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Abstract 

Let 6~ be a measure of the relative stability of a stable 
dynamical system C. Let q~:) be a measure of the 
computational efficiency of a particular algorithm A 
which verifies the stability property of E. For two r e p  
resentative cases of C, we demonstrate the existence of 
a particular measure 6~ and an algorithm A such that, 

where c depends possibly on the dimension of the sys- 
tem C and parameters which are specific to the algo- 
rithm A, but independent of any other system charac- 
teristics. In particular, given C and A, one can estimate 
6~ by measuring TA@). 

1 Introduction 

1.1 
The fields of control and system theory on one hand, 
and computational complexity on the other, are not 
generally considered by the researchers of either field 
to be based on similar principles. Recently, some con- 
trol and system theorists have begun a serious study 
of control problems from the computational complex- 
ity point of view, e.g., classifying control problems in 
terms of the complexity class which they belong to [3], 
[9], [ll], [15], [16]. This line of research is concerned 
with determining whether a control problem is for ex- 
ample NP-hard, etc. Such results convey the idea that 
the corresponding system problem, whether it is analy- 
sis or synthesis, is computationally dificult. One major 
issue which we believe has not been considered in this 
direction is the role that the theoretical studies of the 
computational efficiency of algorithms can play in an- 
alyzing systems problems that can be solved eficiently. 
Given a control or system problem that we can solve by 
means of an algorithm in a reasonable time (for exam- 
ple in time which is proportional to a polynomial of the 
dimension of the system), what does the running time 
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of the algorithm disclose about some of the characteris- 
tics of the system under study? In this avenue, suppose 
that one wants to examine the stability properties of a 
certain dynamical system and an algorithm is used for 
this purpose. Thus we use an algorithm which accepts 
as the input, a description of the system (e.g., in terms 
of matrices), and produces as an output uyes” or “no,” 
indicating respectively, whether the system is stable or 
unstable. Suppose furthermore that the time required 
for the tetmination of this algorithm is proportional to 
the dimension of the system and another parameter, 
denoted by [. We would like to show that for certain 
problems in systems and control theory, there exist al- 
gorithms for which the corresponding e can be viewed 
as a certain measure of robustness, e.g., stability mar- 
gin. 

€.2 
The results connecting robustness properties of dynam- 
ical systems and computational efficiency of algorithms 
have very interesting implications in system and con- 
trol theory. It turns out however that these results are 
a particular way of interpreting the related studies in 
the complexity theory in terms of condition measures 
as reported in [13]. The connection can in fact be es- 
tablished at a much deeper level, in a sense that they 
suggest a unifying framework for studying computa- 
tional complexity and robustness. 

The organization of the paper is as follows. In the 
next section we initially consider the Lyapunov equa- 
tion, and demonstrate that the product of the running 
time of a particular interior point method (ipm) and 
a robustness measure for linear systems is a constant 
which depends only on the dimension of the system 
under study. We then turn our attention to the more 
general problem of checking the positive realness of a 
transfer matrix. It is shown that the efficiency of the 
ipm for determining the positive realness of a transfer 
matrix is again related to certain notions of robustness. 
The paper is concluded with a brief after-thought on 
the implications of the results. The results reported in 
the paper are based on a section of the manuscript [SI. 

A few words on the notation. The notation herm(A) 
denotes the hermitian part of the matrix A, i.e., w; 
for two symmetric matrices A and B, A > B (A 2 B) 
indicates that A - B is positive definite (positive semi- 
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definite, respectively). As noted previously, Tjqc, des- 
ignates the running time of the algorithm A which ver- 
ifies the stability properties of the dynamical system 
E. Finally, f ( n )  = O(g(n) )  (f(n) = R(g(n))) indi- 
cates that there exist positive constants c and m such 
that 0 5 f(n) 5 cg(n) (0 5 cg(n)  5 f(n)), for all 
n 2 m, i.e., f(n) grows slower (faster) than g(n) as n 
increases. 

2 Interior Point Methods and 
Stability Analysis 

2.1 
We now begin our study of the relationship between the 
computational efficiency of the interior point methods 
and the stability properties of dynamical systems. We 
initially present this relationship in terms of the stabil- 
ity criterion for linear time invariant systems expressed 
in terms of the Lyapunov equation. This is done mainly 
to establish the conceptual vein which is pursued in 
the paper; we do not suggest that Lyapunov equations 
should be solved via the interior point methods (al- 
though they certainly can be). Nevertheless, the in- 
sight that one obtains from such an analysis, hopefully, 
justifies the presentation of these results. We subse- 
quently continue exploring the relationship between ef- 
ficiency/stability in the framework of the Positive Real 
Lemma. The latter presentation runs parallel to the 
former case of the Lyapunov equation; the conceptual 
implications follow as well, although at a deeper level 
which we shall elaborate on. 

2.2 
As any student of control theory knows, in order to 
establish the stability of the origin for the system C1, 

defined by the matrix A E R"'", 

one can check the feasibility of the following system of 
linear matrix inequalities (LMIs): 

Let us for the moment forget that these matrix inequal- 
ities can somehow be solved via a system of linear equa- 
tions. We approach the problem of finding a feasible 
point of the set defined by (2.2)-(2.3) via the interior 
point methods. This will provide us with an oppor- 
tunity to, rather informally, review the interior point 
methods (ipms), as well as presenting the idea which 
shall be generalized in the subsequent section. The ma- 
terial on the ipms which follow have been presented in 
a more general setting in [lo] and [13]; our presentation 
follows the latter reference. 

In order to find a feasible point of (2.2)-(2.3), one can 
consider instead the following optimization problem, 

.CI : inf t (2.4) 

P>O (2.6) 
t z o  (2.7) 

s.t. A'P + P A  < t(A'P + P A  + I )  (2.5) 

where the matrix P is chosen to be positive definite, 
e.g., P = I .  Note that the feasible set of C2 is a subset 
of SR"'" x R. One might wonder why P is introduced 
in (2.5). The reason is that in doing so, a feasible point 
of C2 is readily available: (Po&) = ( P ,  1). Our task 
is now to initiate the algorithm from ( P ,  1) with the 
objective value of 1, and try to somehow reduce the 
objective value to zero (which would be the case if and 
only if E1 is stable), without leaving the feasible region 
of C2. This is exactly what an interior point method 
does (more specifically, we have in mind the barrier 
method). 

Few comments, and a reformulation of C2 precedes our 
description of the barrier method. Suppose that we 
were to solve the following optimization problem: 

CB : inf t (2.8) 
s. t .  A'P+PA < t I  (2.9) 

P>O (2.10) 
IlPll < 1 (2.11) 
- l < t < 2  (2.12) 

Let tlnf and tsup denote the value of the infimum and 
the supremum o i  the objective functional on the re- 
spective region (e.g., tinf = 0 in ,& if E1 is stable). 
The value of tlnf in C3 clearly is a measure of relative 
stability; intuitively, the more negative one can choose 
t ,  the more "stable" C1 is. The lower bound for t and 
the norm constraint on P are chosen for normalization 
purposes; otherwise the problem would be unbounded, 
if feasible. The choice of the upper bound for t would 
be justifies shortly. 

It is not clear however how to "pick" a feasible point 
for C3 to initiate the algorithm from. We thus consider 
instead a combination of C2 and C3: 

C: inf t (2.13) 
A'P + P A  < t(A'P + P A  + I )  (2.14) 
P>O (2.15) 
IlPll < 1 (2.16) 
- l < t < 2  (2.17) 

with P > 0 and llpll < 1. The initial point ( P ,  1) is now 
readily available as an initial point. Again, the value of 
tlnf for C somehow conveys information regarding the 
relative stability of C1, an observation which shall be 
made more precise shortly. 

s. t .  
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Let us denote the feasible region of L by FL. Note 
that 3~ s SR;Xn x R and that it is an open and con- 
vex set. It turns out that associated with the set FL, 
there is a functional b : interior FL -i R, which acts 
as a “self-concordant barrier.” The term “self concor- 
dant” refers to certain properties of the gradient and 
the Hessian of the functional b evaluated at  points in 
FL; for the purpose of our presentation, we shall by- 
pass the exact definition and refer the interested reader 
to the references given above for the ipm theory. 

There are two important points however that need 
to be mentioned regarding the functional b. First, 
if {Ck}kll E FL is a sequence that approaches the 
boundary of Fc, b ( x k )  + 00 as k -i 00. Second, 
there is a parameter K associated with b which de- 
termines the computational efficiency of the interior 
point method for minimizing (or maximizing) a linear 
functional over 3 ~ ,  the so-called self-concordant pa- 
rameter. For brevity, we shall simply write down the 
self-concordant barrier for 3~ and its associated self- 
concordant parameter Ii. Subsequently, we provide a 
description of the algorithm for solving L using b, and 
its efficiency in terms of the self-concordant parameter 
of b. 

Let b : FL -i R be defined as: 

b(P,t) = -12logdetP 
-12logdet(-A’P - P A  + t(A’P + P A  + I ) )  

-1210g(l - [IPIlZ) - 12log(t + 1) - 1210g(2 - t )  

Note that indeed when (pk,tk) -i boundary of FL, 
b( P,, tk) -i 00. The associated self-concordant param- 
eter for the functional b turns out to be, 

I< := d12n + 12n + 48 = O(fi) (2.18) 

We are now ready to describe the interior point method 
for solving L. Starting from the initial point (Po, t o )  = 
( P ,  l), and parameter p = po, 

1. Let k = 0. 
2. Solve the unconstraint optimization problem 

m i n @ ( P k , t k t P k )  

where @(Pk,tk,pk) := p k t  + b(pk,tk). 
1 

6 Ii 3. Let pk+l = (1 + -)pk. 
4. Go to 1. 

Of course, Step 2 cannot be solved exactly; a lot of re- 
search has been devoted to come up with a stopping 
criterion for this step which is sufficient for proving 
nice theoretical efficiency of the complete algorithm. 
One such criterion, rather interestingly, is to take “one” 

‘In fact due to the result of Nesterov and Nemirovskii [lo] 
every open convex domain in R” has such a functional associated 
with it. 

Newton step, starting with a “nice” initiai point, and 
then increase p k  (the so-called short step method). In- 
tuitively, as k + 00, p k  + CO, and the sequence of 
minimal values of @( P k ,  t k  , p k )  will approach tinf. 

The resulting complexity bound below is the upshot of 
the interior point approach. 

Theorem 2.1 ([13]) For solving L, starting with 
( F ,  1) using 

(2.19) 

iterations, the above barrier method computes ( P * ,  t*), 
where P *  E FL and t* is known to satisfy 

1 
O(K log(K + -)) 

E 

(2.20) 

i.e., after O(Ii  log(Ii+ a) ) ,  an €-optimal point is found 
by the barrier method. 

Theorem 2.1 has few implications, one of which is the 
following: If tinf < a < tsup, after 

iterations, for which the last pair is (P, t) ,  is guaranteed 
to satisfy P E 3~ and t = a. 

Consider solving L by the interior point method de- 
scribed above. To check the stability of & it is neces- 
sary and sufficient to stop the algorithm after the i-th 
iteration, when ti = 0. According to (2) this is guar- 
anteed after 

i.e., Q~ is the termination time of the barrier method 
for checking the stability of C1. In view of the results 
reported in [13], we proceed to show that, 

the product of m, and a particular robust- 
ness measure is a constant which depends 
only on the dimension of C l ,  n. 

Let P = :I and start the interior point method de- 
scribed earlier from ( p ,  l ) .  Thus tsup > l and trivially 
tsup < 2. Note that tinf 5 0, since if tinf > 0 and the 
pair (tinf,P*) is the solution to C, then for 0 < 6 < 1, 

cP*) is also a solution to L, which is a contradic- 
tion. 

Referring to (2.23), we observe that 7c1 is essentially a 
function of K which is itself a function of n only, and 
a combination of tsup and tinf. As Renegar observed in 
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[13], tsup and tinf convey information about a particu- 
lar condition number or the distance to ill-posedness. 
Translated in terms of the concepts in stability analy- 
sis, this parameter is in fact a “robustness” measure, 
as we proceed to show below. 

Let a := infa f$ such that A + A is not Hurwitz. 
Define 

1 
:= - 

logjf i+ d)  (2.23) 

Since -1 < t inf 5 0, for small E > 0, 

A’P + P A  < (t inf - E)(A’P + PA + I )  (2.24) 
P > 0 (2.25) 

IlPll < 1 (2.26) 

is inconsistent. Thus, 

(2.29) 

(2.30) 

fact that the interior point methods (ipms) can in prin- 
ciple be applied to all convex optimization problems. 
In this section we shall provide another example which 
reinforces our belief that the conceptual framework 
developed in the previous subsection has far reach- 
ing consequences, this time in the context of check- 
ing the positive realness of a transfer matrix. In this 
avenue, we first state the (generalized) Positive Real 
(GPR) Lemma, as well as its consequences in studying 
the absolute stability problem. Then two robustness 
measures for the positive real systems are discussed, 
one of which corresponds to the notion of gain mar- 
gin. Having discussed the GPR Lemma and its appli- 
cations in stability analysis, an exact analogue of the 
interior point method and its computational efficiency 
presented of Section 2.2 are discussed for the LMI aris- 
ing from the GPR Lemma. In particular, it is shown 
that the product of the running time of the ipm and 
a certain robustness measure for GPR systems, is a 
constant which depends only on the dimension of the 
underlying system. 

Consider the linear time invariant system Ea: 

c:! : X = A x + B u  (2.32) 
y = C z +  D u  (2.33) 

such that the quadruple (A, B ,  C,  D )  is the minimal 
realization of the transfer matrix since tinf 5 0. The first inequality above is the result 

of two propositions reported in [13]. 

Since 0 5 -tinf 5 tsup 5 2, H ( s )  = C(sI  - A)- lB  + D 

in which case we write H - (A ,  B ,  C,  D) .  We shall 
m1 = O(IClog(K+ -)) assume that the pairs ( A , B )  and ( A , C )  are respec- 

tively, controllable and observable. The matrix A is 
also assumed to be Hurwitz. For further reference let 
A E Rnxn,  B E RnXm, C E Rmxn and D E RmXn and 
without loss of generality assume that m < n. Given 
an initial condition xo  and a control function 7 which 
maps y to U ,  the equations (2.33)-(2.34) define a tra- 
jectory for the feedback system Ea. 

3 
-tinf 
1 = O(Klog(K + --)) 

Thereby we have established the following theorem. 

Theorem 2.2 

m*6& = O ( K )  = O( f i  (2.31) 

Theorem 2.2 constitutes a natural, but very interest- 
ing relationship between robustness properties of C1 
and the efficiency of ipms for determining whether C1 
is stable. More specifically, given that (2.32) holds, 
fixing n and using the ipm for the solution of the Lya- 
punov equation, certain information pertaining to the 
relative stability of the corresponding system is some- 
how revealed! This observation has consequences which 
go far beyond the stability analysis of C1. 

2.3 

Given that H N ( A ,  B ,  C,  D) and assuming that A is 
Hurwitz, the transfer matrix H is called (generalized) 
strongly positive real (GSPR) if there exists E > 0 such 
that 

H ( j w )  + H’( jw)  > € I  vw 

where H * ( j w )  denotes the conjugate transpose of the 
transfer matrix H ( j w ) .  The (generalized) Positive Real 
(GPR) Lemma states that H ( s )  is GSPR and stable if 
and only if the following system of linear matrix in- 
equalities is feasible [l], [14], 

Complexity analysis in terms of ”condition measures” 
has interesting implications for problems considered in 
system and control theory. This is in part due to the 

P > 0 (2.35) 

Let us define two robustness measures for a GSPR sys- 
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tem. Denote by E := (' ; : ). Now let, the products of the running time of the bar- 
rier method (with suitably chosen initial 
points) and the robustness measures d b  
and "6, are constants which depend only 
on the dimension of C2. 

a := i;f I lAl l / l l~l l  (2.36) 

such that there does not exist a matrix P that satisfies 
the following set of linear matrix inequalities, 

Theorem 2.3 Given the system Cz, there is an algo- 
rithm A such that for  the robustness measures d b  and 

d,k2Td(ca] = cl 

ham{(: _ O I ) ( E + A ) } < O  

P > O  

(2.37) 
(2.38) dh2  

and let and 
1 6~2r..4~c2) = c2 

(2*39) for some constants c1 and c2 which depend only on n+ 
a i a  := 1/ log(./;1Tm + ;) 

m. 
The quantity S i 2  is a measure of the relative perturba- 
tion that a stable GSPR system C2 can tolerate, and 
remain stable and GSPR. The perturbation A, can for 
example be the result of the uncertainty in the model- 
ing of the plant, or due to the finite accuracy of the 
computer arithmetic (which for example, is used to 
check the GSPR property of the system). 

Our next robustness measure is defined to be 

Proof: w e  COnSider the Problem of verifying whether 
a transfer matrix is GSPR using the barrier method 
discussed in the previous section. For this purpose, 
we apply the method to Solve the System Of matrix 
inequalities (2.35)-( 2.36). 

In complete analogy with the application of ipms for 
solving the Lyapunov equation, in order to find a feasi- 
ble point of the inequalities (2.35)-(2.36), we apply the d& := 1 /  log(JG-E + -) 1 (2.40) 

P barrier method to solve, 

where ,fl is defined by the following optimization prob- t = O  
lem: 

P > 0 (2.43) - l < t < 2  

l l p l l  < (2.44) 
2 0 (2.45) 

Let us provide a motivation for introducing &&. Con- 
sider the feedback system consisting of Cp in the for- 
ward path, and a nonlinear time invariant control func- 
tion 'I in the feedback path, i.e., U = -q (y ) .  As- 
sume furthermore that q belongs to the sector [O, l /k] ,  
for some real positive number k, i.e., 0 5 d ~ ( y )  5 
kl[q(y)l12, for all y E R". The quantity S& is essen- 
tially a measure of the maximal sector which 1 can b e  

Note that (31,l) is a feasible point for the set defined 
by the last four inequalities above. 

By replacing A with E in the analysis presented in Sec- 
tion 2.2 and repeating the exact sequence of arguments, 
we conclude that the number of iterations needed to 
obtain a feasible point of the set defined by the above 
equality and inequalities, and consequently to check the 
GSpR property of C2 is, 

O(K log(2 + K + l / a ) )  

where K = d-. In view of the definition of 6&, 
it follows that 

long to, such that the close loop system is guaranteed 
to be absolutely stable via the GPR Lemma. 

The two robustness measures for a GPR systems just 
introduced are related in an interesting way to the com- 
Putatzonal e&iencY of the barrier method (when aP- 
plied to solve the system of LMIs resulting from the 
GPR Lemma). The relationship is of the following 
form: 

qpm(ca)6L = '1 
where c1 is a constant which depends only on the di- 
mension of the system (through the variable K ) .  

Interestingly, by an appropriate choice of the initial 
point for the barrier method, its running time can be 
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made to be inversely proportional to the robustness 
measure S& [8]. 0 

3 Concluding Remarks 

The main purpose of the paper is to point out a very 
close relationship between stability analysis of dynami- 
cal systems on one hand, and the theoretical studies on 
the efficiency of certain numerical algorithms. In par- 
ticular, we have demonstrated that for very important 
stability problems, the efficiency of the interior point 
methods, can convey certain information about the rel- 
ative stability of the corresponding systems. These re- 
sults are due to the existence of a self-concordant bar- 
rier for the cone of positive semi-definite matrices, with 
a self-concordant parameter which depends only on the 
dimension of the space for which the problem is formu- 
lated in. This phenomena can in principle be used to 
give an algorithmic definition of the relative stability 
of a dynamical system. 
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