reconfigurable architectures vary from systems which have

FPGAs and glue logic attached to a host computer to sys-

tems which include configurable logic on the same die as a

microprocessor. Automatic compilation of applications onto

reconfigurable architectures involves not only configuration

generation, but also configuration management. Currently,

there is no unified methodology for mapping applications to

configurable hardware.

In this paper we describe algorithmic techniques for auto-

matic mapping of applications in a platform independent

fashion. We have developed an abstract model of reconfig-

urable architectures. This parameterized abstract model is

general enough to capture a wide range of configurable sys-

tems. These include board level systems which have FPGAs

as configurable computing logic to systems on a chip which

have configurable logic arrays on the same die as the micro-

processor.

Configurable logic is very effective in speeding up regular,

repetitive computations. Loop constructs in general purpose

programs are one such class of computations. In this paper,

we address the problem of mapping a loop construct onto

configurable architectures. The Hybrid System Architecture

Model(HySAM) that we have developed is utilized to define

the mapping problems. Efficient techniques based on dy-

namic programming are used to develop an optimal schedule

for important variants of the problem. The problem of utiliz-

ing on-chip reconfiguration cache resources is addressed in

this paper. The techniques are illustrated by mapping an ex-

ample FFT loop onto the Berkeley Garp architecture.

Hybrid System Architecture Model(HySAM)

To realize a formal framework for algorithm development,

we developed the Hybrid System Architecture Model of re-

configurable architectures. The Hybrid System Architecture

is a general architecture consisting of a conventional micro-

processor with an additional Configurable Logic Unit(CLU).

The architecture consists of a conventional microprocessor,

standard memory, configurable logic, configuration memory

and data buffers communicating through an interconnection

network. Key parameters of the Hybrid System Architecture

Model(HySAM) are outlined below.

F : Set of functionsF
1

: : : F

n

which can be performed on

configurable logic.

C : Set of possible configurations C
1

: : :C

m

of the Con-

figurable Logic Unit.

A

ij

: Set of attributes for implementation of function F
i

us-

ing configurationC
j

(execution time, precision etc.).

R

ij

: Reconfiguration cost in changing configuration from

C

i

to C
j

.

G : Set of generators which abstract the composition of

configurations to generate more configurations.

B : Bandwidth of the interconnection

network(bytes/cycle).

The parameterized HySAM models a wide range of systems

from board level architectures to systems on a chip. The val-

ues for each of the parameters establish the architecture and

also dictate the class of applications which can be effectively

mapped onto the architecture. For example, a system on a

chip architecture would have potentially faster reconfigura-

tion times than a board level architecture.

Mapping Loop Statements

Scheduling a general sequence of tasks with a set of depen-

dencies to minimize the total execution time is known to be

an NP-complete problem. We consider the problem of gen-

erating this sequence of configurations for loop constructs

which have a sequence of statements to be executed in linear

order. There is a linear data or control dependency between

the tasks. Most loop constructs, including those which are

mapped onto high performance pipelined configurations, fall

into such a class.

The total execution time includes the time taken to execute

the tasks in the chosen configurations and the time spent in

reconfiguring the logic between successive configurations.

We have to not only choose configurations which execute the

given tasks fast, but also have to reduce the reconfiguration

time. It is possible to choose one of many possible configura-

tions for each task execution. Also, the reconfiguration time

depends on the choice of configurations that we make.

Problem: Given a sequence of tasks of a loop, T
1

through

T

p

to be executed in linear order(T
1

T

2

: : : T

p

), where

T

i

2 F , for N number of iterations, find an optimal se-

quence of configurations S (=C
1

C

2

: : : C

q

), where S
i

2

C (=fC
1

,C
2

,: : :,C
m

g) which minimizes the execution time

cost E. E is defined as

E =

q

X

i=1

(t

S

i

+ R

i�1i

)

2

where t
S

i

is execution time in configuration S
i

and R
i�1i

is

reconfiguration cost.

Optimal Solution for Mapping Loops

A simple greedy approach of choosing the best configuration

for each task will not work since the reconfiguration costs for

later tasks are affected by the choice of configuration for the

current task. We outline our dynamic programming based

approach below without proofs:

Lemma 1: Given a sequence of tasks T 0

1

T

0

2

: : :T

0

p

, an op-

timal sequence of configurations for executing these tasks

once can be computed in O(pm

2

) time.

Lemma 1 provides a solution for an optimal sequence of con-

figurations to compute one iteration of the loop statement.

But repeating this sequence of configurations is not guaran-

teed to give an optimal execution for N iterations.

Lemma 2 An optimal configuration sequence can be com-

puted by unrolling the loop only m times.

Theorem 1 The optimal sequence of configurations forN it-

erations of a loop statement with p tasks, when each task can

be executed in one ofm possible configurations, can be com-

puted in O(pm

3

) time.
J

Theorem 1 is derived from Lemma 1 and Lemma 2 and the

complexity of the algorithm is O(pm

3

). This approach can

also be used when the number of iterations N is not known

at compile time and is determined at runtime. The decision

to use this sequence of configurations to execute the loop can

be taken at runtime from the statically known loop setup and

single iteration execution costs and the runtime determined

N .

Multiple Contexts and Configuration Caches

The performance achievable on reconfigurable architectures

is limited by the costs involved in reconfiguring the logic.

Currently, this overhead is very high and discourages the re-

configuration of the logic during the execution of a single ap-

plication. To address this problem architectures which sup-

port configuration caches and multiple contexts on the de-

vices are being developed. We extend the above approach

for these devices with the following assumptions regarding

the HySAM model:

1. N
c

number of configurations can be loaded on to the de-

vice at the start of the computation.

2. There is one active context which can be configured

from any of the N
c

configurations with a cost k
c

.

3. The pre-loaded configurations can not be modified dur-

ing the execution of the complete application. Only the

active context can be reconfigured externally.

We define an additional variableX
ij

, 1 � j � 2 �m, which

is the set of contexts which are cached for executing tasks T
1

toT
i

withT
i

being executed using configurationC
j

. TheE
ij

and the X
ij

(1 � i � 2 �m) values are computed using dy-

namic programming. The recursive equations for computing

them are given below(�
kj

denotes the reconfiguration cost):

mink = k s:t: min[E

ik

+ �

kj

] 1 � k � 2 �m

if (C

j

2 X

ik

)

�

kj

= k

c

else if (jX

kj

j < N

c

and 1 � j � m)

�

kj

= k

c

else

�

kj

= R

ij

Given the value ofmink, theE
i+1j

and theX
i+1j

values are

computed as follows:

E

i+1j

= t

i+1j

+ E

i mink

+ �

mink j

X

i+1j

= X

i mink

[C

j

if jX

imink

j < N

c

and 1 � j � m)

= X

i mink

otherwise

The minimum execution costE and the corresponding set of

contexts X for executing tasks T
1

to T
p

are given by:

minj = j s:t: min[E

pj

] 1 � j � 2 �m

E = E

p minj

X = X

p minj

The required optimal execution cost and the set of contexts

can be computed by using dynamic programming.
J

Illustrative Example

We illustrate the techniques by mapping the loop contain-

ing FFT butterfly operations. The butterfly operation con-

sists of one complex multiply, one complex addition and one

complex subtraction. First, the loop statements were decom-

posed into functions which can be executed on the CLU,

given the list of functions in Table 1. One complex multi-

plication consists of four multiplications, one addition and

one subtraction. Each complex addition and subtraction con-

sist of two additions and subtractions respectively. The state-

ments in the loop were mapped to multiplications, additions

and subtractions which resulted in the task sequence T
m

, T
m

,

T

m

, T
m

, T
a

, T
s

, T
a

, T
a

, T
s

, T
s

. Here, T
m

is the multipli-

cation task mapped to function F

1

, T
a

is the addition task

mapped to functionF
2

and T
s

is the subtraction task mapped

to function F
3

.

The optimal sequence of configurations for this task se-

quence, using our algorithm, was C
1

,C
3

,C
4

,C
3

,C
4

repeated

for all the iterations. The most important aspect of the solu-

tion is that the multiplier configuration in the solution is actu-

ally the slower configuration. The reconfiguration overhead

3

Function Operation Configuration Configuration Execution

Time Time

F

1

Multiplication(Fast) C

1

14.4 �s 37.5 ns

Multiplication(Slow) C

2

6.4 �s 52.5 ns

F

2

Addition C

3

1.6 �s 7.5 ns

F

3

Subtraction C

4

1.6 �s 7.5 ns

F

4

Shift C

5

3.2 �s 7.5 ns

Figure 1: Representative Model Parameters for Garp Reconfigurable Architecture

is lower for C
2

and hence the higher execution cost is amor-

tized over all the iterations of the loop. The total execution

time is given by N � 13:055 �s where N is the number of

iterations.

Conclusions

Mapping of applications in an architecture independent fash-

ion can provide a framework for automatic compilation of

applications. Loop structures with regular repetitive compu-

tations can be speeded-up by using configurable hardware.

We developed dynamic programming based approaches to

efficiently map tasks in a loop to a sequence of configura-

tions. We illustrated our approach by developing algorithms

for some variants of the mapping problem.

4

