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Abstract. Several methods have been proposed for 
solving a d.c. programming problem, but very few 
have been done on parallel approach. In this paper, 
three algorithms suitable for parallel implementation 
are presented to solve a d.c. problem via solving an 
equivalent concave minimization problem. To dis- 
tribute the computation load as evenly as possible, 
a simplex subdivision process such as bisection, tri- 
angulation or other partition procedures of simplices 
(cf. [7]) will be employed. Some numerical test results 
are reported and comparison of these algorithms are 
given. 

1. Introduction 
Consider a d.c. (difference of two convex functions) global opti- 
mization problem 

minimize (I(*) - g(z))  
subject to: x ED 

where D = (x E Rn : hi(x) < 0, (i = 1,. . . ,m)}, hi, j, and g 
are finite convex functions on R". Assume that D is compact and 
nonempty, then problem (DC) has a global solution. 

In the literature, d.c. problems play an important role in 
nonconvex programming problems either from a practical or a the- 
oretical viewpoint cf. [7]). Indeed, d.c. problems are encoun- 
tered frequently in B ngineering and several methods had been pro- 
posed to solve the class of d.c. problems (cf. [7][6]). However, 
only a few approaches were issued in numerical test. Although 
some of them might be efficient, in particular,. problem with a spe- 
cial structure such as separability of the objective function or a 
quadratic objective function (e.g. [13], [7] and references therein), 
very few have been done in parallel. Essentially, these proposed 
algorithms mainly use three different types of transformation of 
problem (DC), i.e. (1) the equivalent concave minimization prob- 
lem, (2) an equivalent convex minimization problem subject to an 
additional reverse convex constraint, (3) canonical d.c: problem 
(cf. [71[31~121[81[141[11 [GI) 

The purpose of our paper is to propose three algorithms fitting 
for parallel implementation to solve the problem (DC) via solving 
an equivalent concave minimization problem. The first approach 
(Algorithm l ) ,  which is similar to Hoffman algorithm [2], is an outer 
approximation method using cutting plane. Although finding the 
newly generated vertices is computationally expensive, the numeri- 
cal experiments of the serial al orithm indicate that it is much more 
efficient than the others ([11]16],[7],~525) for the tested problems 
given here. In addition, to  investigate parallel behavior of Algo- 
rithm l we try a parallel simulation incorporating with the method 
described by [lo] in solving the problem. The second algorithm (Al- 
gorithm 2), a simplicial procedure for solving the equivalent concave 
minimization problems, is much less efficient than the other two be- 
cause of the inefficiency in detecting infeasible partition sets, the 
slow convergent rate of the bounds and the fast growth of the lin- 
ear constraints. The efficiency, however, would be improved in its 
parallel implementation. The last method (Algorithm 3), originally 
proposed by Horst et al. [6], has similar advantagesas Algorithm 2: 
only a sequence of linear subprograms have to be solved and both 
are appropriate for parallel computation with a suitable simplex 
partition procedure. Basically, during the parallel computation, in 
each iteration only the updated upper bound is required to com- 
municate among processors for Algorithm 1, the communication 
should not be a problem. In both Algorithms 2 and 3, in every 
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iteration during the parallel computation all the processors have to 
communicate with each other and share the following message they 
have obtained: the new upper bound, the new vertices created in 
the partition process, and the linear constraints added to  define a 
new polyhedral set enclosing the feasible set. Since the amount of 
data to be passed is small, the communication overhead should not 
cause serious delay, compared to the time for solving a sequence of 
linear programs which are the main computation load of these two 
algorithms. Therefore, we use a sequential computer to simulate 
the parallel behavior of these three algorithms without considering 
the communication for the tested problems in Section 5. 

The rest of this paper is organized as follows. The next section 
contains the basic idea of the methods. In Section 3 we discuss 
the fundamental implementation of these algorithms. Section 4 
describes the details of these algorithms and their convergences 
are proved. Some numerical test problem are given in Section 5 .  
Conclusion is in the final Section. 

2. Basic idea of the Methods 
By introducing an additional variable t, problem (DC) can be 
rewritten as an equivalent global concave minimization problem 
which has the form 

(CP)  
minimize (t - g ( x ) )  
subject to: f(x) <_ t and x E D 

Let 1> = {(x,t) E R" x R : x E D , f ( x )  < t )  be the feasible 
set of problem (CP). Given an n-simplex S Gith vertex set V ( S )  
containingthe feasibleset D ,  a prism (generatedby S) 'P = 'P(S) c 
R" x R is defined by 

P = {(x,t) E R" x R : x E s, tg 5 t 5 t T }  (1) 
where tg = min (f(x) : x E D )  and tT.= max(f(v : v E V ( S ) } .  
Note that the former is a convex minimization prob I em which can 
be done by any standard nonlinearprogrammingmethod. Let t~ = 
f ( x g )  ( x . ~  E 9). The prism P has n + 1 vertical lines (parallel to 
the t-axis) which pass through the n + 1 vertices of S respectively. 
2.1. A n  Oute r  Approximation Method Using Cu t t ing  
P lane  
Let a polyhedron Po = P. Obviously, Po encloses 2, and V(P0) are 
known. Therefore, a lower bound of problem (CP) is determined by 
simply minimizing the functional values at all vertices of Po. If the 
minimizing point is feasible to problem (CP , then that point will 
also be an upper bound, thus the problem /CP) is solved. Other- 
wise, the point violates at  least one constraint of problem (CP). In 
this case, we should construct a hyperplane of support to some vio- 
lated constraint which separates this minimizing point from PO. In 
other words, this constructed hyperplane cuts through the previous 
polyhedron PO and creates a new polyhedron PI which will more 
tightly enclose the feasible set 'D. All new vertices generated from 
cut are easily determined by the method in [5]. Denote the vertex 
set of PI by V(P1) and go to the next iteration. For its parallel 
computation procedure, we will follow the approach in [lo]. 
2.2. A Parallel Simplicial Algorithm 
Here, we introduce a simplicial algorithm to solve problem (CP) in 
parallel. In order to use simplicial algorithm, we make a prismatic 
triangulation of P, i.e. 

r 

P = u P i  
i E l  

where r is an integer multiple of (n + l), Pi is an n-simplex (i = 
1, .  . . , r) and each pair of simplices Pi ,  Pj (i # j) intersects a t  most 
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in common boundary points (i.e. 'PI n 'P3 = a'P, n dP,, where aP, 
denotes the boundary of P,). Let V(P,) = {U:, . . . ,vY+'} be the 
vertex set of 'P3 (j = 1 , .  . . , r ) .  Obviously, we can find the solution 
of problem (CP) in terms of solving the following r subproblems 

minimize (t - g(x)) { subject to: ( x , t )  E P3 n D ,  (j = 1 , .  . . , r )  

Let $ ( x , t )  = t - g(z), then the following linear programs can be 
applied to  underestlmate all above subproblems, i.e. 

minimize A:G(~;) 
subject to: ( z , t )  = A,$ E PI, ( j  = 1 , .  . . , r )  (SA)  

A, = 1,  A, 2 0 ,  (i = I,. , . , n + 1 )  { 
The main idea of the parallel procedure for the simplicial algo- 
rithm is to make use of a suitable simplex subdivision technique, 
then solve the N linear programming subproblems as (SA) in each 
iteration for a case where N processors are used. 

At iteration k, choose the first Nk (number of used processors) 
simplices from the remaining simplices (stored in increasing order 
of lower bounds) to perform the bounding computation and further 
subdivision. Let (xkltk) be the best feasible point with an upper 
bound (uk = t k  - g(xk)) obtained so far and Lk be a lower bound 
of the objective function in (CP). Obviously, if u k  - Lk = 0 
then ( z k , t k )  is an optimal solution of (DC). Otherwise, delete the 
simplices according to the deletion laws in section 3.4 and go to the 
next iteration. 
2.3. A Parallel Method via Linear Programs 
An approach solving a D.C. programming problem by a sequence 
of linear programs was presented by Horst et. a1 [SI. This algo- 
rithm combines a new prismatic branch and bound technique with 
polyhedral outer approximation in such a way that only linear pro- 
grammingproblems have to be solved. Essentially, this method can 
be parallelized by adopting the same simplex partition process and 
parallel procedure as stated in Section 2.2 because the prismatic 
branch and bound is created by both subdividing a prism formed 
by a simplex and solving the linear programming problems. Re- 
gardless of the communication, this parallel algorithm will be more 
efficient than that in [SI. The comparison of these two algorithms 
will be given in Section 5 .  

3. Implementation 
There are four fundamental operations in the above algorithms: i) 
Construction of the initial simplex S, ii) Partitions of both prism 
and simplex, iii) Determination of bounds and cutting planes, iv) 
Deletion of simplices. 
3.1. Construction of S 
Although there are many ways (see [7, lo])  to determine a simplex 
S 3 D, we consider the following construction for Algorithms 1,  2, 
3 .  

n 

s = {z E R":a, 5 z:, (i = 1,  ..., n),  E x :  5 a} (3) 

where a, = min{x, : x E D} (i = l , . . . , n )  and a = 
max{C:,lx, : x E D).  Let x: (z = 1 , 2  ,..., n + 
1)  be their solutions respectively. Clearly, S with a ver- 
tex set V(S) = {v1,v2,...,vn+1} is a simplex tightly 
enclosing D, where vnt1 = (al,a2 ,..., an) and 11% = 
( a f : a 2 , .  . . , a:-1, PI, @,+I , .  . . ,an), (i = 1 , .  . . , n)  with 0, = a - 

3.2. Partitions of Both Prism and Simplex 
As the algorithm in [6], an exhaustive subdivision process of sim- 
plex will be applied to ensure convergence of Algorithms 2,  3. 

Definition 1 ([4][7][6] A subdivision is  called exhaustive if 
limk,, b(sk) + 0 (6tsk) i s  the length ?<a  longest edge o j  s k )  
for a[l decreasing subsequence {sk} of partition elements generated 
by the subdivision. 
Here we also introduce an exhaustive partition process, Q- 
triangulation well known in operations research. Let an n- 
dimensional unit simplex be defined by 

:=1 

C,$I a3' 

n+ 1 

S" = {. E Et;+' : E x ,  = 1) (4) 
:=l 

For i E In+l = {l,. ..,TI + l}, e ( i )  will denote the vector in Etnt' 
with i-th component equal to one and all other components equal 
to zero. 

Let S be a simplex containing D in Et". Thus we can tri- 
angulate S by using the fact that the S is homeomorphic to the 
unit simplex Sn and that every point in Sn can be represented 
by its barycentric coordinates. In the triangulation of S", the 
Q-triangulation is probably the best known triangulation for al- 
gorithmic purposes (cf. [15] and reference therein). Moreover, Q- 
triangulation seems to be a proper partition process for parallel 
computation here since it is easy to split a simplex into M 2  (M-I 
is the grid size) similar subsimplices. In other words, there are M 2  
linear programming subproblems of same size subdivided from a 
linear programming problem. Therefore if there are a large num- 
ber of processors at hand, one can choose a suitable grid size for 
Q-triangulation. 
Definition 2 ([15]) The Q-triangulation of Sn with grid size 
M-' i s  the collection of all n-simplices u(v' , ' IT)  with vertices 
v l , .  . . , v"+l in Sn such that 
1) each component o f v l  is  a nonnegative multiple of M - I .  
2) 'IT = (q, . . . ,  IT^) i s  a permutation of the elements in In = 
{I,. . . , n } .  
3 ) v ' + 1 = ~ ' + M - 1 q 0 ( ~ l ) ,  ( a =  l , . . . , n . )  w h e r e q o ( j ) = e ( j + l ) -  
e ( j ) ,  j = I,. . . , n .  
As the prismatic triangulation in [9], the prism P = S x T can be 
triangulated via triangulation of S and T (tg 5 T < t T ) .  Let un 
be an n-simplex in the collection Cn(S) of all n-siGplices of the 
decomposition of S and T be a 1-simplex of the decomposition of 
the t-axis, i.e. 

bn = vo . . . 21" E Cn(S) and ( tg,  t T )  = T E C1 ( t  - a z i s )  

The prismatic triangulation of the Cartesian is obtained by 
n 

an x T = c( - l )kv:B . . . .1",VtT ...ut", ( 5 )  
k=O 

where vk A Q- 
triangulation of S and a prismatic triangulation of P are illustrated 
in Figure 1 for n=2. For a sequential algorithm, an exhaustive 

is the vertex vk of S elevated at  height tg. 
t B. 

B 

(b) Prismatic Triangulation of S x  T 

Figure 1: Q-triangulation of S and Prismatic triangulation 
of P 

partition process, bisection of simplex seems to  be useful. Other 
partition procedures of simplices can be found in [7] and references 
therein. 

Lemma 1 Let { S k }  be any decreasing sequence of n-simplices 
generated by Q-triangulation process, then limk+, 6( s k )  4 0,  
i.e. Q-triangulation procedure i s  exhaustive. 
Proof: Obviously &i6(sk) = b(Sk+l)r i.e. i6(Sk+l) = 

0 

3.3. Computation of Bounds and Construction of Cutting 
Planes 
Let S be an n-simplex constructed in section 3.1.  Denote an initial 
upper bound for problem (SCP) or (CP) and the prism P by 
2-40 and a polyhedron Po respectively, where 2-40 = min{f(x:) - 
g(x:), i = 1,. . . , n + 1 ) .  Set p k  be a polyhedron enclosing 'D at 
iteration k and V ( P k )  be its vertex set. 

(&)k+16(So)  ( M  2 2 ) .  Therefore, limk+, i6(sk) ---+ 0. 
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In Algorithm 1, a point uo in the strict interior of 'D must 
be found first. At iteration k, choose $(Vk) = min {+(v) ,  U E 

as a lower bound, then solve the line searching problem - vk) such that Zk E a'D (boundary of 'D . If 
y = 0 then Vk E 'D and ffk is a solution of the problem CP). 
Otherwise, update the upper boundUk+l = min {ukt $(zk) i and 
find a constraint X ( z ,  t) E {h,(z)(i = 1, .  . . , m ) ,  f(z) - t} which 
is binding at  Zk and the linear constraint corresponding to X ( z ,  t) 
and Zk.  Set 

p k + l  = p k  nkt) E ]Rn X R: Ck(z,t) 5 0) 

L(c)!k + ?(U0 

(6) 

Compute v(pk+l )  based on v(pk),  then go to the next iteration. 
For the determination of both bound and cutting plane in the par- 
allel procedure, the method in [lo] will be applied. 

For the simplicial algorithm, let PO be a polyhedron contain- 
ing 2, which is defined by 

Po = (5 E R" x R : AZ 5 b, d = (z, t)},  (8) 
where A is a real m x (n + 1) matrix and b E Rm. Construct a 
sequence of polyhedral convex sets Po, P I ,  P2, . . . such that Po 3 
PI 3 ... 3 V. The transition from p k  to pk+l (k = 0,1, ...) 
is done by adding some appropriate cutting planes Ci(z, t) 5 0 
( j  = I , . .  . , q )  ( q  < N k  (number of processors at  iteration k)) to 
the constraint set which defines 9, i.e., 

At the iteration k, let upper bound and lower bound c k  
for p k  . Denote the number of the remaining collection of simplices 
R k  by l z k l .  Assume that there is a simplex Si with lower bound 
c ( s ~ )  ( I  = 1,.  . . , I R ~ I )  in R k  and its vertex set v ( s ~ )  = {vf,i = 
1,.  . . , n + 1). Since every point f E Sk is uniquely represented as 

n+l n+ 1 

5 = ~ X , v ~ = V , X ,  CX;=l, Xi20 ( i = l  , . . . I  n+l), (10) 
1=1 :=1 

where V, denotes the matrix with columns U:, . . . , vmtl and X is a 
vector with components XI,. . . , A,+1. Every subproblem 

minimize (t - g(z)) (11) 

subject to: ( r , t )  E SL n v ,  ( I  = 1, .  . . , p k l )  (12) 

can be underestimated by the following linear program with the 
constraint set ~ f ,  n p k .  

n+ 1 

s.t.: AKA 5 b, E X ,  = 1, X j  2 0 (i = 1 ,..., n +  1)(14) 
i = l  

Since Xn+l = 1 - X j  2 0, (13) and (14) become 
n 

min Xi[+(vi) - +(v;+l 11 + 2~(v;+l) (15) 
i-I 

s . t . :Af i J<&,  k A , < l , X j > O  ( i = l ,  ..., n) (16) 

where fi denotes the matrix with columns (vi - U:+') (I = 
1 ,..., n), X is a vector with components X1 ,..., An, and b = 
b - AV"+'. 

Let J* be an optimal solution of the linear program (15), (16), 
thus we have 5. = (zk,tfi) by (10). If ( z i , t i )  E V, then an upper 
bound of Si, U($)  = ti - g(zi) is obtained. Otherwise, we have 
a new lower bound, m a x { , C ( S ~ ) , ~ ~ ~ ~  Ay+(vf)}. Let %!(z,t) := 
max{h,(i = 1, .  . . , m ) ,  f(z) - t} and add a constraint 

(17) C:(z,t) = V3t(z:,t:)T[(z,t) - (4,4)] + 3t(z:,t:) 5 0 

Remark  1: Let uo be a strictly interior point in V, and find a 
point z i  between [uo,(zL,tL)] such that Zk E 'D. If we replace the 
constraint (17) by 

Ci(z, t )  = VX(zi)T[(z,t) - 2 9  5 0 (18) 
Then this cut is better because it is closer to V. Note that a variety 
of other cuts can also be employed (cf. Horst and Tuy [7]). 

Let U with vertices W E , .  . . , vCt1 be a subsimplexgenerated by 
a exhaustive subdivision process from an initial n-simplex S 3 D. 
Hence the lower bound in Algorithm 3 is primarily calculated by 
the following linear program in (A, t) (cf. Horst et al. [SI): 

ir 1 

subject to: AVuX + at 5 b 

:=I 

where Vu denotes the matrix with columns v t ,  . . . ,U$', a E Rm 
and A, b are given in (8). If c* is the optimal objective function 
value in (19), (20), (21), then the lower bound of U is provided by 

+CO, if (19),(20),(21) have no feasible point 
C ( U ) =  C(U) ,  i f c . 5 0  (22) { C ( V )  - C O ,  if c* > 0 

With regard to the upper bound of U, it can be obtained from both 
evaluatingnew vertex in the correspondin partition of simplex and 
solving the linear programming problem &9), (20), (21). 

Besides the computation of bounds, the construction of the 
cutting planes is the same as Algorithm 2. For parallel process the 
determinations of both bound and cutting plane will also follow the 
way as described in simplicial algorithm. 
3.4. Deletion of Simplices 
At iteration k. of the simplicial algorithm we try to delete the sim- 
plices that do not contain any feasible solution better than (zk,  tk). 
Here, we have the following deletion laws: 

(a) Delete any simplex SL (I = I , .  . . , InkI) if all of its vertices 
locate outside the current polyhedralset p k  or (13), (14) has 
no feasible solution. In this case S: n 2, = 6 

(b) Delete simplex s' if c(sL) > U,. 
(c) Delete simplex 4 if its optimal objective function value ob- 

tained from (13), (14) is greater than upper bound Uk. 

4. The Algorithms 
In this Section, we describe these algorithms in detail for solving 
problem (DC) in terms of solving problem (CP) by cutting plane 
method or a sequence of linear programs. Assume that there are 
N processors throughout the following algorithms. 
Algorithm 1 
Construct a prism P 3 'D associated with a simplex S 3 D and let 
a polyhedron PO = P as described in Section 3.3. Obviously, the 
vertex set V(P0) of Po is known and consists of the 2(n+ 1) points. 
Let uo be a strictly interior point and e > 0. Set 

upper bound: U0 = min(0, (f(r:) - g(z:)), i = 1,. . . , n + l}, (23) 
lower bound: Lo = min{+(v) : v E V(Po)} ,  (24) 
Iteration (k = 0,1,2, .  . .) 
Let (zk,tk) = Vk satisfy Lk = +(vk), and find a -y such that 
zk = vk + y(u0 - vk) E aV. If y = 0, then Vk is an optimal 
solution of (CP). Otherwise, set = min(Lfk,,1L(zk)}, add a 
constraint according to (7) and form (6). Compute V(Pk+l) (only 
the vertices having objective function value lower than the current 
upper bound need to be stored, let V k t l  denote these vertices), 
then let &+I = min{+(v) : v E Vk+')} and (Zkt1,tk+l) be the 
point satisfying &+I = +(zk+l,tk+1). IfUk+I - Ck+l 5 E, then 
stop and Zk is an optimal solution of problem (CP). Otherwise, go 
to the next iteration. 
Remark  2: 
(1) If let tT be large enough such that + ( z , t ~ )  > Uo, where 
Vs E V(S), then at  most n+ 1 vertices (z, t ~ )  need to  be stored for 
the next iteration. Therefore, by adopting the method as described 
in [lo] we have a parallel algorithm using n + 1 processors. One 
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numerical test will be given in Section 5. 
(2) At iteration I C ,  we also can delete the vertices yielding an ob- 
jective function value great than U, - E. In this case, if Vk+' = @, 
then algorithm terminates: Zk is an optimal solution. 
Lemma 2 ([7]) Let Lk, k = 1 , 2 , .  . , be a sequence of  arbitrary 
set in R". I f  {rk} i s  a bounded sequence of  points satisfying 

then d ( x k ,  L k )  --+ 0 ( k  + CQ), where d is the distance function 
in Et". 
Theorem 1 (cf. Hoffman [2]) In the Algorithm I every accu- 
mulation point of the sequence { ( z k , t k ) }  is a global optimal aolu- 
tion of problem (CP). 
Proof: The algorithm 1 generates a sequence of points {(zk,tk)} 
and a corresponding sequence of lower bounds {+(dl tk)} which 
is monotonically nondecreasing (since Sk 3 Sktl) and bounded 
from above by the value of + ( E * ,  t* ) ,  where (z*, t*) is any feasible 
solutionin2). Let thehalf-spaceLk = { (z , t i  E R n X R :  Ck(z,t) < 
01, and the hyperplane X R : Ck(z , t )  = O x  
then we have 

= { ( z , t )  E R 

C h ( Z k l t k )  L 0 (h  = 0,1,. . ., k - 1). Ck(zk,tk) > 0, while 

Now the sequence {(zk, t k ) }  is bounded (since the enclosing poly- 
hedron Pk is bounded), by Lemma 2, we have d((zk,ts),Lk) + 0 
(k -+ CO). Hence d ( ( z k , t k ) , H k )  -+ 0, where Hk = { (z , t )  E 
Rn x R : VX(zk)*[(x, t )  - zk] = 0}, i.e. 

Let (if, f) be an accumulationpoint for the sequence {(zk, t k ) }  and a 
subsequence{(zkc,tk,)} of { ( E ~ ,  t k ) }  converge to (if,q. By Lemma 
2,3 in [ 2 ] ,  we have two sequences {Ak}, { z k }  and theiraccumulation 
points x, J such that z k  = ( z k , t k )  + X k [ u o  - ( z k , t k ) ]  and Z = 
( i f , f ) + X [ u ~ - ( ~ , Z ) ] .  Let subsequences{Xk,}, {zk,} of thesequences 
{Ah}, {zk} converge to  1, Z respectively, then we also have zk, = 
( z k s , t k , )  + Xk,[u~ - ( & , t k , ) ]  From (25) we obtain 

Since uo is a strictly interior point, only 1 = o can satisfy, i.e. 

Algorithm 2 
Initialization (Given an e > 0) 
Construct a prism P associated with a simplex S 3 D, and let a 
polyhedral convex set PO = P 3 V as described in Section 3.3. 
According to  the process stated in Section 3.2, partition P into 
r Simplices Si, ( I  = 1,. . . , r )  and denote the vertex set of SA by 
v ( s ~ ) .  Let 

(if,2) = z € V. 

U; = min(0, (f(z2) - g(m?) ) ,  i = 1,. . . ,n + I} (26) 

U. = min{Ui, min{+(v) : 'U E (U V(Si)) n V > }  (27) 
r 

1=1 

(cf. section 3.3). Set (GO, t o )  E V such that to  - g(zo) = U0 and 
let CO = -CO. Delete all simplices SL ( I  = 1,. . . , r )  which satisfy 
the deletion law (a). 
Iteration k (k = 0,1,2, .  . .) 
At the begining of iteration k we have a polyhedron P k  3 P, the 
best feasible point (rk, tk) obtained so far, and an associated upper 
bound& = t k  -g(z'). Furthermore, we have a set Rk of simplices 
generated from the initial partition of P by deletion and subdivision 
according to the rules described in Section 3.2,3.4, and their lower 
bounds C(Sk), l = 1,. . . , (Rk). 

1: Choose the first Nk simplices in Rk (if > N ,  then 
Nk = N ) .  Solve these linear programs (15), 116) correspond- 
ing to both s; (j  € Ik = {I , .  . . , Nk}) and Pk in parallel. 
Hence, let (11, t i )  (j =E I k )  be their optimal solutions. If 
any simplex S; (j E 4 )  which satisfies deletion laws (a), 
(b), or (c), delete it. Set I k  = Ik/{j}. 

Step 

Step 2: For V j  E I,+, if (=$,ti) E a (j E I k ) ,  then set u(si) = 
min{Uk,$ - g ( s i ) }  and I k  = Ik/{j}. Otherwise, let 
U(S;)  = U, and add a constraint C;(z,t) 5 0 according 
to  (17). Set P k + l  = { ( z , t )  E Pk : Ci(z, t )  5 0, j E I k }  

Step 3: Subdivide the simplices si ,  j E I k  into a finite num- 
ber of subsimplices and delete the subsimplices satisfying 
deletion law (a). Let Sis (j, E Jk, where Jk is the in- 
dex set of these remaining subsimplices) be the remaining 
subsimplices. Let U: be the new feasible vertices of the 
corresponding partition of the simplices Si, (3 E I k ) .  Set 
U(S;)  = min {Uk, min{+(v) : v E U:}} 

Step 4: For j, E J k ,  solve the linear program (15), (16) corre- 
sponding to both P k + l  and Sp. Delete any subsimplex Sp 
by deletionlaws (a), (b), or (c). Let RI denote the collection 
of remaining subsimplices Si' (j, E Jk). For each S t  E RI,, 
Set C(Si ' )  = max {C(Si) ,L(Si*)}  

Step 5: Let Fk denote the set of new feasible points obtained 
from solving the linear programs in step 4, and set uk+1 = 
min {min{tr(Si), j = 1,. .. , Nk}, min{qb(v) : v E Fk}} 
Let (zktl,tk+l) E 'D such that tk+l -g(zkt') =&+I. Set 
R k + l  = (R~\{s; : j = 1,. . . , ~ k } )  U R ~ ,  If I R k + l l  = 0, 
then stop (zkti , tk+1) is an optimal solution of problem 
(cP). Otherwise, set Ck+l = min{C(S~+,) : I = 
1,. . . I  I R k t l O  

Step 6: I f U k + l  - Ck+l 5 e, then stop: (zktl,tk+l) is an opti- 
mal solution of problem (CP). Otherwise, go to  the next 
it eration. 

Remark 3: Ik is an index set of active processors at  iteration 
I C .  Note that not all processor are active throughout an iteration, 
some of them might be idle after some step. 
Theorem 2 Any accumulation point of the sequence (zk, t k )  gen- 
erated b y  Algorithm 2 i s  a global optimal solution. 
Proof: From Lemma 1, we know that any infinite nested sequence 
of simplices S,, r E Q c {0,1,2.. .}, obtained from Algorithm 2 
by means of a Q-triangulation subdivision is exhaustive. Then the 

Algorithm 3 
This algorithm is to execute the approach proposed by [6] in par- 
allel. Since a prism in 6 is always generated by an n-simplex, the 
prismatic partition in \4 is similar to the simplex subdivision in 
Algorithm 2. By employing both parallel procedure and subdivi- 
sion process as indicated in Algorithm 2, we have a parallel process 
for the algorithm in [6]. 

if U i f 0  

proof can be seen in [7]. 

5. Numerical Tests 
Problem 1: We applied the Algorithm 1 (serial process) to  the 
following problem which was solved in Muu and Oettli 1111 by a 
branch-and-bound method. 

minimize (41:) - (0.1s; - z:/') (28) 
subject to: 0 5 21 5 1, 0 5 2 2  <_ 2, 11 + x2 >_ 1,(29) 

g(z) = 0.1~: - si'2, then (28), (29) can be 

minimize (t - g(r) : r E D ,  f(z) - t 0 )  (30) 

Set f(z) = 4x:, 
rewritten as a (CP) problem 

where D = (2 E R2 : 0 5 zl <_ 1, 0 5 2 2  5 2, 11 + zz 2 I} 
Choose the convergence criterion e = 0.01 and construct 

a simplex S = {z E R2 : 2 1  > 0, 2 2  1 0, "1. + 
1 2  5 3) and its corresponding prism-P(= PO) with vertices 
( 3 , 0 , t ~ ) ,  ( 3 , 0 , t ~ ) ,  ( O 7 3 , t g ) ,  0 , 3 , t ~ ) ,  ( O , O , ~ B ) ,  ( O , O , ~ T  ,where 
tg = 0 and tT = 10000000. (Thus, these vertices have objective 
function values of -36, 9999964, 0, t T ,  0, tT respectively. From y), we obtain& = 1 and (zo,to) = ( O , l , O ) .  
teration 0: choose v: = (3,0,0), then find a y = 0.9168 such that 

zo = (0.4788,0.9168,0.9168)and+(zo) = 1.8691. Set& = U0 = 1, 
and form PI = PO n{ (z , t )  : CO(%, t )  = 3.8311 - t - 0.9168 5 0). 

With u k  - Ck < e, the algorithm terminates after 
5 iterations at an approximate optimal solution (z* , t * )  = 

2530 



0.0683,0.9364,0.0186) with the objective function value 0.9863. k hroughout the computation, 14 vertices are generated by cuts 
and maximum number of vertices stored in memory is only 2. But, 
the dgorithm in [ll] showed Zk = (0.125,0.875) with objective 
function value 0.9979 after 8 iterations. 
Problem 2 [e]: In this problem, we use Algorithms 1,2,3 to solve 
it and let Nk = N in parallel algorithms. 

minimize 
subject to: 

(4x1 + 2 1 3  - (4x3  
1: - 211 - 2x2 - 1 5 0, 
-1 5 I 1  5 1, 

Let f(x) = 4x1 + 21:, g(z) = 4x:, then we have (CP) problem 

-1 5 I 2  5 1, 

minimize {t - g ( x )  : (I, t )  E D) 

whereD = {(z,t) E lR3 : f(z)-t 5 O , x ~ - 2 1 ~ - 2 x 2 - 1  5 0,-1 5 
x1 5 1,-1 572 <_ 1) and tg = 0. Let e = 0.05 and construct an 
initialsimplex S = {x E Et2 : x1 2 -1,x2 2 -1,zi +cz 5 2) with 
vertices (3,-l), (-1,3 , (-1,-1). We obtain U0 = 0, (.‘,to) = 
(0,O) according to (231, (26). 
Algorithm 1: Choose uo =(0,0,0.5) and tT =10000000. w e  ob- 
tain v i  ~(3,-1,O) by evaluating t - g(s)  at (3,-l,O), (-1,3,0), 
(-1,-1,0). After a line searching, we find y = 0.8194, 
80 ~(0.5417,-0.1806,0.4097) and +!J(zo) = -0.7642. Thus, U1 = 
-0.7642. Form a new polyhedron 

pl = r){(l,t) E nt3 : 2.543711 - 0.722312 - - 1.0987 o )  
Continuing with the same procedure, the algorithm will stop at  
an approximate optimal solution (x*, t . )  ~(0.7171,-0.0103,1.0580) 
with objective function value -0.9990 after 16 iterations. There are 
90 generated vertices during the computation. 

If we employ the parallel method described in [lo], then the 
algorithm only needs 10 iterations to obtain the same accuracy. 
Algorithm 2: (Let Nk = N = 1, i.e. sequential algorithm) Par- 
tition the prism ( t ~  = 36) into 3 simplices according to (5), then 
subdivide them into 6 subsimplices by bisection. 
Iteration 0: we have U0 = 0, (no, to) = (O,O,O), PI = PO n { ( x ,  t) : 
Cg(x,t) 5 0, j = 1,2,3), where CA(x,t) = 16x1 + 412 - t - 14, 
C$(x,t)= - l6x1-4x2-t t14 ,C~(z , t )=  16~1-412-t-14.and 
I’Rll=8 with lower bounds -15.2, -4, -4, -4, -1.84, -1.84, -1.1579, 
-1.1579. Obviously, C1 = -15.2. 
Iteration 1: Solving the linear program (15), (16), we obtain A = 
(0.35,0.15,0.5,0). Thus (x’, t i )  =(0.7,-0.7,O). Since (x1,t1)4D, 

0). At the end of this iteration, I‘Rzl = 8, C2 = -11.4541,U2 = 0. 
After 114 iterations, the algorithm will stop at  an approximate 
optimal solution. 

Table 1 presents some computational results of Algorithms 
2,3 using different number of processors (results of Algorithm 2 by 
using equation 18 are shown in parentheses), where Nk = N and 
bisection is app I d  ie in subdivision process of simplices. 

Table 1: Results for Algorithm 2, 3 with N Processors 

formP2 = n { ( z , t )  : c , ( z , t )  = 5.48801~-2.800x~-t-3.8612 5 

Algorithm 2 I Algorithm 3 1 i ;;[;;{ I 114i91j 1 3 3 M  I ; I 2 I ;; 1 
112(92) 35(21) 

26(26) 92(93) 28(23) 33 27 
22(19) 98(87) 28(22) 36 29 

10 14(13) 104(104) 13(13) 8 55 18 

Iter: number of iterations 
N: number of processors 
Contno: number of added constraints 
Max: maximal number of simplices (Rk) stored 

Problem 3 [e]: Here, we apply Algorithm 1 (use serial procedure 
only) to solve the problem 

minimize 
subject to: 

(xt + 0 2  + 13) - (11 + Lj - 1 3 )  
(11 - 1 2  - 1.2)2 + x2 5 4.4, 
11 + 1 2  + 13 5 6.5, 
x2 2 1.6, 

~1 2 1.4, 
13 2 1.8, 

which was solved by Thoai ([fl,p525) and Horst et al. [SI with an 
e = 0.01. The former needs 81 iterations to obtain an approximate 
solution and the latter terminates after 18 iterations. But Algo- 
rithm l proposed in this paper only requires 4 iterations to achieve 
the approximate solution of the same precision. 

First, transform the original (DC) problem into a (CP) 
problem, where j ( x )  = 1: + x2 + 13, g(o) = m l  + xg - 
1 3 .  With an interior point uo = (1.4,1.6,1.8,8.0) and the 
same e , Algorithm 1 has an approximate optimal solution 
(z*, t.) =(1.4000,1.8095,1.8000,7.4511) at the end of the 4-th it- 
eration. 

6. Conclusion 
From our numerical results, the serial version of Algorithm 1 seems 
to be very efficient, a t  least for tested problems, compared with 
other methods ([11],[6], [7],p525). The same characteristics of the 
Algorithms 1 , 2 , 3  are that they have infinite convergence (although 
an approximate solution is achieved by a tolerance criterion), and 
that the linear constraints grow in size as the number of iterations 
increases. Algorithm 2 is much less efficient than the other two 
since not only it needs more iterations to solve the problems but also 
more linear constraints are generated in computation. Compared to  
the large amount of time saved due to the less iterations required 
in parallel processing for Algorithms 1, 2, 3, the communication 
overhead is unlike to have a significant effect. In conclusion, the 
Algorithms presented here can be expected to  produce promising 
results in parallel processing. 
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