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Abstract 

A genetic algorithm is developed for scheduling tasks 
on a spacecrafi having constrained resources. Due to the 
complex nature of the constraints, it is necessary to take a 
hybrid approach where the genetic algorithm is combined 
with a decoder routine to generate feasible solutions. The 
perjormance of the hybrid algorithm is demonstrated by 
example. Results are very encouraging, demonstrating an 
improvement relative to earlier results, and providing a 
flexible capability to modify existing sequences in near- 
real-time to comply with time-varying goals and 
constraints. 

1 Introduction 

This paper addresses the problems of scheduling tasks 
on a spacecraft having constrained resources. The main 
emphasis is on developing fast and effective on-board 
algorithms that allow the spacecraft to schedule its own 
activities, and operate autonomously in a time-varying 
and/or uncertain environment. 

Typically, spacecraft resources of interest include 
power, propellant, computer memory (RAM, magnetic 
tape, solid-state mass data storage), computer throughput 
(CPU time), accumulated wheel momentum, science 
instrument utilization, cryogen utilization, communication 
(telemetry bandwidth, transmission time), or any other 
resource of finite quantity that impacts in-flight 
operations. 

Many times in the course of a spacecraft mission, an 
unexpected event, anomaly, or unanticipated science 
opportunity arises. The standard response is to have 
spacecraft activities rescheduled on the ground (Earth), 
suffering delays from both ground latencies (associated 
with setting up and optimizing the modified sequences), 
as well as a two-way communication delay in receiving 
and sending relevant information through space. This 
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approach is costly and inefficient, and must be supported 
by a fully staffed ground infrastructure. Furthermore, in 
certain cases of time-critical events, an immediate 
response is required and such delays cannot be tolerated. 
An alternative approach is to develop the capability for 
on-board scheduling of activities. 

The capability for on-board sequencing is a long term 
goal of the present research effort, and is in keeping with 
recent trends toward developing smarter and more 
effective “autonomous” spacecraft [3, 1 I]. In this report, 
we select genetic algorithms [7] to solve these problems. 
The reasons that we select genetic algorithms are their 
robustness and good performance. They are also quite 
widely applicable and can be implemented as parallel 
algorithms [7]. 

Genetic algorithms are population based optimization 
algorithms. Each individual of the population has a fitness 
value, which indicates the quality of the individual for a 
given function. From the population, the next generation 
is produced by three operators: selection, crossover, and 
mutation operator. Generally, the population size is taken 
to be the same from generation to generation. 

The common procedures of genetic algorithms are as 
follows. First, calculate the fitness values of randomly 
generated individuals. Then, select superior individuals 
based on their fitness values. Modify the selected 
individuals a little by crossover and mutation. Then, 
recalculate new fitness values for the modified 
individuals. The above procedures are repeated until 
certain stopping criteria are met. Detailed explanations 
can be found in [7, 101. 

The idea of the crossover resembles the DNA’s 
crossover in nature. Keep in mind that the crossover of 
the genetic algorithms does not automatically generate 
better individuals than the previous ones. It only produces 
different individuals. The mutation operator alters each 
individual randomly, and the number of the mutation 
operations is governed by a mutation rate. It is shown that 
if the mutation rate is not zero and the best individual is 
preserved, genetic algorithms asymptotically converge to 
a global optimum [ 121. 
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Figure 1 Resource capacity is represented by a stairstep 
function in this paper. The resource demand of a task also can be 
described by the stairstep function. 

For constrained optimization problems, the efficiency 
of genetic algorithms can be greatly improved by adding a 
decoder routine [IO]. We suggest one decoder routine 
generating feasible solutions. The routine serves as a 
function calculating fitness values of individuals. 'I'he 
results of our methods are quite promising. 

The structure of this paper is as follows. In Section2, 
we define scheduling problems of a spacecraft. In Section 
3, we present a decoder routine and explain an order- 
based genetic algorithm. Two cases of problems are 
solved by our hybrid genetic algorithm in Section 4. 
Finally, brief concluding remarks are given in Section 5 .  

Figure 2 Decoder routine generates feasible solutions for 
genetic algorithms. Genetic algorithms produce the next input 
for the decoder routine. 

Sometimes, not all tasks can be scheduled while 
satisfying all constraints. For such case, some less 
important tasks should be removed from scheduling. To 
distinguish the importance of each task, a utility value wi 
2 0 is used. By convention, the higher the wi, the more 
important the task. Now, the scheduling problem 
becomes: 

Problem Find ei E / O , I I  and ti E[O,D], so that 

2 Problem Statement 
subject to 

Let us assume that there are N tasks and M resources. 
Each task c requires execution time di and resource 
demand rij on resource Ri. Now, a task Ti can be specified 
by a function J,,.i(t - ti): 

(1) 
t ;  I t I ti  + d ,  

otherwise. 
f i . j ( t - - t i  )=  

where, i=1,2 ,.., N and j=1,2 ,..., M. The ti is the start time 
ofthe taskTi. By arranging the start time ti, we should 
place all N tasks within a given interval D and maximum 
resource capacity C,(t) of resource Rj: 

where ti E [O,D], t E [O,D], and j = I, 2, ..., M .  'The 
maximum resource capacity Cj(t) is generally continuous 
function and is converted to a stairstep function in this 
paper (figure 1). 

(3) 

(4) 

where wi 2 0, t E [O,D], i = 1,2 ,..., N, and j=1,2 ,.., M .  The 
ei indicates whether the task Ti is selected or not: ei = 1 
means the task I;. is selected, and ei = 0 means the task Ti 
is not selected. 

Three types of ordering constraints are considered. A 
sequencing constraint makes sure that some tasks are 
performed before others. If a task Ti should be completed 
before a task Ti , then following constraint is necessary: 

ti + di + q St,* ( 5 )  

where a parameter q 2 0 is used for an additional interval 
between two tasks. A non-overlapping constraint does not 
permit overlapping of two tasks. It can be expressed by: 

(6) 
* I *  

tj + ai + q I ti* or ti + ai + q I ti 
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input = order of tasks 
output = start times of the tasks 

for time = first to last 
for task = first to last 

if task satisfies ordering constraints 

start time of the task = time; 
if task satisfies resource constraints 

end 
end 

end 
end 

Figure 3 
solutions for genetic algorithms. 

Algorithm of a decoder routine generating feasible 

With this constraint, task Ti and task Ti* cannot be 
executed at the same time. Finally, some tasks require an 
absolute start time constraint: 

ti = t (7) 

For example, many observations need to be performed at 
certain times because of the spacecraft’s location. 

3 Genetic Algorithms for Constraints 

For constrained optimization problems, the efficiency 
of genetic algorithms can be greatly improved by adding a 
decoder routine. The decoder routine generates feasible 
solutions, which satisfy all constraints. In Figure 2, one 
method of a hybrid genetic algorithm, which takes 
advantage of the decoder routine, is suggested. The 
decoder routine generates feasible solutions, and the 
genetic algorithm produces the next input for the decoder 
routine. 

3.1 Decoder Routine 

One decoder routine is suggested and its algorithm is 
shown in Figure 3. The routine takes an order of tasks as 
input and generates start times of the tasks as output. 
From the earliest scheduling time and from the first task 
of the given order, the routine checks whether the task 
satisfies both ordering constraints and resource 
constraints. If the task satisfies both constraints, then the 
routine places the task at the time. The placed task affects 
the resource constraints and possibly ordering constraints 
for other tasks. The above procedures continue until no 
more tasks are available (i.e. all tasks are selected) or the 
time reaches the end of the intended period. 

The order of tasks determines the quality of output. 
Thus, we use a genetic algorithm to find the best order. 
Generally, tasks appearing earlier in the ordering have a 
better chance of being selected. 

Other methods can be used to define a decoder 
routine. For example, we can randomly generate a 
schedule, then remove tasks violating constraints. It is 
also possible that after removing the tasks, we can 
relocate unselected tasks to any remaining resource. 

3.2 Order-Based Genetic Algorithms 

Because, our decoder routine requires the order of 
tasks as input, an order-based genetic algorithm [5] is 
used. If the number of tasks is N, then an individual will 
be a permutation of ( 1,2, ..., N}. For example: 

X = [ 2 3 4 7 1 8 5 6 9 ]  

is a typical example of the individual for nine tasks. 
Based on the rank of fitness values [ 11, the individuals 

of the next population are selected by the roulette wheel 
selection method [7]. If Np is the number of individuals in 
the population and R is the rank (R = I means the worst 
individual, and R = Np means the best individual) of an 
individual, then the probability of selecting the individual 
will be: 

We select the order based crossover operator [13]. The 
order based crossover operator chooses some elements of 
one parent, and reorders them according to the order of 
the other parent. For example, suppose that two parents 
are: 

Xi = [9 8 2  1 3 4 5  671 
Xz = [4 6 5 2 8 7 9 1 31. 

Assume that the 3rd, 5th, and 6th elements are selected 
for the crossover operation. They are underlined below: 

The elements 8, 5 ,  and 7 of X1 are replaced by the 
underlined elements 5, 8, and 7 of X2 respectively. 
Similarly, the elements 4, 2, and 3 of X2 are replaced by 
the underlined elements 2, 3, and 4 of X1. Thus, new 
offsprings are: 
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Figure 4 The results of genetic algorithms (GA) and random 
search algorithms (RSA) of case I. The average values of 10 
runs are used to generate graphs. 

Y1= [9 5 2 1 3 4 8 6 71 
Y2 = [2 6 5 3 8 7 9 1 41. 

We select the exchange mutation operator [2], which 
simply exchanges the position of two randomly selected 
elements. For example, if 5 and 3 are selected for 
mutation, then: 

X=[9547 18263 
Y = [9 34 7 1 8 2 63. 

4 Experimental Studies 

We test our method with two 
involves scheduling 100 tasks 

(before mutation) 
(after mutation) 

cases. The first case 
under one resource 

constraint and 14 ordering constraints. The second case 
involves scheduling tasks under a dynamic environment: 
tasks are canceled and added, resource capacities vary, 
and ordering constraints appear during scheduling. 

The results of the genetic algorithm are compared with 
the results of a random search algorithm, which randomly 
generates solutions and keeps the best for each 
generation. Note that random search algorithm also uses 
the decoder algorithm. Thus, the comparison does not 
reflect the effectiveness of the decoder algorithm. 

4.1 Case I 

The first case involves placing 100 tasks within 30 
horizontal locations (time) and 150 vertical locations 
(resource). A task Ti requires one resource demand ri, 
which is a value between 1 and 10, and time duration d;, 
which is a number between 1 to 50. 

180 1 

120 

; 100 : ; 80 

60 

40 

20 

I 
5 10 15 20 25 30 

0' 

Time ( 1 )  

Figure5 One scheduling result by our hybrid genetic 
algorithm. The dotted line shows maximum resource capacity 
(resource constraint) and the solid lines shows the total resource 
demands of tasks at each time unit. 

The utility value w; is calculated by multiplying r; and 
d;. The fitness value of each individual is evaluated by 

The maximum fitness value cannot exceed 30 x 150 = 
4500, because the fitness value is an area occupied by 
selected tasks. The actual optimum fitness value is indeed 
4500, when all 100 tasks are selected. 

In addition to the resource constraint, each individual 
should satisfy the following ordering constraints: 

t44 + d 4 4 S  t43 t57 + d57 I tSl 

t20 + d 2 0 S  t2 

t4 + d 4  I 149 t44 + d44 t7l 

t36 d36 I t85 t76 d76 5 t65 

t9 + d 9  I t37 t93 d93 I t16 
t10= 20 t50= 15 

t6 -+ d 6  I t97 

tl + dl I t2 or t2 + d2 I tl 
t28 + d28 I t77 or t77 + d77 I t28. 

The results of the genetic algorithm (solid line) and 
the random search algorithm (dotted line) are shown in 
Figure 4. The results are based on the average values of 
the 10 runs for each algorithm. In Figure 5 ,  one 
scheduling result by our method (solid line) is shown. 
Only two tasks are not selected for this result. The fitness 
value 4446 of this result is 98.8% of the optimal value 
4500. Although the result of the random search algorithm 
is worse than the result of the genetic algorithm, they both 
provide good solutions due to the use of the decoder 
algorithm. 
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Figure 6 The results of genetic algorithms (GA) and random 
search algorithms (RSA) of case I. The average values of 10 
runs are used. 

4.2 Case11 

During a space mission, sudden changes can occur 
due to unexpected circumstances and/or a changing space 
environment. For example, tasks may have to be 
rescheduled in light of failed observations (i.e., lack of 
target acquisition), or conversely, the desire to take 
additional science observations of unexpected target 
opportunities. In addition, resource constraints may 
change unexpectedly due to component failures. This 
simulation covers these cases. 

For this problem, a task T, requires four resource 
demands ri,l, ri.2, ri,3, ri,4, which are randomly generated 
between 0 and 5 ,  and time duration di, which is randomly 
generated between 1 to 5. The wi is calculated by 

Like the previous problem, the fitness value of each 
individual is given by (8). The number of tasks is 100 and 
the number of horizon locations is 30. 

We assume that changes occur during scheduling 
operation: more specifically at the llth, 21st, and 31st 
generations. 

1. At the beginning: 
C1(t) = 25 
C,(t) = 20 

I 1  t 130 
1st 15, I l S t  115,211t 1 2 5  

30 61t I10,161t 120,261t 130 

15 I I I t 1 2 0  
C3(t) = 35 I 1  t 110, 2 1 1  t 130 

C,(t) = 40- t IS t 530  
No ordering constraint 

Figure7 One example of scheduling by hybrid genetic 
algorithm. The dotted line shows maximum resource capacity 
and the solid lines shows the summation of resource demands of 
selected tasks. 

2. At the 1 lth generation: Resource 3 changes 
C3(t) = 35 1 1 t l l O  

15 11 I t 1 3 0  

3. At the 21st generation: New ordering constraints 
appear 

t , o + d , o + ~ 2 0  I t , , + d l , + ~ , ,  I * * - I t , + d , + r ,  I t ,  

where, rzO = r19 = ... = 72 = I 

4. At the 3 1st generation: 
Task 5 1 to 60 are cancelled 
New Tasks 101 to 105 are assigned 

From Figure 6, we can notice severe transitions at the 
llth, 21st, and 31st generation. They are caused by the 
above changes. These results also show that the genetic 
algorithm performs better than the random search 
algorithm. 

The four constraints are plotted in Figure 7 as dotted 
lines along with one scheduling result of our hybrid 
genetic algorithm (solid line). For multiple resource 
constraint problems, some resources can be more 
dominant during a certain period. For example, for I11 t 
I30,  placing tasks is mostly restricted by the availability 
of resource 3. 

It is hard to measure the quality of the scheduling 
result, because the optimal fitness value is not known in 
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this case. However, because only small space is left 
especially under the dominant resources, we may assume 
that the solution is more than acceptable. 

5 Conclusion 

A method for scheduling tasks has been developed 
relevant to spacecraft applications. Such problems 
inherently involve both resource constraints and task 
ordering constraints. For simple genetic algorithms, those 
constraints result in many infeasible individuals, which 
decrease the efficiency of the algorithms. Thus, to recover 
the efficiency, a decoder routine that generates feasible 
individuals is suggested. Because, our decoder routine 
takes an ordering of tasks as input, an order-based genetic 
algorithm is selected and combined with the decoder 
routine. 

This hybrid genetic algorithm was applied to two 
experimental problems. Results indicate that the 
algorithm finds good solutions quickly, on problems of 
reasonable size. However, actual spacecraft scheduling 
problems can be of much larger dimension, and this 
remains as an area for further investigation. Comparing to 
earlier results on similar size problems [3], the use of the 
decoder algorithm in combination with the GA runs 
significantly faster than the GA used alone, and with 
improved performance. Overall, the results of the study 
are very encouraging and take us one step closer towards 
providing the capability for a spacecraft to schedule its 
own activities, and to modify existing sequences in near- 
real-time to comply with time-varying goals and 
constraints. Practical applications that could benefit from 
this adaptive resequencing capability are numerous and 
include autonomous rover exploration, planetary flybys, 
maintaining autonomous outposts in space, and 
serendipitous science imaging. 
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