
TP4 - 350
Algorithms for Globally Solving D.C. Minimization Problems

via Concave Programming *

Shih-Mim Liu and G. P. Papavassilopoulos
Dept of Electrical Engineering - Systems, University of Southern California

Los Angeles, CA 90089-2563
Email : shihmiml@bode. usc. edu, yorgos8nyquist. usc. edu

Abstract. Several methods have been proposed for
solving a d.c. programming problem, but very few
have been done on parallel approach. In this paper,
three algorithms suitable for parallel implementation
are presented to solve a d.c. problem via solving an
equivalent concave minimization problem. To dis-
tribute the computation load as evenly as possible,
a simplex subdivision process such as bisection, tri-
angulation or other partition procedures of simplices
(cf. [7]) will be employed. Some numerical test results
are reported and comparison of these algorithms are
given.

1. Introduction
Consider a d.c. (difference of two convex functions) global opti-
mization problem

minimize (I(*) - g(z))
subject to: x ED

where D = (x E Rn : hi(x) < 0, (i = 1,. . . ,m)}, hi, j, and g
are finite convex functions on R". Assume that D is compact and
nonempty, then problem (DC) has a global solution.

In the literature, d.c. problems play an important role in
nonconvex programming problems either from a practical or a the-
oretical viewpoint cf. [7]). Indeed, d.c. problems are encoun-
tered frequently in B ngineering and several methods had been pro-
posed to solve the class of d.c. problems (cf. [7][6]). However,
only a few approaches were issued in numerical test. Although
some of them might be efficient, in particular,. problem with a spe-
cial structure such as separability of the objective function or a
quadratic objective function (e.g. [13], [7] and references therein),
very few have been done in parallel. Essentially, these proposed
algorithms mainly use three different types of transformation of
problem (DC), i.e. (1) the equivalent concave minimization prob-
lem, (2) an equivalent convex minimization problem subject to an
additional reverse convex constraint, (3) canonical d.c: problem
(cf. [71[31~121[81[141[11 [GI)

The purpose of our paper is to propose three algorithms fitting
for parallel implementation to solve the problem (DC) via solving
an equivalent concave minimization problem. The first approach
(Algorithm l) , which is similar to Hoffman algorithm [2], is an outer
approximation method using cutting plane. Although finding the
newly generated vertices is computationally expensive, the numeri-
cal experiments of the serial al orithm indicate that it is much more
efficient than the others ([11]16],[7],~525) for the tested problems
given here. In addition, to investigate parallel behavior of Algo-
rithm l we try a parallel simulation incorporating with the method
described by [lo] in solving the problem. The second algorithm (Al-
gorithm 2), a simplicial procedure for solving the equivalent concave
minimization problems, is much less efficient than the other two be-
cause of the inefficiency in detecting infeasible partition sets, the
slow convergent rate of the bounds and the fast growth of the lin-
ear constraints. The efficiency, however, would be improved in its
parallel implementation. The last method (Algorithm 3), originally
proposed by Horst et al. [6], has similar advantagesas Algorithm 2:
only a sequence of linear subprograms have to be solved and both
are appropriate for parallel computation with a suitable simplex
partition procedure. Basically, during the parallel computation, in
each iteration only the updated upper bound is required to com-
municate among processors for Algorithm 1, the communication
should not be a problem. In both Algorithms 2 and 3, in every

*supported in part by NSF under Grant CCR-9222734

iteration during the parallel computation all the processors have to
communicate with each other and share the following message they
have obtained: the new upper bound, the new vertices created in
the partition process, and the linear constraints added to define a
new polyhedral set enclosing the feasible set. Since the amount of
data to be passed is small, the communication overhead should not
cause serious delay, compared to the time for solving a sequence of
linear programs which are the main computation load of these two
algorithms. Therefore, we use a sequential computer to simulate
the parallel behavior of these three algorithms without considering
the communication for the tested problems in Section 5.

The rest of this paper is organized as follows. The next section
contains the basic idea of the methods. In Section 3 we discuss
the fundamental implementation of these algorithms. Section 4
describes the details of these algorithms and their convergences
are proved. Some numerical test problem are given in Section 5 .
Conclusion is in the final Section.

2. Basic idea of the Methods
By introducing an additional variable t, problem (DC) can be
rewritten as an equivalent global concave minimization problem
which has the form

(CP)
minimize (t - g (x))
subject to: f(x) <_ t and x E D

Let 1> = {(x,t) E R" x R : x E D , f (x) < t) be the feasible
set of problem (CP). Given an n-simplex S Gith vertex set V (S)
containingthe feasibleset D , a prism (generatedby S) 'P = 'P(S) c
R" x R is defined by

P = {(x,t) E R" x R : x E s, tg 5 t 5 t T } (1)
where tg = min (f(x) : x E D) and tT.= max(f(v : v E V (S) } .
Note that the former is a convex minimization prob I em which can
be done by any standard nonlinearprogrammingmethod. Let t~ =
f (x g) (x . ~ E 9). The prism P has n + 1 vertical lines (parallel to
the t-axis) which pass through the n + 1 vertices of S respectively.
2.1. A n Oute r Approximation Method Using Cu t t ing
P lane
Let a polyhedron Po = P. Obviously, Po encloses 2, and V(P0) are
known. Therefore, a lower bound of problem (CP) is determined by
simply minimizing the functional values at all vertices of Po. If the
minimizing point is feasible to problem (CP , then that point will
also be an upper bound, thus the problem /CP) is solved. Other-
wise, the point violates at least one constraint of problem (CP). In
this case, we should construct a hyperplane of support to some vio-
lated constraint which separates this minimizing point from PO. In
other words, this constructed hyperplane cuts through the previous
polyhedron PO and creates a new polyhedron PI which will more
tightly enclose the feasible set 'D. All new vertices generated from
cut are easily determined by the method in [5]. Denote the vertex
set of PI by V(P1) and go to the next iteration. For its parallel
computation procedure, we will follow the approach in [lo].
2.2. A Parallel Simplicial Algorithm
Here, we introduce a simplicial algorithm to solve problem (CP) in
parallel. In order to use simplicial algorithm, we make a prismatic
triangulation of P, i.e.

r

P = u P i
i E l

where r is an integer multiple of (n + l), Pi is an n-simplex (i =
1, . . . , r) and each pair of simplices Pi , Pj (i # j) intersects a t most

2527

in common boundary points (i.e. 'PI n 'P3 = a'P, n dP,, where aP,
denotes the boundary of P,). Let V(P,) = {U:, . . . ,vY+'} be the
vertex set of 'P3 (j = 1 , . . . , r) . Obviously, we can find the solution
of problem (CP) in terms of solving the following r subproblems

minimize (t - g(x)) { subject to: (x , t) E P3 n D , (j = 1 , . . . , r)

Let $ (x , t) = t - g(z), then the following linear programs can be
applied to underestlmate all above subproblems, i.e.

minimize A:G(~;)
subject to: (z , t) = A,$ E PI, (j = 1 , . . . , r) (SA)

A, = 1, A, 2 0 , (i = I,. , . , n + 1) {
The main idea of the parallel procedure for the simplicial algo-
rithm is to make use of a suitable simplex subdivision technique,
then solve the N linear programming subproblems as (SA) in each
iteration for a case where N processors are used.

At iteration k, choose the first Nk (number of used processors)
simplices from the remaining simplices (stored in increasing order
of lower bounds) to perform the bounding computation and further
subdivision. Let (xkltk) be the best feasible point with an upper
bound (uk = t k - g(xk)) obtained so far and Lk be a lower bound
of the objective function in (CP). Obviously, if u k - Lk = 0
then (z k , t k) is an optimal solution of (DC). Otherwise, delete the
simplices according to the deletion laws in section 3.4 and go to the
next iteration.
2.3. A Parallel Method via Linear Programs
An approach solving a D.C. programming problem by a sequence
of linear programs was presented by Horst et. a1 [SI. This algo-
rithm combines a new prismatic branch and bound technique with
polyhedral outer approximation in such a way that only linear pro-
grammingproblems have to be solved. Essentially, this method can
be parallelized by adopting the same simplex partition process and
parallel procedure as stated in Section 2.2 because the prismatic
branch and bound is created by both subdividing a prism formed
by a simplex and solving the linear programming problems. Re-
gardless of the communication, this parallel algorithm will be more
efficient than that in [SI. The comparison of these two algorithms
will be given in Section 5 .

3. Implementation
There are four fundamental operations in the above algorithms: i)
Construction of the initial simplex S, ii) Partitions of both prism
and simplex, iii) Determination of bounds and cutting planes, iv)
Deletion of simplices.
3.1. Construction of S
Although there are many ways (see [7, lo]) to determine a simplex
S 3 D, we consider the following construction for Algorithms 1, 2,
3 .

n

s = {z E R":a, 5 z:, (i = 1, ..., n), E x : 5 a} (3)

where a, = min{x, : x E D} (i = l , . . . , n) and a =
max{C:,lx, : x E D). Let x: (z = 1 , 2 ,..., n +
1) be their solutions respectively. Clearly, S with a ver-
tex set V(S) = {v1,v2,...,vn+1} is a simplex tightly
enclosing D, where vnt1 = (al,a2 ,..., an) and 11% =
(a f : a 2 , . . . , a:-1, PI, @,+I , . . . ,an), (i = 1 , . . . , n) with 0, = a -

3.2. Partitions of Both Prism and Simplex
As the algorithm in [6], an exhaustive subdivision process of sim-
plex will be applied to ensure convergence of Algorithms 2, 3.

Definition 1 ([4][7][6] A subdivision is called exhaustive if
limk,, b(sk) + 0 (6tsk) i s the length ?<a longest edge o j s k)
for a[l decreasing subsequence {sk} of partition elements generated
by the subdivision.
Here we also introduce an exhaustive partition process, Q-
triangulation well known in operations research. Let an n-
dimensional unit simplex be defined by

:=1

C,$I a3'

n+ 1

S" = {. E Et;+' : E x , = 1) (4)
:=l

For i E In+l = {l,. ..,TI + l}, e (i) will denote the vector in Etnt'
with i-th component equal to one and all other components equal
to zero.

Let S be a simplex containing D in Et". Thus we can tri-
angulate S by using the fact that the S is homeomorphic to the
unit simplex Sn and that every point in Sn can be represented
by its barycentric coordinates. In the triangulation of S", the
Q-triangulation is probably the best known triangulation for al-
gorithmic purposes (cf. [15] and reference therein). Moreover, Q-
triangulation seems to be a proper partition process for parallel
computation here since it is easy to split a simplex into M 2 (M-I
is the grid size) similar subsimplices. In other words, there are M 2
linear programming subproblems of same size subdivided from a
linear programming problem. Therefore if there are a large num-
ber of processors at hand, one can choose a suitable grid size for
Q-triangulation.
Definition 2 ([15]) The Q-triangulation of Sn with grid size
M-' i s the collection of all n-simplices u(v' , ' IT) with vertices
v l , . . . , v"+l in Sn such that
1) each component o f v l is a nonnegative multiple of M - I .
2) 'IT = (q, . . . , IT^) i s a permutation of the elements in In =
{I,. . . , n } .
3) v ' + 1 = ~ ' + M - 1 q 0 (~ l) , (a = l , . . . , n .) w h e r e q o (j) = e (j + l) -
e (j) , j = I,. . . , n .
As the prismatic triangulation in [9], the prism P = S x T can be
triangulated via triangulation of S and T (tg 5 T < t T) . Let un
be an n-simplex in the collection Cn(S) of all n-siGplices of the
decomposition of S and T be a 1-simplex of the decomposition of
the t-axis, i.e.

bn = vo . . . 21" E Cn(S) and (tg, t T) = T E C1 (t - a z i s)

The prismatic triangulation of the Cartesian is obtained by
n

an x T = c(- l)kv:B1",VtT ...ut", (5)
k=O

where vk A Q-
triangulation of S and a prismatic triangulation of P are illustrated
in Figure 1 for n=2. For a sequential algorithm, an exhaustive

is the vertex vk of S elevated at height tg.
t B.

B

(b) Prismatic Triangulation of S x T

Figure 1: Q-triangulation of S and Prismatic triangulation
of P

partition process, bisection of simplex seems to be useful. Other
partition procedures of simplices can be found in [7] and references
therein.

Lemma 1 Let { S k } be any decreasing sequence of n-simplices
generated by Q-triangulation process, then limk+, 6(s k) 4 0,
i.e. Q-triangulation procedure i s exhaustive.
Proof: Obviously &i6(sk) = b(Sk+l)r i.e. i6(Sk+l) =

0

3.3. Computation of Bounds and Construction of Cutting
Planes
Let S be an n-simplex constructed in section 3.1. Denote an initial
upper bound for problem (SCP) or (CP) and the prism P by
2-40 and a polyhedron Po respectively, where 2-40 = min{f(x:) -
g(x:), i = 1,. . . , n + 1) . Set p k be a polyhedron enclosing 'D at
iteration k and V (P k) be its vertex set.

(&)k+16(So) (M 2 2) . Therefore, limk+, i6(sk) ---+ 0.

2528

In Algorithm 1, a point uo in the strict interior of 'D must
be found first. At iteration k, choose $(Vk) = min {+(v) , U E

as a lower bound, then solve the line searching problem - vk) such that Zk E a'D (boundary of 'D . If
y = 0 then Vk E 'D and ffk is a solution of the problem CP).
Otherwise, update the upper boundUk+l = min {ukt $(zk) i and
find a constraint X (z , t) E {h,(z)(i = 1, . . . , m) , f(z) - t} which
is binding at Zk and the linear constraint corresponding to X (z , t)
and Zk. Set

p k + l = p k nkt) E]Rn X R: Ck(z,t) 5 0)

L(c)!k + ?(U0

(6)

Compute v(pk+l) based on v(pk), then go to the next iteration.
For the determination of both bound and cutting plane in the par-
allel procedure, the method in [lo] will be applied.

For the simplicial algorithm, let PO be a polyhedron contain-
ing 2, which is defined by

Po = (5 E R" x R : AZ 5 b, d = (z, t)}, (8)
where A is a real m x (n + 1) matrix and b E Rm. Construct a
sequence of polyhedral convex sets Po, P I , P2, . . . such that Po 3
PI 3 ... 3 V. The transition from p k to pk+l (k = 0,1, ...)
is done by adding some appropriate cutting planes Ci(z, t) 5 0
(j = I , . . . , q) (q < N k (number of processors at iteration k)) to
the constraint set which defines 9, i.e.,

At the iteration k, let upper bound and lower bound c k
for p k . Denote the number of the remaining collection of simplices
R k by l z k l . Assume that there is a simplex Si with lower bound
c (s ~) (I = 1,. . . , I R ~ I) in R k and its vertex set v (s ~) = {vf,i =
1,. . . , n + 1). Since every point f E Sk is uniquely represented as

n+l n+ 1

5 = ~ X , v ~ = V , X , CX;=l, Xi20 (i = l , . . . I n+l), (10)
1=1 :=1

where V, denotes the matrix with columns U:, . . . , vmtl and X is a
vector with components XI,. . . , A,+1. Every subproblem

minimize (t - g(z)) (11)

subject to: (r , t) E SL n v , (I = 1, . . . , p k l) (12)

can be underestimated by the following linear program with the
constraint set ~ f , n p k .

n+ 1

s.t.: AKA 5 b, E X , = 1, X j 2 0 (i = 1 ,..., n + 1)(14)
i = l

Since Xn+l = 1 - X j 2 0, (13) and (14) become
n

min Xi[+(vi) - +(v;+l 11 + 2~(v;+l) (15)
i-I

s . t . :Af i J<&, k A , < l , X j > O (i = l , ..., n) (16)

where fi denotes the matrix with columns (vi - U:+') (I =
1 ,..., n), X is a vector with components X1 ,..., An, and b =
b - AV"+'.

Let J* be an optimal solution of the linear program (15), (16),
thus we have 5. = (zk,tfi) by (10). If (z i , t i) E V, then an upper
bound of Si, U($) = ti - g(zi) is obtained. Otherwise, we have
a new lower bound, m a x { , C (S ~) , ~ ~ ~ ~ Ay+(vf)}. Let %!(z,t) :=
max{h,(i = 1, . . . , m) , f(z) - t} and add a constraint

(17) C:(z,t) = V3t(z:,t:)T[(z,t) - (4,4)] + 3t(z:,t:) 5 0

Remark 1: Let uo be a strictly interior point in V, and find a
point z i between [uo,(zL,tL)] such that Zk E 'D. If we replace the
constraint (17) by

Ci(z, t) = VX(zi)T[(z,t) - 2 9 5 0 (18)
Then this cut is better because it is closer to V. Note that a variety
of other cuts can also be employed (cf. Horst and Tuy [7]).

Let U with vertices W E , . . . , vCt1 be a subsimplexgenerated by
a exhaustive subdivision process from an initial n-simplex S 3 D.
Hence the lower bound in Algorithm 3 is primarily calculated by
the following linear program in (A, t) (cf. Horst et al. [SI):

ir 1

subject to: AVuX + at 5 b

:=I

where Vu denotes the matrix with columns v t , . . . ,U$', a E Rm
and A, b are given in (8). If c* is the optimal objective function
value in (19), (20), (21), then the lower bound of U is provided by

+CO, if (19),(20),(21) have no feasible point
C (U) = C(U) , i f c . 5 0 (22) { C (V) - C O , if c* > 0

With regard to the upper bound of U, it can be obtained from both
evaluatingnew vertex in the correspondin partition of simplex and
solving the linear programming problem &9), (20), (21).

Besides the computation of bounds, the construction of the
cutting planes is the same as Algorithm 2. For parallel process the
determinations of both bound and cutting plane will also follow the
way as described in simplicial algorithm.
3.4. Deletion of Simplices
At iteration k. of the simplicial algorithm we try to delete the sim-
plices that do not contain any feasible solution better than (zk, tk).
Here, we have the following deletion laws:

(a) Delete any simplex SL (I = I , . . . , InkI) if all of its vertices
locate outside the current polyhedralset p k or (13), (14) has
no feasible solution. In this case S: n 2, = 6

(b) Delete simplex s' if c(sL) > U,.
(c) Delete simplex 4 if its optimal objective function value ob-

tained from (13), (14) is greater than upper bound Uk.

4. The Algorithms
In this Section, we describe these algorithms in detail for solving
problem (DC) in terms of solving problem (CP) by cutting plane
method or a sequence of linear programs. Assume that there are
N processors throughout the following algorithms.
Algorithm 1
Construct a prism P 3 'D associated with a simplex S 3 D and let
a polyhedron PO = P as described in Section 3.3. Obviously, the
vertex set V(P0) of Po is known and consists of the 2(n+ 1) points.
Let uo be a strictly interior point and e > 0. Set

upper bound: U0 = min(0, (f(r:) - g(z:)), i = 1,. . . , n + l}, (23)
lower bound: Lo = min{+(v) : v E V(Po)} , (24)
Iteration (k = 0,1,2, . . .)
Let (zk,tk) = Vk satisfy Lk = +(vk), and find a -y such that
zk = vk + y(u0 - vk) E aV. If y = 0, then Vk is an optimal
solution of (CP). Otherwise, set = min(Lfk,,1L(zk)}, add a
constraint according to (7) and form (6). Compute V(Pk+l) (only
the vertices having objective function value lower than the current
upper bound need to be stored, let V k t l denote these vertices),
then let &+I = min{+(v) : v E Vk+')} and (Zkt1,tk+l) be the
point satisfying &+I = +(zk+l,tk+1). IfUk+I - Ck+l 5 E, then
stop and Zk is an optimal solution of problem (CP). Otherwise, go
to the next iteration.
Remark 2:
(1) If let tT be large enough such that + (z , t ~) > Uo, where
Vs E V(S), then at most n+ 1 vertices (z, t ~) need to be stored for
the next iteration. Therefore, by adopting the method as described
in [lo] we have a parallel algorithm using n + 1 processors. One

2529

numerical test will be given in Section 5.
(2) At iteration I C , we also can delete the vertices yielding an ob-
jective function value great than U, - E. In this case, if Vk+' = @,
then algorithm terminates: Zk is an optimal solution.
Lemma 2 ([7]) Let Lk, k = 1 , 2 , . . , be a sequence of arbitrary
set in R". I f {rk} i s a bounded sequence of points satisfying

then d (x k , L k) --+ 0 (k + CQ), where d is the distance function
in Et".
Theorem 1 (cf. Hoffman [2]) In the Algorithm I every accu-
mulation point of the sequence { (z k , t k) } is a global optimal aolu-
tion of problem (CP).
Proof: The algorithm 1 generates a sequence of points {(zk,tk)}
and a corresponding sequence of lower bounds {+(dl tk)} which
is monotonically nondecreasing (since Sk 3 Sktl) and bounded
from above by the value of + (E * , t*) , where (z*, t*) is any feasible
solutionin2). Let thehalf-spaceLk = { (z , t i E R n X R : Ck(z,t) <
01, and the hyperplane X R : Ck(z , t) = O x
then we have

= { (z , t) E R

C h (Z k l t k) L 0 (h = 0,1,. . ., k - 1). Ck(zk,tk) > 0, while

Now the sequence {(zk, t k) } is bounded (since the enclosing poly-
hedron Pk is bounded), by Lemma 2, we have d((zk,ts),Lk) + 0
(k -+ CO). Hence d ((z k , t k) , H k) -+ 0, where Hk = { (z , t) E
Rn x R : VX(zk)*[(x, t) - zk] = 0}, i.e.

Let (if, f) be an accumulationpoint for the sequence {(zk, t k) } and a
subsequence{(zkc,tk,)} of { (E ~ , t k) } converge to (if,q. By Lemma
2,3 in [2] , we have two sequences {Ak}, { z k } and theiraccumulation
points x, J such that z k = (z k , t k) + X k [u o - (z k , t k)] and Z =
(i f , f) + X [u ~ - (~ , Z)] . Let subsequences{Xk,}, {zk,} of thesequences
{Ah}, {zk} converge to 1, Z respectively, then we also have zk, =
(z k s , t k ,) + Xk,[u~ - (& , t k ,)] From (25) we obtain

Since uo is a strictly interior point, only 1 = o can satisfy, i.e.

Algorithm 2
Initialization (Given an e > 0)
Construct a prism P associated with a simplex S 3 D, and let a
polyhedral convex set PO = P 3 V as described in Section 3.3.
According to the process stated in Section 3.2, partition P into
r Simplices Si, (I = 1,. . . , r) and denote the vertex set of SA by
v (s ~) . Let

(if,2) = z € V.

U; = min(0, (f(z2) - g(m?)) , i = 1,. . . ,n + I} (26)

U. = min{Ui, min{+(v) : 'U E (U V(Si)) n V > } (27)
r

1=1

(cf. section 3.3). Set (GO, t o) E V such that to - g(zo) = U0 and
let CO = -CO. Delete all simplices SL (I = 1,. . . , r) which satisfy
the deletion law (a).
Iteration k (k = 0,1,2, . . .)
At the begining of iteration k we have a polyhedron P k 3 P, the
best feasible point (rk, tk) obtained so far, and an associated upper
bound& = t k -g(z'). Furthermore, we have a set Rk of simplices
generated from the initial partition of P by deletion and subdivision
according to the rules described in Section 3.2,3.4, and their lower
bounds C(Sk), l = 1,. . . , (Rk).

1: Choose the first Nk simplices in Rk (if > N , then
Nk = N) . Solve these linear programs (15), 116) correspond-
ing to both s; (j € Ik = {I , . . . , Nk}) and Pk in parallel.
Hence, let (11, t i) (j =E I k) be their optimal solutions. If
any simplex S; (j E 4) which satisfies deletion laws (a),
(b), or (c), delete it. Set I k = Ik/{j}.

Step

Step 2: For V j E I,+, if (=$,ti) E a (j E I k) , then set u(si) =
min{Uk,$ - g (s i) } and I k = Ik/{j}. Otherwise, let
U(S;) = U, and add a constraint C;(z,t) 5 0 according
to (17). Set P k + l = { (z , t) E Pk : Ci(z, t) 5 0, j E I k }

Step 3: Subdivide the simplices si , j E I k into a finite num-
ber of subsimplices and delete the subsimplices satisfying
deletion law (a). Let Sis (j, E Jk, where Jk is the in-
dex set of these remaining subsimplices) be the remaining
subsimplices. Let U: be the new feasible vertices of the
corresponding partition of the simplices Si, (3 E I k) . Set
U(S;) = min {Uk, min{+(v) : v E U:}}

Step 4: For j, E J k , solve the linear program (15), (16) corre-
sponding to both P k + l and Sp. Delete any subsimplex Sp
by deletionlaws (a), (b), or (c). Let RI denote the collection
of remaining subsimplices Si' (j, E Jk). For each S t E RI,,
Set C(Si ') = max {C(Si) ,L(Si*)}

Step 5: Let Fk denote the set of new feasible points obtained
from solving the linear programs in step 4, and set uk+1 =
min {min{tr(Si), j = 1,. .. , Nk}, min{qb(v) : v E Fk}}
Let (zktl,tk+l) E 'D such that tk+l -g(zkt') =&+I. Set
R k + l = (R~\{s; : j = 1,. . . , ~ k }) U R ~ , If I R k + l l = 0,
then stop (zkti , tk+1) is an optimal solution of problem
(cP). Otherwise, set Ck+l = min{C(S~+,) : I =
1,. . . I I R k t l O

Step 6: I f U k + l - Ck+l 5 e, then stop: (zktl,tk+l) is an opti-
mal solution of problem (CP). Otherwise, go to the next
it eration.

Remark 3: Ik is an index set of active processors at iteration
I C . Note that not all processor are active throughout an iteration,
some of them might be idle after some step.
Theorem 2 Any accumulation point of the sequence (zk, t k) gen-
erated b y Algorithm 2 i s a global optimal solution.
Proof: From Lemma 1, we know that any infinite nested sequence
of simplices S,, r E Q c {0,1,2.. .}, obtained from Algorithm 2
by means of a Q-triangulation subdivision is exhaustive. Then the

Algorithm 3
This algorithm is to execute the approach proposed by [6] in par-
allel. Since a prism in 6 is always generated by an n-simplex, the
prismatic partition in \4 is similar to the simplex subdivision in
Algorithm 2. By employing both parallel procedure and subdivi-
sion process as indicated in Algorithm 2, we have a parallel process
for the algorithm in [6].

if U i f 0

proof can be seen in [7].

5. Numerical Tests
Problem 1: We applied the Algorithm 1 (serial process) to the
following problem which was solved in Muu and Oettli 1111 by a
branch-and-bound method.

minimize (41:) - (0.1s; - z:/') (28)
subject to: 0 5 21 5 1, 0 5 2 2 <_ 2, 11 + x2 >_ 1,(29)

g(z) = 0.1~: - si'2, then (28), (29) can be

minimize (t - g(r) : r E D , f(z) - t 0) (30)

Set f(z) = 4x:,
rewritten as a (CP) problem

where D = (2 E R2 : 0 5 zl <_ 1, 0 5 2 2 5 2, 11 + zz 2 I}
Choose the convergence criterion e = 0.01 and construct

a simplex S = {z E R2 : 2 1 > 0, 2 2 1 0, "1. +
1 2 5 3) and its corresponding prism-P(= PO) with vertices
(3 , 0 , t ~) , (3 , 0 , t ~) , (O 7 3 , t g) , 0 , 3 , t ~) , (O , O , ~ B) , (O , O , ~ T ,where
tg = 0 and tT = 10000000. (Thus, these vertices have objective
function values of -36, 9999964, 0, t T , 0, tT respectively. From y), we obtain& = 1 and (zo,to) = (O , l , O) .
teration 0: choose v: = (3,0,0), then find a y = 0.9168 such that

zo = (0.4788,0.9168,0.9168)and+(zo) = 1.8691. Set& = U0 = 1,
and form PI = PO n{ (z , t) : CO(%, t) = 3.8311 - t - 0.9168 5 0).

With u k - Ck < e, the algorithm terminates after
5 iterations at an approximate optimal solution (z* , t *) =

2530

0.0683,0.9364,0.0186) with the objective function value 0.9863. k hroughout the computation, 14 vertices are generated by cuts
and maximum number of vertices stored in memory is only 2. But,
the dgorithm in [ll] showed Zk = (0.125,0.875) with objective
function value 0.9979 after 8 iterations.
Problem 2 [e]: In this problem, we use Algorithms 1,2,3 to solve
it and let Nk = N in parallel algorithms.

minimize
subject to:

(4x1 + 2 1 3 - (4x3
1: - 211 - 2x2 - 1 5 0,
-1 5 I 1 5 1,

Let f(x) = 4x1 + 21:, g(z) = 4x:, then we have (CP) problem

-1 5 I 2 5 1,

minimize {t - g (x) : (I, t) E D)

whereD = {(z,t) E lR3 : f(z)-t 5 O , x ~ - 2 1 ~ - 2 x 2 - 1 5 0,-1 5
x1 5 1,-1 572 <_ 1) and tg = 0. Let e = 0.05 and construct an
initialsimplex S = {x E Et2 : x1 2 -1,x2 2 -1,zi +cz 5 2) with
vertices (3,-l), (-1,3 , (-1,-1). We obtain U0 = 0, (.‘,to) =
(0,O) according to (231, (26).
Algorithm 1: Choose uo =(0,0,0.5) and tT =10000000. w e ob-
tain v i ~(3,-1,O) by evaluating t - g(s) at (3,-l,O), (-1,3,0),
(-1,-1,0). After a line searching, we find y = 0.8194,
80 ~(0.5417,-0.1806,0.4097) and +!J(zo) = -0.7642. Thus, U1 =
-0.7642. Form a new polyhedron

pl = r){(l,t) E nt3 : 2.543711 - 0.722312 - - 1.0987 o)
Continuing with the same procedure, the algorithm will stop at
an approximate optimal solution (x*, t .) ~(0.7171,-0.0103,1.0580)
with objective function value -0.9990 after 16 iterations. There are
90 generated vertices during the computation.

If we employ the parallel method described in [lo], then the
algorithm only needs 10 iterations to obtain the same accuracy.
Algorithm 2: (Let Nk = N = 1, i.e. sequential algorithm) Par-
tition the prism (t ~ = 36) into 3 simplices according to (5), then
subdivide them into 6 subsimplices by bisection.
Iteration 0: we have U0 = 0, (no, to) = (O,O,O), PI = PO n { (x , t) :
Cg(x,t) 5 0, j = 1,2,3), where CA(x,t) = 16x1 + 412 - t - 14,
C$(x,t)= - l6x1-4x2-t t14 ,C~(z , t)= 16~1-412-t-14.and
I’Rll=8 with lower bounds -15.2, -4, -4, -4, -1.84, -1.84, -1.1579,
-1.1579. Obviously, C1 = -15.2.
Iteration 1: Solving the linear program (15), (16), we obtain A =
(0.35,0.15,0.5,0). Thus (x’, t i) =(0.7,-0.7,O). Since (x1,t1)4D,

0). At the end of this iteration, I‘Rzl = 8, C2 = -11.4541,U2 = 0.
After 114 iterations, the algorithm will stop at an approximate
optimal solution.

Table 1 presents some computational results of Algorithms
2,3 using different number of processors (results of Algorithm 2 by
using equation 18 are shown in parentheses), where Nk = N and
bisection is app I d ie in subdivision process of simplices.

Table 1: Results for Algorithm 2, 3 with N Processors

formP2 = n { (z , t) : c , (z , t) = 5.48801~-2.800x~-t-3.8612 5

Algorithm 2 I Algorithm 3 1 i ;;[;;{ I 114i91j 1 3 3 M I ; I 2 I ;; 1
112(92) 35(21)

26(26) 92(93) 28(23) 33 27
22(19) 98(87) 28(22) 36 29

10 14(13) 104(104) 13(13) 8 55 18

Iter: number of iterations
N: number of processors
Contno: number of added constraints
Max: maximal number of simplices (Rk) stored

Problem 3 [e]: Here, we apply Algorithm 1 (use serial procedure
only) to solve the problem

minimize
subject to:

(xt + 0 2 + 13) - (11 + Lj - 1 3)
(11 - 1 2 - 1.2)2 + x2 5 4.4,
11 + 1 2 + 13 5 6.5,
x2 2 1.6,

~1 2 1.4,
13 2 1.8,

which was solved by Thoai ([fl,p525) and Horst et al. [SI with an
e = 0.01. The former needs 81 iterations to obtain an approximate
solution and the latter terminates after 18 iterations. But Algo-
rithm l proposed in this paper only requires 4 iterations to achieve
the approximate solution of the same precision.

First, transform the original (DC) problem into a (CP)
problem, where j (x) = 1: + x2 + 13, g(o) = m l + xg -
1 3 . With an interior point uo = (1.4,1.6,1.8,8.0) and the
same e , Algorithm 1 has an approximate optimal solution
(z*, t.) =(1.4000,1.8095,1.8000,7.4511) at the end of the 4-th it-
eration.

6. Conclusion
From our numerical results, the serial version of Algorithm 1 seems
to be very efficient, a t least for tested problems, compared with
other methods ([11],[6], [7],p525). The same characteristics of the
Algorithms 1 , 2 , 3 are that they have infinite convergence (although
an approximate solution is achieved by a tolerance criterion), and
that the linear constraints grow in size as the number of iterations
increases. Algorithm 2 is much less efficient than the other two
since not only it needs more iterations to solve the problems but also
more linear constraints are generated in computation. Compared to
the large amount of time saved due to the less iterations required
in parallel processing for Algorithms 1, 2, 3, the communication
overhead is unlike to have a significant effect. In conclusion, the
Algorithms presented here can be expected to produce promising
results in parallel processing.

References
[l] T. Pham Dinh and S. El Bernoussi, “Numerical Methods
for Solving a Class of Global Nonconvex Optimization Problems,”
New Methods in Optimization and Their Industrial Uses, Ed. J.P.
Penot, Birkhiiuser Verlag, pp. 97-132,1989.
[2] K.L. Hoffman, “A Method for Globally Minimizing Concave
Functions over Convex Sets,” Mathematical Programming 20, pp.

[3] J.E. Falk and K.L. Hoffman, “A Successive Underestima-
tion Method for Concave Minimization Problems,” Mathematics
of Operations Research 1, pp. 251-259, 1975.
[4] R. Horst, “An Algorithm for Nonconvex Programming Prob-
lems,” Mathematical Programming 10, pp.312-321,1976.
[5] R. Horst, N.V. Thoai and J. de Vries, “On Finding New
Vertices and Redundant Constraints in Cutting Plane Algorithms
for Global Optimization ,” Operations Research Letters 7, pp. 85-
90, 1988.
[6] R. Horst, T.Q. Phong, Ng. V. Thoai and J. de Vries, “On
Solving a D.C. Programming Problem by a Sequence of Linear
Programs,” Journal of Global Optimization 1, pp. 183-203, 1991.
[7] R. Horst and H. Tuy, Global Optimization, 2nd Edition,
Springer-Verlag, Berlin, 1993.
[8] R. Horst and N.V. Thoai, “Modification, Implementation
and comparison of Three Algorithms for Globally Solving Linearly
Constrained Concave Minimization Problems,” Computing, 42, pp.

[9] E.A. Jonckheere, C.Y. Cheng and C.K. Chu, “ Robust Sta-
bility, Hex Game and Sphere Packing,” submitted for publication,
1994.
[IO] Shih-Mim Liu and G. P. Papavassilopoulos, “A Parallel
Method for Globally Minimizing Concave Functions Over a Con-
vex Polyhedron,” in Proceedings of the 2nd IEEE Mediterranean
Symposium on New Directions in Control & Automation, 1994.
[ll] L. D. Muu and W. Oettli, “Method for Minimizing a
Convex-Concave Function over a Convex Set,” Journal of Opti-
mization Theory and Applications, Vol. 70, pp. 377-384, 1991.
[12] P.M. Pardalos and J.B. Rosen, “Methods for Global Con-
cave Minimization: A Bibliographic Survey,” SIAM Review 28, pp.
367-379,1986.
[13] P.M. Pardalos, J.H. Glick and J.B. %sen, “Global Mini-
mization of Indefinite Quadratic Problems,” Computing 39, pp281-
291, 1987.
[14] H. Tuy, “A General Deterministic Approach to Global Op
timization via D.C. Programming,” J.B. Hiriart-Urruty (editor),
FERMAT Days 85: Mathematics for Optimization, pp. 273-303.
[15]. Timothy Doup, Simplicial Algorithms on the Simplotope,
Springer-Verlag , 1988.

22-32, 1981.

271-289,1989.

2531

