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Abstract 
We discuss an approach for solving the Bilinear Ma- 
trix Inequality (BMI) based on its connections with 
certain problems defined over matrix cones. These 
problems are, among others, the cone generalization 
of the linear programming (LP) and the linear com- 
plementarity problem (LCP) (referred to as the Cone- 
LP and the Cone-LCP, respectively). Specifically, we 
show that solving a given BMI is equivalent to exam- 
ining the solution set of a suitably constructed Cone- 
LP or Cone-LCP. This approach facilitates our un- 
derstanding of the geometry of the BMI and opens 
up new avenues for the development of the computa- 
tional procedures for its solution. 

1. Introduction 
The Bilinear Matrix Inequality (BMI) is considered 
to be an important problem in the field of robust con- 
trol. The BMI feasibility problem is as follows: Given 
symmetric matrices Hij E RpxP (i = 1 , . . . ,  n ; j  = 
1,.  . .m), does there exist 2 E R" and y E Rm, such 
that Cy=l x;yj Hij is positive definite. As it 
was shown by Safonov et al. [13] it is possible to re- 
duce a wide array of control synthesis problems such 
as the fixed-order H"" control, p/k,-synthesis, de- 
centralized control, robust gain-scheduling, and si- 
multaneous stabilization to a BMI. It is also known 
that the Linear Matrix Inequality (LMI) approach to 
control synthesis [2] is a special case of the BMI. Since 
the LMI is equivalent to the Semi-Definite Program- 
ming problem (SDP), the BMI can also be considered 
as a generalization of the SDP. It is therefore not sur- 
prising that the solution to the BMI is not only of 
central importance in the context of robust control 
[14], but also in its connections with the SDPs and 
the LMIs. 

The BMI can be reformulated as a nonconuez pro- 
gramming problem. More specifically, Safonov and 
Papavassilopoulos [14] have shown that the BMI fea- 
sibility problem is equivalent to checking whether the 
diameter of a certain convex set is greater than two. 

Since this is equivalent to a maximization of a con- 
vex function subjected to a set of convex constraints 
(an NP-hard problem), no efficient algorithm is be- 
lieved to exist for a general BMI. Moreover, Toker and 
Ozbay have recently shown that the BMI feasibility 
is an NP-hard problem by reducing the Subset-Sum 
problem to it [16]. 

The computational procedures which have been sug- 
gested for solving the BMI rely on a global opti- 
mization approach [4]. There are at least three is- 
sues which have to be addressed in connection with 
the BMI and the global optimization methods: (1) 
What are the geometric interpretations of the BMI? 
(2) What are the specific properties of the global op- 
timization problem which arises from the BMI, and 
whether these properties can be used to devise more 
efficient algorithms for the BMI? (3) Which instances 
of the BMI can be solved efficiently? Moreover, whether 
there are instances for which certain "structural" prop- 
erties can be established, for example, the convexity 
of the solution set? 

All of the above issues can be addressed by study- 
ing the BMI on its own. Nevertheless, we believe 
that many important structural and computational 
issues of the BMI can be studied by establishing a 
connection between the BMI and the problems which 
are more well-understood in the optimization theory. 
In this paper, we shall explore the connections be- 
tween the BMI and two important problems in opti- 
mization: the linear programming problem (LP) and 
the linear complementarity problem (LCP) [3] defined 
over matrix cones (referred to as the Cone-LP and the 
Cone-LCP, respectively). 

An intermediate step in adopting a Cone-LP and a 
Cone-LCP approach for solving the BMI, is, the in- 
troduction of a problem which we shall refer to as 
the Extreme Form Problem (EFP). Formulated in 
the n-dimensional Euclidean space R", and denot- 
ing the nonnegative orthant by Ry, the EFP has the 
following formulation: Given M : R" -+ R", find 
z E R" (if it exists), such that, z 2 0, M z  > 0, and 
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z is an extreme form of JR; (an extreme form, or an 
extreme ray, of a cone is a face of the cone which 
is a half-line emanating from the origin [6] ,  [12]). 
The above instance of the EFP is referred to as the 
EFPR?(M). The EFP, as we just defined, is not an 
interesting problem. In fact, the EFPK;(M) has a so- 
lution if and only if M has a positive column. On the 
other hand, the EFP becomes non-trivial when RT is 
replaced by an arbitrary cone. We have used the cone 
generalization of the EFP as an intermediate step in 
the Cone-LP/LCP approach for solving the BMI. It 
can be argued that computational procedures could 
be developed for the EFP directly, without formulat- 
ing it as a Cone-LP or a Cone-LCP. We have chosen 
this approach, since at the present time, the Cone- 
LP and the Cone-LCP seem to be more amenable for 
the application of the interior point methods than the 
EFP. It is still an open question whether an interior 
point method can be adapted for solving the EFPs 
directly. 

The organization of the paper is as follows. In Pre- 
liminaries we present some basic definitions, certain 
matrix cones, as well as the precise formulation of the 
Cone-LP, the Cone-LCP, and the EFP. In the same 
section a glossary of notations that are used in this 
paper is provided. In Section 3, the “cone” formula- 
tions of the BMI are presented. We also discuss cer- 
tain computational implications of these reductions. 
The proofs of the results are omitted for brevity and 
they can be found in the journal version of the pa- 
per [IO]. 

2. Preliminaries 
In this section we define the Cone-LP, the Cone-LCP, 
and introduce the Extreme Form Problem (EFP) over 
arbitrary cones. We also mention certain matrix classes, 
which when generalized appropriately, will make the 
transformation of the BMI to the EFP and the Cone- 
LP/LCP more explicit. 

Prior to defining the Cone-LP, the Cone-LCP, and 
the EFP, few basic definitions are in order. The def- 
initions include those of a cone, the dual cone of a 
set, and the notion of positivity and copositivity of a 
linear map with respect to a given cone. We shall re- 
strict ourselves to the finite dimensional vector spaces 
in all subsequent sections. 

Let 31 be a finite dimensional Hilbert space equipped 
with the inner product < ., . >: 31 x 31 4 W (e.g., 
the n-dimensional Euclidean space or the space of 
n x n matrices, with the appropriate notion of an 
inner product defined on them). A set K C_ 31 is a 

cone if for all a 2 0, aK C_ IC. IC is a convex cone, 
if is a cone and it is convex, i.e., for all a E [0,1], 
ax: + (1 - a)K 5 K ,  or equivalently, if K is a cone 
and K + X: C IC. An extreme form (or an extreme 
ray) of a convex cone K is a subset E = {ax : a 2 0) 
of K ,  such that if x = ay + (1 - a)%, for 0 < a < 1, 
and y, z E K ,  one can conclude that y, z E E [6]. The 
dual cone of a set S E 31, denoted by S* , is defined 
to be, 

S* = {y E 31 :<x,y>L 0; Qx E S }  

It can easily be shown that S* is always a convex 
set, and that if SI C Sz, then S,* C Si. In addi- 
tion, S = (S*)*, if and only if S is a closed convex 
cone. For more on convexity, cones and their duals, 
the reader is referred to Berman [l], Rockafellar [12], 
and Stoer and Witzgall [15]. 

In Section 3, we shall be referring to two properties of 
a linear map that we now define. Given a convex cone 
K C 31, a linear map M : 31 -+ 31 is call K-positive 
if for all 0 # X E IC, M ( X )  E int IC*. Furthermore, 
a linear map M : 31 -+ 31 is called K-copositive if 
< X ,  M ( X )  >2 0, for all X E K [l], [5], [SI. 

We are now ready to formulate the cone problems 
that are dealt with in the paper. Given a cone K C 31, 
a linear map M : 31 + 31, and the elements Q and C 
in 31, find 2 E 31 (if it exists) as a solution to: 

min < C, Z > 
Z E K  

Q + M(2)  E IC* 

Similarly, the Cone-LCP is formulated as follows: Given 
a cone X: 
find 2 E 31 (if it exists) such that: 

3c, a linear map M : 31 + 31, and Q E 31, 

Z € I C  (2-4) 
(2.5) 
(2.6) 

Q + M ( Z )  6 K* 
< 2, Q + M ( 2 )  >= 0 

The above instances of the Cone-LP and the Cone- 
LCP shall be referred to as the Cone-LPK(C, Q, M )  
and Cone-LCPn(Q, M) ,  respectively. When IC is the 
nonnegative orthant in the n-dimensional Euclidean 
space, the Cone-LPx((C, Q, M )  (2.1)-(2.3) and the 
Cone-LCPK(Q, M) (2.4)-(2.6), are equivalent to the 
familiar LP and the LCP. We shall also find it con- 
venient to refer to the problem of finding a feasible 
element in the Cone-LP, i.e., an element that satisfies 
(2.2)-(2.3), as a Cone-LPK(*, Q, M).  

A problem which serves as a bridge between the BMI 
and the Cone-LP/LCPs is what we have referred to 
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as the Extreme Form Problem (EFP): Given a cone 
IC C 31, a linear map A4 : 31 -+ 31, find X E 3c (if it 
exists), such that, 

X € K  (2.7) 
M ( X )  E int IC* (2.8) 

(2-9) X is an extreme form of IC 

where the “int IC” denotes the interior of the cone IC. 
The above instance of the EFP is referred to as the 
EFPx(M). As we mentioned in Introduction, when 
IC is the nonnegative orthant in the n-dimensional Eu- 
clidean space, the EFP is a trivial problem. It should 
be noted that the solution set of EFPK(M) is non- 
convex in general; given the two extreme forms of IC 
that solve the EFPn ( M ) ,  a strict convex combination 
of them is not even an extreme form of IC. 

A few words on the notation before we present the 
cone formulations of the BMI. A’ and diag(y) denote 
the transpose of the matrix A and the diagonal ma- 
trix with vector y on its diagonal, respectively. We 
denote by SP+” and S@+y, the real, symmetricpxp 
positive semi-definite and positive definite matrices. 
To indicate that A - B is symmetric positive definite, 
or positive semi-definite, we use the notations A >- B,  
or A B (we shall mainly reserve these notations for 
the p x p matrices, p being the dimension of the ma- 
trices Hij’s in the BMI problem). The inner product 
for the space of matrices is denoted by “e”, i.e., A o B  
= Trace AB‘; vec M is the vector obtained by stack- 
ing up the columns of the matrix M .  Finally, int A 
stands for the interior of the set A.  

3. Cone Formulations of the BMI 
In this section we discuss the formulation of the BMI 
feasibility problem as a Cone-LP over a suitable gen- 
eralization of the cone of completely positive matrices 
(to be defined below), and subsequently, as a Cone- 
LCP over the cone of positive semi-definite matrices. 
This is done by first reducing the BMI to an EFP, and 
subsequently reducing the EFP to a Cone-LPILCP. 
As it becomes evident, various embeddings of matri- 
ces in different dimensions are needed to make these 
reductions as transparent as possible. For this pur- 
pose the vec notation, which is used in the studying 
of Kronecker products, has become specially handy. 
The vec operator, applied to a matrix in RPxP, sim- 
ply stacks up the columns of the matrix from left to 
right, and forms a vector in IWP’ [7]. 

Few Initial Steps 
Consider again the BMI feasibility problem: Given 
Hij = Hlj E SIRpxp (the symmetric p x p matrices 

with real entries), does there exist zi’s (1 _< i 5 n), 
and yj’s (1 5 j 5 m),  such that: 

XCiyjHij >. 0 (3.1) 
i j  

Let us rewrite (3.1) as: 

C ~ i C y j H i j  = C Z ~ H ~  + 0 (3.2) 
i j  t 

where, 
Hi” = yj Hij E SIRpxp 

j 

As it becomes apparent by the subsequent develop- 
ments, it is convenient to assume, without loss of gen- 
erality, that m = p and that yj’s (1 5 j 5 m), are 
nonnegative. The first assumption is made to avoid 
defining inner products between matrix classes of dif- 
ferent dimensions. The second assumption is made to 
facilitate the dual cone characterization in the EFP 
and Cone-LP approaches discussed in Section 3 (we 
shall later drop the nonnegativity assumption on the 
vector y when the Cone-LCP is presented). 

We now employ the following generalization of the 
Gordan theorem of alternative [3], [15] for the cone 
of positive semi-definite matrices. 

Proposition 3.1 Given x E Rn and the symmet- 
ric matrices Ais E SIRpxp (1 _< i 5 n), the system 
Er=, xiHi + 0 ,  has a solution if and only if the sys- 
tem Ai02 = 0, Z >- 0, Z # 0, has no solution. 

From Proposition 3.1, one concludes that the BMI 
(3.1) does not have a solution if and only if, 

(Vy >_ 0 )  (32 4 0 ,  z # 0) : HYO 2 = 0 

C ( H : o 2 ) 2  > 0 

(3.3) 

Therefore, the BMI (3.1) has a solution if and only if, 

(3y 3 0) (VZ >. 0,z # 0) : 
i 

(3.4) 
Now let, 

P - 
Hi = ( G Z f ; i T 6 , 0  vec Hi2 . . . 0, . . . , GT?:GJ 

(3.5) 
and Y=diag(y) E SRpxp.  Since (Hi”)’ = Hi” = cj yjHij ,  

vec Hf’ = Hi vec Y 

Thereby, 
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Combining (3.4) and (3.6) we conclude that (3.1) 
has a solution if and only if there exists Y >- 0, 
Y=diag(y), for some y 2 0, such that for all 2 >- 
O I ~ # O ,  

(vec 2)' {E Hj(vec Y)(vec Y) 'H, ' )  (vec Z)  > o 
i 

(3.7) 
Let X = (vec Y)(vec Y)' and, 

R e m a r k  3.2 Suppose that the vector y is not re- 
quired to be nonnegative in the above analysis. I t  
is clear that the above steps are still valid with the 
obvious modifications, and that the end result would 
read as follows: The BMI has a solution if and only 
if there exists a diagonal matrix Y ,  such that for all 
Z t 0,Z  # 0 ,  the inequality (3.7) holds. 

The inequality (3.7) can be interpreted as requiring 
M ( X )  to belong to a certain matrix class. The ma- 
trices in this class are symmetric (given that X is 
symmetric) and have quadratic forms which are pos- 
itive over the vec form of the non-zero matrices in 

This observation justifies the introduction of 
the matrix classes which we shall now discuss. In 
what follows it is assu'med that all the matrix classes 
are subsets of SRp2xp . 

Let PSD denote the class of symmetric p2 x p2 ma- 
trices with quadratic forms nonnegative over the vec 
form of the symmetric p x p matrices, i.e., 

FSV = { A  E ~ ~ p ~ ~ p ~  : (vec z)' A (vec Z) 2 0; 
z E SI?FXP} ' (3.9) 

Let C denote the class of symmetric PSD-copositive 
matrices, i.e., 

c = { A  E SIP' ' p a  : (vec 2)' A (vec Z)  2 0; z 2 01 
(3.10) 

Finally, let B denote the class of symmetric PSD- 
completely positive matrices, 

t 

B = {A E S I E B ~ ' ~ ~ '  : A = C ( v e c  zj)(vec Zj)'; 
i = l  

zi >- o,t2 1) (3.11) 

We now summerize few facts regarding the above 
classes of matrices. The matrix classes PSV, C and 
B are closed convex cones. For all rank t matrices 
A E PSD, there are non-zero symmetric matrices 
W; E SRpxp(l 5 i 5 t ) ,  such that, 
A = x:=l(vec Wi)(vec W;)', Wj. Wj = 0, (i # j ) .  
Moreover, any matrix which can be represented as 

such is a QSD matrix. Also, PSV* = QSD, a* = c, 
C* = B, and the extreme forms of PSD and B are 
matrices (vec W)(vec W)' ,  W E SEXpxp, and 
(vec Z)(vec Z)', Z t 0, respectively [lo]. 

The EFP formulat ion of the BMI 
We now use the previously mentioned results to refor- 
mulate the BMI as the EFPB(M), where M is defined 
by (3.8), and B is the cone of PSD-completely pos- 
itive matrices. The next proposition states that in 
fact, the BMI is a special instance of the EFP. 

Proposition 3.3 Let B be the class of PSD-completely 
positive matrices (5'.11), and the linear map M be de- 
fined by (3.8). Then the BMI has a solution if and 
only if the EFPB(M)  has a solution. Moreover, the 
solution of one yields the solution of the other. 

Quite analogous to the proof of Proposition 3.3, it 
can be shown that if the nonnegativity assumption 
on the vector y is dropped, the BMI is also equiva- 
lent to finding a extreme form X of the PSV cone 
(3.9), such that M ( X )  E intB* E C. We shall use 
this version of Proposition 3.3 when we later present 
the Cone-LCP approach. 

The implication of Proposition 3.3 is that the BMI 
is equivalent to checking whether the image of an ex- 
treme form of the matrix cone B under the linear 
map M (which is constructed from the original data 
of the BMI) is in the interior of the dual cone B*. 
This equivalence thus provides a rather simple geo- 
metric interpretation of the BMI feasibility problem. 

An immediate consequence of the EFP formulation 
is the following characterization of the BMI instances 
for which a solution exists. 

Proposition 3.4 The BMI has a solution i f  the lin- 
ear map M (3.8) is B-positive (see Section 2 for  the 
definition of the positivity of a linear map). 

The Cone-LP formulation of the BMI 
In this subsection we shall explore an approach for 
solving the BMI based on its connection with the 
Cone-LP over. the cone of PSD-completely positive 
matrices, L?. For this purpose we use the EFP formu- 
lation of the BMI, as discussed previously. In partic- 
ular, in light of Proposition 3.3, we shall think of the 
BMI as the EFPs(M), where M is defined by (3.8). 

Since the Cone-LP approach for the EFPB(M) is rather 
straight forward, we begin our discussion with the 
main result. Let S(a) = {X E B : -aI + M ( X )  E 
B'} and b denote the extreme forms of B.  

Theorem 3.5 The EFPa(M) (BMI) has a solution 
if and only i f  for any a > 0 ,  S (a)  n B # 0. 
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the BMI discussed previously is again the main tool 
for making the Cone-LCP approach possible. 

Figure 1; BMI has a solution if and only if 
S(Q) n B # 0 

The implication of Theorem 3.5 is the following: Given 
any a > 0, check whether S(Q) contains an extreme 
form of the cone B, which in fact, has to be of rank 
one. This is the case if and only if the BMI has a 
solution. Geometrically, one can “attempt” to illus- 
trate this implication as in Figure 1. 

Initial observations indicate that checking whether a 
“matrix polyhedron” over the cone of positive semi- 
definite matrices, contains a rank one element can be 
done efficiently for certain classes of linear maps [9]. 
On the other hand, the above Cone-LP approach calls 
for checking for the rank one element in a “matrix 
polyhedron” over the matrix cone 13. However, it is 
known that checking whether a matrix belongs to the 
cone of copositive matrices (for which B* 3 C is a gen- 
eralization of) is a difficult computational task [ll]. 
Consequently, although the preceeding Cone-LP a p  
proach provides us with a way of understanding the 
geometry of the BMI, its computational realization 
runs into difficulty. 

The above considerations have led us to adopt yet 
another approach for solving the BMI. The approach 
relies on establishing a connection between the BMI 
and a linear complementarity problem over the PSP 
cone (3.9). The main advantage of the complementar- 
ity approach is that one can formulate the resulting 
problem over a matrix cone for which an interior point 
algorithm can be developed. The complementarity 
approach also provides us with a way of addressing 
certain structural issues. This approach is examined 
next. 

The Cone-LCP formulation of the BMI 
In this subsection we explore the idea of viewing the 
BMI as a certain linear complementarity problem over 
a matrix cone (Cone-LCP). The EFP formulation of 

Let us denote by p = p ( p  + 1)/2 the dimension of the 
space of symmetric p x p matrices. 

The starting point for the Cone-LCP approach is the 
observation made right after Proposition 3.3: the BMI 
has a solution if and only if the image of an extreme 
form of the matrix cone PSV under the linear map 
M, is in the interior of C. The following lemma is 
employed to transform the above condition in terms 
of the solution set of a Cone-LCP. 

Lemma 3.6 Let Y be an extreme form of the cone 
PSV. Then there exists a symmetric W E PSV, 
such that Yo W = 0 and rank ( W )  = p - 1. 

Consider the Cone-LCPpsv (Q ,  M )  and let M be de- 
fined by the equation (3.8): Find X E SRppaxp2 (if it 
exists) such that: 

x E PSP (3.12) 
(3.13) 
(3.14) 

Q + M ( X )  E PSV* 3 PSV 
X* ( Q  + M ( X ) )  = 0 

The main result of this section now follows. 

Theorem 3.7 The BMI has a solution if and only 
if there exists a matrix Q E int (-e), such that the 
Cone-LCPpSD(Q,M) has a solution X * ,  and rank 
(Q + M ( X * ) )  = @ - 1. Moreover, i f  for all solutions 
X* ofthe EFPB(M),  X** M ( X * )  < Y e  IM(X*), for 
all extreme forms Y of B (Y # X”), then the matrix 
Q can be taken to be any positive multiple of -I .  

We shall refer to the special case of the linear com- 
plementarity problem over the positive semi-definite 
cone as the Semi-Definite Complementarity Problem 
(SDCP) . 

It is noteworthy that the linear map M in the SDCP 
formdation, which arises in the context of the BMI, is 
itself copositive with respect to the matrix cone PSP. 
Therefore, if one assumes that the copositive SDCPs 
can be solved efficiently, then the above proposition 
implies that the SDCPs which arise from the BMIs 
can be solved efficiently for each Q. 

If the BMI has a solution, then knowledge of the di- 
rection of Q in the corresponding Cone-LCPpsD (Q, M )  
is sufficient for finding the solution of the BMI. In 
other words, if this direction is known, the solution 
set of a single SDCP should be examined. This result 
is established by the following corollary. 
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Corollary 3.8 The BMI has a solution if and only if 
there exists a symmetric Q E int (-e), such that for 
any Q > 0 ,  the Cone-LCPpsv(aQ, M )  has a solution 
X*, such that rank (Q  -k M ( X * ) )  = p - 1. 

Corollary 3.8 reduces the BMI to examining the so- 
lution set of a SDCP with a PSD-copositive linear 
map. 

4. Conclusion 
In this paper, we have established various connections 
between the Bilinear Matrix Inequality (BMI) and 
three problems over matrix cones. The first two prob- 
lems, which we have referred to as the Extreme Form 
Problem (EFP) and the linear programming problem 
over matrix cones (Cone-LP), were formulated over 
a generalization of the cone of completely positive 
matrices. The above two cone problems facilitate our 
understanding of the geometry of the BMI. Neverthe- 
less, the computational implications of these formula- 
tions run into difficulty, since the completely positive 
matrices can not be efficiently characterized by means 
of an algorithm. The last cone problem which we have 
established its connection with the BMI is the linear 
complementarity problem over the cone of positive 
semi-definite matrices (SDCP). The SDCP is readily 
amenable to an interior point approach. In this later 
case, the existence of the solution to a BMI is checked 
by examining the solution set of an SDCP. The ac- 
tual solution to the BMI can then be constructed by 
solving a linear matrix inequality (LMI) which can be 
done via an interior point algorithm. 
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