
Proceedings of the 1999 IEEE
International Conference on Robotics & Automation

Detroit, Michigan May 1999

Task Scheduling on Spacecraft by Hybrid Genetic Algorithms

11-Jun Jeong’, George Papavassilopoulos’, and David S. Bayard2

Department of Electrical Engineering
University of Southern California

Los Angeles, CA 90089

* Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91 109-8099

Abstract

A genetic algorithm is developed for scheduling tasks
on a spacecrafi having constrained resources. Due to the
complex nature of the constraints, it is necessary to take a
hybrid approach where the genetic algorithm is combined
with a decoder routine to generate feasible solutions. The
perjormance of the hybrid algorithm is demonstrated by
example. Results are very encouraging, demonstrating an
improvement relative to earlier results, and providing a
flexible capability to modify existing sequences in near-
real-time to comply with time-varying goals and
constraints.

1 Introduction

This paper addresses the problems of scheduling tasks
on a spacecraft having constrained resources. The main
emphasis is on developing fast and effective on-board
algorithms that allow the spacecraft to schedule its own
activities, and operate autonomously in a time-varying
and/or uncertain environment.

Typically, spacecraft resources of interest include
power, propellant, computer memory (RAM, magnetic
tape, solid-state mass data storage), computer throughput
(CPU time), accumulated wheel momentum, science
instrument utilization, cryogen utilization, communication
(telemetry bandwidth, transmission time), or any other
resource of finite quantity that impacts in-flight
operations.

Many times in the course of a spacecraft mission, an
unexpected event, anomaly, or unanticipated science
opportunity arises. The standard response is to have
spacecraft activities rescheduled on the ground (Earth),
suffering delays from both ground latencies (associated
with setting up and optimizing the modified sequences),
as well as a two-way communication delay in receiving
and sending relevant information through space. This

0-7803-51 80-0-5199 $10.00 0 1999 IEEE 44 1

approach is costly and inefficient, and must be supported
by a fully staffed ground infrastructure. Furthermore, in
certain cases of time-critical events, an immediate
response is required and such delays cannot be tolerated.
An alternative approach is to develop the capability for
on-board scheduling of activities.

The capability for on-board sequencing is a long term
goal of the present research effort, and is in keeping with
recent trends toward developing smarter and more
effective “autonomous” spacecraft [3, 1 I]. In this report,
we select genetic algorithms [7] to solve these problems.
The reasons that we select genetic algorithms are their
robustness and good performance. They are also quite
widely applicable and can be implemented as parallel
algorithms [7].

Genetic algorithms are population based optimization
algorithms. Each individual of the population has a fitness
value, which indicates the quality of the individual for a
given function. From the population, the next generation
is produced by three operators: selection, crossover, and
mutation operator. Generally, the population size is taken
to be the same from generation to generation.

The common procedures of genetic algorithms are as
follows. First, calculate the fitness values of randomly
generated individuals. Then, select superior individuals
based on their fitness values. Modify the selected
individuals a little by crossover and mutation. Then,
recalculate new fitness values for the modified
individuals. The above procedures are repeated until
certain stopping criteria are met. Detailed explanations
can be found in [7, 101.

The idea of the crossover resembles the DNA’s
crossover in nature. Keep in mind that the crossover of
the genetic algorithms does not automatically generate
better individuals than the previous ones. It only produces
different individuals. The mutation operator alters each
individual randomly, and the number of the mutation
operations is governed by a mutation rate. It is shown that
if the mutation rate is not zero and the best individual is
preserved, genetic algorithms asymptotically converge to
a global optimum [121.

Capacity

I I

>
Time

Figure 1 Resource capacity is represented by a stairstep
function in this paper. The resource demand of a task also can be
described by the stairstep function.

For constrained optimization problems, the efficiency
of genetic algorithms can be greatly improved by adding a
decoder routine [IO]. We suggest one decoder routine
generating feasible solutions. The routine serves as a
function calculating fitness values of individuals. 'I'he
results of our methods are quite promising.

The structure of this paper is as follows. In Section2,
we define scheduling problems of a spacecraft. In Section
3, we present a decoder routine and explain an order-
based genetic algorithm. Two cases of problems are
solved by our hybrid genetic algorithm in Section 4.
Finally, brief concluding remarks are given in Section 5 .

Figure 2 Decoder routine generates feasible solutions for
genetic algorithms. Genetic algorithms produce the next input
for the decoder routine.

Sometimes, not all tasks can be scheduled while
satisfying all constraints. For such case, some less
important tasks should be removed from scheduling. To
distinguish the importance of each task, a utility value wi
2 0 is used. By convention, the higher the wi, the more
important the task. Now, the scheduling problem
becomes:

Problem Find ei E / O , I I and ti E[O,D], so that

2 Problem Statement
subject to

Let us assume that there are N tasks and M resources.
Each task c requires execution time di and resource
demand rij on resource Ri. Now, a task Ti can be specified
by a function J,,.i(t - ti):

(1)
t ; I t I ti + d ,

otherwise.
f i . j (t - - t i)=

where, i=1,2 ,.., N and j=1,2 ,..., M. The ti is the start time
ofthe taskTi. By arranging the start time ti, we should
place all N tasks within a given interval D and maximum
resource capacity C,(t) of resource Rj:

where ti E [O,D], t E [O,D], and j = I, 2, ..., M . 'The
maximum resource capacity Cj(t) is generally continuous
function and is converted to a stairstep function in this
paper (figure 1).

(3)

(4)

where wi 2 0, t E [O,D], i = 1,2 ,..., N, and j=1,2 ,.., M . The
ei indicates whether the task Ti is selected or not: ei = 1
means the task I;. is selected, and ei = 0 means the task Ti
is not selected.

Three types of ordering constraints are considered. A
sequencing constraint makes sure that some tasks are
performed before others. If a task Ti should be completed
before a task Ti , then following constraint is necessary:

ti + di + q St,* (5)

where a parameter q 2 0 is used for an additional interval
between two tasks. A non-overlapping constraint does not
permit overlapping of two tasks. It can be expressed by:

(6)
* I *

tj + ai + q I ti* or ti + ai + q I ti

442

input = order of tasks
output = start times of the tasks

for time = first to last
for task = first to last

if task satisfies ordering constraints

start time of the task = time;
if task satisfies resource constraints

end
end

end
end

Figure 3
solutions for genetic algorithms.

Algorithm of a decoder routine generating feasible

With this constraint, task Ti and task Ti* cannot be
executed at the same time. Finally, some tasks require an
absolute start time constraint:

ti = t (7)

For example, many observations need to be performed at
certain times because of the spacecraft’s location.

3 Genetic Algorithms for Constraints

For constrained optimization problems, the efficiency
of genetic algorithms can be greatly improved by adding a
decoder routine. The decoder routine generates feasible
solutions, which satisfy all constraints. In Figure 2, one
method of a hybrid genetic algorithm, which takes
advantage of the decoder routine, is suggested. The
decoder routine generates feasible solutions, and the
genetic algorithm produces the next input for the decoder
routine.

3.1 Decoder Routine

One decoder routine is suggested and its algorithm is
shown in Figure 3. The routine takes an order of tasks as
input and generates start times of the tasks as output.
From the earliest scheduling time and from the first task
of the given order, the routine checks whether the task
satisfies both ordering constraints and resource
constraints. If the task satisfies both constraints, then the
routine places the task at the time. The placed task affects
the resource constraints and possibly ordering constraints
for other tasks. The above procedures continue until no
more tasks are available (i.e. all tasks are selected) or the
time reaches the end of the intended period.

The order of tasks determines the quality of output.
Thus, we use a genetic algorithm to find the best order.
Generally, tasks appearing earlier in the ordering have a
better chance of being selected.

Other methods can be used to define a decoder
routine. For example, we can randomly generate a
schedule, then remove tasks violating constraints. It is
also possible that after removing the tasks, we can
relocate unselected tasks to any remaining resource.

3.2 Order-Based Genetic Algorithms

Because, our decoder routine requires the order of
tasks as input, an order-based genetic algorithm [5] is
used. If the number of tasks is N, then an individual will
be a permutation of (1,2, ..., N}. For example:

X = [2 3 4 7 1 8 5 6 9]

is a typical example of the individual for nine tasks.
Based on the rank of fitness values [11, the individuals

of the next population are selected by the roulette wheel
selection method [7]. If Np is the number of individuals in
the population and R is the rank (R = I means the worst
individual, and R = Np means the best individual) of an
individual, then the probability of selecting the individual
will be:

We select the order based crossover operator [13]. The
order based crossover operator chooses some elements of
one parent, and reorders them according to the order of
the other parent. For example, suppose that two parents
are:

Xi = [9 8 2 1 3 4 5 671
Xz = [4 6 5 2 8 7 9 1 31.

Assume that the 3rd, 5th, and 6th elements are selected
for the crossover operation. They are underlined below:

The elements 8, 5 , and 7 of X1 are replaced by the
underlined elements 5, 8, and 7 of X2 respectively.
Similarly, the elements 4, 2, and 3 of X2 are replaced by
the underlined elements 2, 3, and 4 of X1. Thus, new
offsprings are:

443

4360
10 20 30 40 50

Generations

4442

4429

Figure 4 The results of genetic algorithms (GA) and random
search algorithms (RSA) of case I. The average values of 10
runs are used to generate graphs.

Y1= [9 5 2 1 3 4 8 6 71
Y2 = [2 6 5 3 8 7 9 1 41.

We select the exchange mutation operator [2], which
simply exchanges the position of two randomly selected
elements. For example, if 5 and 3 are selected for
mutation, then:

X=[9547 18263
Y = [9 34 7 1 8 2 63.

4 Experimental Studies

We test our method with two
involves scheduling 100 tasks

(before mutation)
(after mutation)

cases. The first case
under one resource

constraint and 14 ordering constraints. The second case
involves scheduling tasks under a dynamic environment:
tasks are canceled and added, resource capacities vary,
and ordering constraints appear during scheduling.

The results of the genetic algorithm are compared with
the results of a random search algorithm, which randomly
generates solutions and keeps the best for each
generation. Note that random search algorithm also uses
the decoder algorithm. Thus, the comparison does not
reflect the effectiveness of the decoder algorithm.

4.1 Case I

The first case involves placing 100 tasks within 30
horizontal locations (time) and 150 vertical locations
(resource). A task Ti requires one resource demand ri,
which is a value between 1 and 10, and time duration d;,
which is a number between 1 to 50.

180 1

120

; 100 : ; 80

60

40

20

I
5 10 15 20 25 30

0'

Time (1)

Figure5 One scheduling result by our hybrid genetic
algorithm. The dotted line shows maximum resource capacity
(resource constraint) and the solid lines shows the total resource
demands of tasks at each time unit.

The utility value w; is calculated by multiplying r; and
d;. The fitness value of each individual is evaluated by

The maximum fitness value cannot exceed 30 x 150 =
4500, because the fitness value is an area occupied by
selected tasks. The actual optimum fitness value is indeed
4500, when all 100 tasks are selected.

In addition to the resource constraint, each individual
should satisfy the following ordering constraints:

t44 + d 4 4 S t43 t57 + d57 I tSl

t20 + d 2 0 S t2

t4 + d 4 I 149 t44 + d44 t7l

t36 d36 I t85 t76 d76 5 t65

t9 + d 9 I t37 t93 d93 I t16
t10= 20 t50= 15

t6 -+ d 6 I t97

tl + dl I t2 or t2 + d2 I tl
t28 + d28 I t77 or t77 + d77 I t28.

The results of the genetic algorithm (solid line) and
the random search algorithm (dotted line) are shown in
Figure 4. The results are based on the average values of
the 10 runs for each algorithm. In Figure 5 , one
scheduling result by our method (solid line) is shown.
Only two tasks are not selected for this result. The fitness
value 4446 of this result is 98.8% of the optimal value
4500. Although the result of the random search algorithm
is worse than the result of the genetic algorithm, they both
provide good solutions due to the use of the decoder
algorithm.

444

_ _ _ _ _ - _ _ - _ -
2700

2650 #

261 9
5 10 15 20 25 30

2600 -

_ _ _ _
I

O . 5 lo 1’5 io 25 3b
2300.

2200 5 10 15 20 25 30
10 20 30 40 50

Generations - - _ U
- _ - - - _ _ . .

5 10 15 20 25 30
Time (t)

Figure 6 The results of genetic algorithms (GA) and random
search algorithms (RSA) of case I. The average values of 10
runs are used.

4.2 Case11

During a space mission, sudden changes can occur
due to unexpected circumstances and/or a changing space
environment. For example, tasks may have to be
rescheduled in light of failed observations (i.e., lack of
target acquisition), or conversely, the desire to take
additional science observations of unexpected target
opportunities. In addition, resource constraints may
change unexpectedly due to component failures. This
simulation covers these cases.

For this problem, a task T, requires four resource
demands ri,l, ri.2, ri,3, ri,4, which are randomly generated
between 0 and 5 , and time duration di, which is randomly
generated between 1 to 5. The wi is calculated by

Like the previous problem, the fitness value of each
individual is given by (8). The number of tasks is 100 and
the number of horizon locations is 30.

We assume that changes occur during scheduling
operation: more specifically at the llth, 21st, and 31st
generations.

1. At the beginning:
C1(t) = 25
C,(t) = 20

I 1 t 130
1st 15, I l S t 115,211t 1 2 5

30 61t I10,161t 120,261t 130

15 I I I t 1 2 0
C3(t) = 35 I 1 t 110, 2 1 1 t 130

C,(t) = 40- t IS t 530
No ordering constraint

Figure7 One example of scheduling by hybrid genetic
algorithm. The dotted line shows maximum resource capacity
and the solid lines shows the summation of resource demands of
selected tasks.

2. At the 1 lth generation: Resource 3 changes
C3(t) = 35 1 1 t l l O

15 11 I t 1 3 0

3. At the 21st generation: New ordering constraints
appear

t , o + d , o + ~ 2 0 I t , , + d l , + ~ , , I * * - I t , + d , + r , I t ,

where, rzO = r19 = ... = 72 = I

4. At the 3 1st generation:
Task 5 1 to 60 are cancelled
New Tasks 101 to 105 are assigned

From Figure 6, we can notice severe transitions at the
llth, 21st, and 31st generation. They are caused by the
above changes. These results also show that the genetic
algorithm performs better than the random search
algorithm.

The four constraints are plotted in Figure 7 as dotted
lines along with one scheduling result of our hybrid
genetic algorithm (solid line). For multiple resource
constraint problems, some resources can be more
dominant during a certain period. For example, for I11 t
I30, placing tasks is mostly restricted by the availability
of resource 3.

It is hard to measure the quality of the scheduling
result, because the optimal fitness value is not known in

445

this case. However, because only small space is left
especially under the dominant resources, we may assume
that the solution is more than acceptable.

5 Conclusion

A method for scheduling tasks has been developed
relevant to spacecraft applications. Such problems
inherently involve both resource constraints and task
ordering constraints. For simple genetic algorithms, those
constraints result in many infeasible individuals, which
decrease the efficiency of the algorithms. Thus, to recover
the efficiency, a decoder routine that generates feasible
individuals is suggested. Because, our decoder routine
takes an ordering of tasks as input, an order-based genetic
algorithm is selected and combined with the decoder
routine.

This hybrid genetic algorithm was applied to two
experimental problems. Results indicate that the
algorithm finds good solutions quickly, on problems of
reasonable size. However, actual spacecraft scheduling
problems can be of much larger dimension, and this
remains as an area for further investigation. Comparing to
earlier results on similar size problems [3], the use of the
decoder algorithm in combination with the GA runs
significantly faster than the GA used alone, and with
improved performance. Overall, the results of the study
are very encouraging and take us one step closer towards
providing the capability for a spacecraft to schedule its
own activities, and to modify existing sequences in near-
real-time to comply with time-varying goals and
constraints. Practical applications that could benefit from
this adaptive resequencing capability are numerous and
include autonomous rover exploration, planetary flybys,
maintaining autonomous outposts in space, and
serendipitous science imaging.

Acknowledgments

We are grateful to David H. Collins and William
“Curt” Eggemeyer of the Jet Propulsion Laboratory for
helpful discussions, and to Hamid Kohen of JPL for
additional software support on this project. The research
described in this document was carried out for the Jet
Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics
and Space Administration.

References

[2] W. Banzhaf, “The ‘molecular’ traveling salesman,”
Bio. Cybern., vol. 64, pp. 7-14, 1990.

[3] D. S . Bayard, G. Papavassilopoulos, and H. Kohen,
Genetic algorithms for space autonomy: An
optimization approach to on-board sequencing, JPL
Internal Document JPL D-15347, 1997.

[4] S. Chien, D. DeCoste, R. Doyle, and P. Stolorz,
“Making an Impact: Artificial Intelligence at the Jet
Propulsion Laboratory,” American Association for
Artificial Intelligence, AI Magazine, pp. 103-122,
Spring 1997.

[5] L. Davis, Ed., Handbook of Genetic Algorithms, New
York: Van Nostrand Reinhold, 1991.

[6] K. A. De Jong, An analysis of the behavior of a class
of genetic adaptive systems, Doctoral dissertation,
University of Michigan, 1975.

[7] D. E. Goldberg, Genetic algorithms in search,
optimization, and machine learning, Addison
Wesley, 1989.

[8] D. E. Goldberg and R. Lingle, “Alleles, loci, and the
traveling salesman problem, ” Proceedings of an
International Conference on Genetic Algorithms and
Their Applications, pp 154-159, 1985.

[9] J. H. Holland, Adaptation in Natural and Artificial
Systems, The University of Michigan Press, 1975.

[101 Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs, Springer-Verlag,
N.Y., 1994.

[11]N. Muscettola, C. Fry, K. Rajan, B. Smith, S . Chien,
G. Rabideau, and D. Yan, “On-Board Planning for
New Millennium Deep Space One Autonomy,”
Proceedings of IEEE Aerospace Conference,
Snowmass, CO., 1997.

[121 G. Rudolph, “Convergence analysis of canonical
genetic algorithms,” IEEE Transactions on Neural
Networks, vol. 5 , no. 1, pp. 96-101, 1994.

[131 G. Syswerda, “Scheduling optimization using genetic
algorithms,” in [5] , pp. 332-349.

[11 J. E. Baker, “Adaptive selection methods for genetic
algorithms,” Proceedings of an International
Conference on Genetic Algorithms and Their
Applications, pp 101-11 1, 1985.

446

