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Abstract 
The Biaffine Matrix Inequality (BMI) is a potentially very 
flexible new framework for approaching complex robust con- 
trol system synthesis problems with multiple plants, multiple 
objectives and controller order constraints. The BMI prob- 
lem may be viewed as the nondifferentiable biconvex pro- 
gramming problem of minimizing the maximum eigenvalue 
of a biaffine combination of symmetric matrices. The BMI 
problem is non-local-global in general, i.e. there may exist 
local minima which are not global minima. 

While local optimization techniques sometimes yield good 
results, global optimization procedures need to be considered 
for the complete solution of the BMI problem. In this paper, 
we present a global optimization algorithm for the BMI based 
on the branch and bound approach. A simple numerical ex- 
ample is included. 

1 The Bilinear Matrix Inequality 
Problem 

This paper will be focus on the following problem introduced 
in [33]: 

Definition 1.1 (The B M I  Feasibilty Problem) Given 
prescribed matrcces F,,3 = FZ E RmXm, for z E (0,. . . ,n,}, 
3 E (0,. . . , nv} ,  define the bcafine function F : R"' x R"u + 
R m x m  ~ 

n, "9 n= nu 

,=I 3=1 *=1 ,=I  
F ( z ?  y) := &,o + ztF8,0 + yj Fo,3 + zly3F*,3 (1) 

Fznd, z j  zt ezcsts, (I, y) E R"* x RnU such that 

F ( z , y )  < 0 (2) 

For the rest of this paper, restrict (2, y) to some closed bounded 
hyper-rectangle X x Y c R"= x R"u where: 

x := [B:l,B:l] x ... x [B:nn.,B,u,,] 

Y := [By", , BZ] x . . . x [ByL,u, BK.1 
(3) 

(4) 

for some bounds -00 < Bt, 5 Bg < 00, i = 1 . .  . ,n,, and 
-ca < BL < B: < 00, j = l...,nv. 
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Notation will be standard. In particular, for symmetric 
matrices A and B, X{A} and X{A} refer to the greatest (most 
positive) and smallest (most negative) eigenvalues of A, and 
A > 0 means A{A} > 0, A > B means A - B > 0. Further 
for any vector z E R", llzllco := ma~e{l,,..,,) I.;[. For -a < 
BL 5 B" < 00, [BL, B"] denotes a closed interval c R. 

This paper will mainly be concerned with obtaining a 
global solution to the following problem: 

Definition 1.2 ( B M I  Eigenvalue Problem) Given the 
junction F : X x Y + Rmxm of (I), define 

The BMI Eigenvalue Minimization Problem is 

Clearly, there exists a solution ( z , y )  E X x Y to the BMI 
feasibility problem (2) if and only if 0 > min(+,v)EXxy A ( I ,  y). 

The Linear or Affine Matrix Inequality (LMI/AMI) frame- 
work of, e.g. [12, 29, 81, characterized by the problem 

min XEX I{ Fo + ZiFi} (7) 

where Fi = F:, is a special case of the BMI problem. 
The properties of the problem (6) were discussed in (181. 

In particular, it is shown that the function h(z ,  y) is biconuez, 
i.e. it is convex in z for y fixed and convex in y for I fixed. 
Further, it is non-local-global in general, i.e. the function 
A(z ,  y) may have local minima which are not global minima. 

While to is fairly straightforward to find at least one local 
minimum of the A ( I ,  y) in X x Y, the complete solution of the 
minimization problem, i.e. for some e > 0, find any (Z,$ such 
that A(S,g)  5 h(z ,y)  + E for all (z,y) E X x Y, is a global 
optimization problem. Global optimization is very hard in 
general in terms of computational effort required [21,31,25]. 

The next section will discuss the background to the BMI 
problem formulation and hence provide the motivation for 
investigating global optimization approaches for completely 
solving the BMI problem (6). 

2 Background and Motivation 
This section will discuss several important robust control syn- 
thesis problems that in general can not be recast as LMI or 
even convex optimization problems. For these problems the 
BMI framework offers a viable approach [33, 171. 

Consider first the p/K,-Synthesis formulation of the rw 
bust control problem [32,11]. It has been shown [33,17] that 
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the p/K,,,-Synthesis problem for fixed order multipliers and 
a fixed order controller is equivalent to the BMI problem of 
solving for the matrices T, S, P ,  W and Q such that the 
following matrix inequalities hold: 

3 Properties and Local Algorithms 
Several important facts about the BME problem are listed. 
See [I81 for details. First note that h(s,y) is nondifferentiable 
but continuous. However, expressions for its subdifferential 
at any given (zo, yo) may be obtained. 

Proposition 3.1 A(s ,  y) of (6) is Lipschitzion on X x Y .  
This follows trivially from the fact that the subdifferential 
of A(z,y) is uniformly bounded over the bounded domain x x Y. 

Consider any closed hyper-rectangle Q c X x Y of the 

berm{ [ -T w 0 ] ( h T  -t UMTQVMT)) > 0 

P >  0, - hmm{P(Ro, + Ua,QVa,)} > 0 

> 0 berm{ [ : ; 14 
where M, RMT, UMT, VMT, a,, UG,, VQ, are known/prescribed 
matrices. 

It is an added bonus that, under mild assumptions, a wide 
array of robust control synthesis problems may also be ex- 
pressed in the BMI formulation, e.g., any robust controller 
synthesis problem consisting of any combinotion of the fol- 
lowing may be expressed as a BMI feasibility problem: 

0 Multiple objective synthesis, i.e. combinations of p /  Km- 

0 Synthesis of one controller for multiple plants, including 

0 Controller synthesis with controller order, structure, 

Such problems have been studied previously in, e.g., [5, 23, 
24, 28, 4, 201. 

Further, the BMI is obviously applicable as a controller 
parameter tuning framework, particularly within an integrated 
computer-aided control systems analysis and synthesis pack- 
age, e.g. such as the one suggested in [6]. 

As would be expected, the immenseflexibilty the the BMI 
fomulation offers has a price in that the resulting optimiza- 
tion problem is no longer convex, quasi-convex or even local- 
global. However, the lack of such properties does not mean 
that BMI problems are unsolvable. On the contrary, for the 
BMI: 

Synthesis, 31" and positive real synthesis. 

the Two-Disk 31" problem. 

and/or stability constraints. 

Since the problem is bilinear, one obvious (although 
suboptimal) way to obtain local solutions is to solve the 
BMIs as alternating LMIs. 

There is no reason why a local minimum of A(z, y) with 
respect to (z, y) jointly cannot be found. 
Using existing robust controller synthesis and model 
reduction techniques, it is possible to generate initial 
conditions which have a high likelihood of being near a 
solution to (2). 

Local minimization procedures coupled with the ability to 
make good initial guesses are often sufficenit to give signifi- 
cantly improved results compared with other currently avail- 
able approaches, e.g. see [17]. 

It may also be noted the other robust control problems 
or problem formulations which lack the local-global property 
include the calculation of the multivariable stability margin 
(Km = t) of a plant, e.g. [lo, 3, 271, LMI problems with rank 
constraints, e.g. [13, 91, and the optimization over Riccati 
equation constraints approach of, e.g., [5, 191, for the reduced 
order controller case. 

form 

Given any Q, define the hyper-rectangle W(Q)  C RnrXnV 
as follows: 

where wi,j denotes the i , j t h  element of the matrix W .  Define 
the o s n e  matrix function of x ,  y and W ,  

where W E W(Q) .  Define also 

A d z ,  Y, W )  := x { F t ( x ,  Y, W ) )  (13) 
The following result is then obvious: 

Propos i t ion  3.2 

The proof follows immediately from the fact that if (.z,y) E 
Q, then the dyad syT E W(Q). 

The minimization (6) is very closely related to the LMI 
eigenvalue minimization problem which has been extensively 
studied. The approaches based on the interior point methods 
[26, 22, 7, 35, 151 have bcen particularly succesful. 

A straightforward way to use currently available LMI al- 
gorithms to obtain "local solutions" to a BMI problem by al- 
ternatingly minimizing A(z, y) with respect to z with y fixed 
and vice versa. This approach is not guaranteed to converge 
to a stationary point of A ( s ,  y) due to the non-smoothness of 
the function. 

Another simple extension of LMI techniques to the BMI 
problem is based on the Method of Centers [22,7]. Given the 
biaffine matrix function F ( s ,  y)  of ( I ) ,  introduce 

-log det[al  - F ( z ,  y)], X(a1 - F ( z ,  Y)} > 0 
other wise 
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Note that the barrier function & ( z , y )  is convex in ( z ,a ) ,  
and also convex in ( y , a ) .  Furthermore, for all ( z , y )  such 
that X{aZ - F ( z , y ) }  > 0, & ( z , y )  is smooth and at least 
twice differentiable, with derivatives given in [HI. Algorithm 
3.1 as defined in Table 1 is then guaranteed to converge to a 
local minimum of A(z,  y). 

Algori thm 3.1 Method of Centers  for BMI [18]. 

I. A z c > 0 , 6 > O a n d B ~ [ O , l ] .  
Set (do), y(O)) := (O,O), a(') := 6 + A(do) ,  y(O)), k := 0. 

II. Repeat, { 

R1 ( d k + l ) ,  Y ( ~ + ' ) )  := arg minr$,p,(z, y) .  

RI := (1 - B)A(z(k+'),y(k+')) + o a ( k ) .  

R3 k : = k + l .  

} until A(z(~- ' ) ,  y("-')) - A ( x ( ~ ) ,  Y ( ~ ) )  < L .  

Table 1: Algorithm 3.1. 

In Algorithm 3.1, the minimization in Step R2 is a local 
minimization with initial point ( ~ ( ~ 1 ,  y@)). Note that the local 
minimization in Step R2 guarantees that the solution will 
converge to a local minimum of A ( r ,  y). 

For more complete solution of the BMI problem (6), global 
optimization techniques need to be examined. Any global op- 
timization problem is, of course, inherently difficult. It should 
also be noted that in general, global optimization problems 
are NP-hard, e.g. [25]. This, of course, does not mean that 
the problems are unsolvable, only that they will require a lge  
rithms which will not have polynomial time bounds, unlike, 
say, LMI or linear programming problems. 

4 BMI Branch and Bound Algo- 
rit hm 

A branch and bound algorithm for the BMI is presented in 
this section. Much of the following notation and terminology 
is from [3, 21 although the global optimization text [21] may 
also be consulted. 

Before presenting a branch and bound algorithm for the 
BMI, it should be note that it is theoretically possible to 
establish the global optimum to any given tolerence by ez- 
haustiuely gridding the entire domain. This follows from the 
fact that A(z,  y )  is Lipschitz over any bounded domain. The 
branch and bound approach may be regarded as a clever way 
of gridding that uses upper and lower bounds to progressively 
refine the areas it needs to grid, therefore avoiding the need 
to grid the entire domain. 

4.1 Upper and Lower Bounds 
The objective is to minimize A(z, y)  over the domain X x Y .  
The basic requirement for a branch and bound algorithm for 
minimizing A(z) y)  is for the existence of two functions, @ L  
and @ U ,  on the family of hyper-rectangles of the form (8) 
such that the following conditions hold: 

C1. @ L ( Q )  gives a lower bound and @u(Q) an upper bound 

@ d Q )  I min A ( z , y )  I %(e) (16) 

on mZn(z,g)~QA(z, Y), i.e., 

(z.v)EQ 

for every hyper-rectangle Q c X x Y .  

C2. Let Size(Q) denote the length of the longest side of 
the hyper-rectangle Q, then as Size(Q) \ 0, @u(Q) -. 
@ L ( Q )  \ 0 uniformly, i.e., 

such that: V Q c X x Y, V L > 0 3 6 > 0 

Size(Q) < 6 + @u(Q) - @ L ( Q )  < L (17) 

Define the following functions on the family of hyper- 
rectangles of the form Q c X x Y :  

Clearly, for any Q, @u(Q) may be obtained from Algorithm 
3.1. Also, @L(Q) is merely the solution to an LMI problem 
over Q x W(Q), and can be calculated fairly efficiently [15, 
351. 

Theorem 4.1 @U and @ L  as defined in (18) and (19) fulfil 
conditions C 1  and C2. 

Proof: That @U and @ L  satisfy condition C1 follows 
from Proposition 3.2. 

From the inequality X{A + B} 5 X{A} +X{B}  for hermi- 
tian matrices, and defining v i j  := v ; j ( s i ,  yj, w i j )  = z i y j - w i j  

+ A(x*, y') - AL(x*, y*, W') 5 I{ 5 5 vtjE, ,}  

where (z*, Y', W') := argmiqz,,)Ee.wEw(e) A d z ,  Y, W ) ,  and 
:= vi,j(zf,yjf, w:,~). Note that 

Size(Q) 5 6 
+ Size(W(Q)) I S(Bz + By +6) 
+ v i j  I 26 (& + By + a), 

i=l j=1 

V i  E (1 ,..., n % } ,  V j  E ( 1 , . . . , n y )  

and define A(Q): 

A(Q) := @ u ( Q ) - @ L ( Q )  
= min A(z ,y )  - min h ~ ( z , y , W )  

(z,u)EQ (z,Y)EQ,WEW(Q) 

Now, since min(z,,)EQ A(z, y )  5 A(z*, y') by definition, and 
A(Q) 2 0, it follows that 

so that condition C 2  follows. Q. E. D. 

201 1 



4.2 A BMI Branch and Bound Algorithm 
Given the functions @u(Q) and Q I L ( Q ) ,  it is straightforward 
to  adapt the branch and bound algorithm given in [3, 2) to 
globally minimize A(%, y), see Table 2. 

Algori thm 4.1 Branch and Bound Algori thm for BMI 

I .  

ZI. 

Fix c > 0. Set k := 0, 80 := X x Y, so := { Q o ) .  
C O  := @L(QO),  U0 := @u(Qo). 

Repeat { 
Rf. Select from Sk such that Lk = @L( 0). 

R2. 
R9. 

R4. 
R5. 
R6. 
R 7. 

Table 2: Algorithm 4.1 

In Algorithm 4.1, s k  is the collection of hyper-rectangles 
{Ql,QZ,. . ., Q i )  after k iterations, where k 5 k. At the 
( I C  + 1)th iteration, 0, the rectangle in sk with the smallest 
lower bound, @~(Q)_ is  identified, and split along its largest 
side into rectangles Q1, and Q 2  (Step R2). &+I is formed by 
discarding e from &. 

The lower bounds corresponding to 01, e d  &, @~(01) 
and @L(&) ,  arz calculated. If @ L ( Q d  > u k ,  Qi is discarded, 
otherwise @u(Q;) is calculated and Q; is added to &+I. 

The new estimate for the upper bound, Uk+1 is the low- 
est upper bound of the Q E &+I, see Step R4. Using 
Uk+l, &+I is pruned to remove hyper-rectangles for which 
the global minimum cannot occur, since their lower bounds 
exceed the current upper bound Uk+l. The pruning step R5 is 
not strictly necessary, but is required to minimize the number 
of hyper-rectangles stored. The new estimate for the lower 
bound L k + l  is the smallest lower bound of the Q E &+I. 

Note that necessarily, 

0 iP~(01) and @ ~ ( & 2 )  cannot be less than L k ,  and 
0 Size(Q1) and Size(Q2) cannot exceed Size(@, and the 

“volume” of the rectangles Q1 and Qz will be half that 
of Q1. 

i.e. heuristically, it can be Seen that the lower bound L k  and 
the hyper-rectangle containing the smallest lower bound will 
be successively refined. The details on the finite time con- 
vergence of the above standard branch and bound algorithm 
may be found in, e.g. [Z]. 

Theorem 4.2 Algorithm 4.1 terminates in finite time. 

This follows from the fact that @U and @L fulfil conditions 
C1 and C2. An example of the performance of Algorithm 
4.1 is given in the next section. 

It should also be noted that if only the BMI feasibility 
problem is of interest, i.e. if it is desired only to find (z,y) 

‘such that A(x,y) < 0, then the upper bounds uk may be 
set to 0 always, and the algorithm is terminated if either 
%,(Q) < 0 for some Q or if L k  2 0. 

4.3 Remarks 
The key to Algorithm 4.1 is the development of the lower 
bound function @L,  which exploits the bilinearity of the prob- 
lem. However, the use of the lower bound of (14) is possibly 
very conservative. If the geometry of the BMI problem is 
such that the lower bound of (14) is conservative, then the 
convergence of Algorithm 4.1 will be slow. 

Even though convergence to a global minimum is guar- 
anteed in Algorithm 4.1, it may not be practical to apply 

; the  algorithm to obtain complete solutions to even moder- 
ate sized robust control synthesis BMI problems due to the 
large computational load imposed by Algorithm 4.1. How- 
ever, Algorithm 4.1 is probably more efficient compared to, 
say, gridding the entire domain of the BMI in question. 

Note that Algorithm4.1 differs from the branch and bound 
approach suggested in (3, 21 in the sense that the upper and 
lower bounds functions used in [3, 21 are derived from con- 
trol theory considerations. In contrast, the upper and lower 
bound functions @U and @L used in Algorithm 4.1 are derived 
purely from the BMI formulation of (2) itself. 

The geometrical aspects of the BMI feasibility problem 
were discussed in [HI. In particular, the BMI problem was 
shown to be equivalent to that of finding a hyperplane sep- 
arating a given matrix numerical range (field of values) and 
the origin, subject to the constraint that the hyperplane being 
generated by a dyad. The connection between that viewpoint 
and the lower bound of Proposition 3.2 is obvious. 

A related approach to the BMI problem is that of [34], 
which showed that the BMX feasibilty problem may be re- 
duced to the problem of finding the maximum norm element 
in an intersection of ellipsoids centered at the origin: a convex 
mazimization problem, which again requires global optimiza- 
tion techniques. 

4.4 Other Global Approaches 
There are several references in the mathematical program- 
ming literature to  branch and bound methods for biconvex 
and bilinear problems, e.g., [ 1, 211. Also available is the Ben- 
ders decomposition (see [16] and references therein) which 
leads to the primal-relaxed dual algorithm of [14]. The al- 
gorithm of [14] is of particular interest. However, it requires 
closed form formulae for the gradients of the function to be 
minimized, which is unavailable in the BMI context. 

Another obvious approach to the BMI global optimiza- 
tion problem is to use multistart methods, e.g. [30]. Various 
“intelligent” optimization methods may also be used. How- 
ever, unless the underlying structure of the BMI problem is 
exploited, it is doubtful whether these methods will offer any 
improvement over Algorithm 4.1. 
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Table 3: Local Minima of A(%, y) of (21). 

5 A Simple BMI Example 
Consider a simple BMI problem with its its corresponding 
LMI: 

0 

-1 

2 

- ...__ .__ &.?.?.?.:.: 

........... , : _ _ - - - - a  

-10 -0.5 -2 -1.8 -0.1 -0.4 
-0.5 4.5 0 ] + y [ -0.1 1.2 -1 ] 
[ 0 -3 - 1 1  [ 2  3 0 1  3.5 0 0.5 1 1.5 

-0.5 4.5 0 ] + y  [ -0.1 1.2 -1 ] 

- 
-2 0 0 -0.4 -1 0 

9 0.5 0 0 0 2  - ......... .......................... I ........,. ........... . .  : 
: /  

\ I  ‘ j  :, + I  0 5  0 -3 + s y  0 -5.5 3 (21) 
2 

-10 -0.5 -2 -1.8 -0.1 -0.4 X 

-2 0 0 -0.4 -1 0 Figure 1: Contour Plot of x{F(s,y)}, with trajectories of Al- 
9 0.5 0 gorithm 3.1, the local optimization algorithm. Circles denote 

the local maxima. 

For this particular example, the objective isJo minimizeX{F(s, y)} 
for ( s ,y) f  [-0.5,2] x [-3,7]. Note that F ( l , O , l )  = - I ,  so 
that minX{FL(s,y,w)} = -1 

It should first be noted that that there are three local 
minima, as given in Table 3. 

Figure 1 gives the contour plots of X{F(s,y)}, and the 
trajectories of the BMI local optimization algorithm, Alge 
rithm 3.1. 

The global optimization algorithm, Algorithm 4.1, required 
24 iterations to reduce the difference between the minimum 
upper bound and the minimum lower bound, uk - L k  to 
within 0.5% of uk. The eglobal minimum was found to be 
P = 1.0488 and p = 1.4178, and U24 = A(?, i )  = 0.9565. The 
best lower bound to A(s ,  y), L2.r = 0.9603. Figure 2 
shows the partitions generated by Algorithm 4.1. The end- 
points of the local minimization algorithm, Algorithm 3.1, for 
each partition are also shown. 

The progress of Algorithm 4.1 is shown in Figure 3. Note 
that the global minimum is found fairly early, and the re- 
mainder of the iterations are devoted to tightening the lower 
bounds. 

X 

Figure 2: Contour Plot of x{F(s,y)}, with partitions gener- 
ated by Algorithm 4.1 shown. Circles are local minimization 
endpoints. 6 Summary and Conclusion 

t 0- 

. .  
The Biaffine Matrix Inequality (BMI) formulation is a very 
flexible framework for approaching complex control system 
synthesis problems. The robust control synthesis problems 
that fall within the BMI framework include, e.g., the pIK,,,- 

controllers, multiobjective synthesis and the synthesis of one 
controller for multiple plants. 

The BMI formulation leads to biconvex optimization prob- 

minimum may not be a global minimum, and it is gener- 
ally hard to verify that a local minimum is indeed a global 
minimum. While local optimization approaches often yield 

d 
Synthesis problem with fixed order multipliers and fixed order ............... ...... 

. .  . .  . .  . .  

. .  . .  

. .  

3 0 -  
0 s 7 0  ,* 

,-*a 
D s 4 0  ,s Lo 

lems which are often difficult to completely solve, i.e. a local I lrrs-” 

Figure 3: Progress of the upper and lower bounds, u k  and 
L,k, and the logarithmic plot of the difference, uk - L k .  
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sufficiently good solutions, it remains important to investi- 
gate methods for finding a solution that is guaranteed to be 
a global minimum within some given tolerence. 

The contribution of this paper is that it provides a branch 
and bound global optimization algorithm for the BMI prob- 
lem that is guaranteed to find a global minimum of the BMI 
problem to any arbitrary tolerence in finite time. The branch 
and bound algorithm provided exploits the bilinearity of the 
problem structure and builds on the recent advances in solv- 
ing convex LMI type problems. A simple BMI example is 
included. 
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