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1. INTRODUCTION

The Bilinear Matrix Inequality (BMI) has been
introduced by (Safonov et al., 1994; Goh et al.,
1994) as a geometric reformulation of many prob-
lems in robust control. The BMI is a generaliza-
tion the Linear Matrix Inequality (LMI) approach
to control synthesis that has been employed by
various authors | see, for example, (Stoorvogel
and Trentelman, 1990; Packard et al., 1992; Boyd
et al., 1993; Packard et al., 1993; Becker et al.,
1993; Iwasaki and Skelton, 1993). As was shown
in (Safonov et al., 1994), the basic form of the
BMI problem is:

Problem 1 (Bilinear Matrix Inequality | BMI)
Given Hij (i = 1; : : : ; n; j = 1; : : : ;m) symmetric
matrices of dimension k� k, �nd x 2 Rn,y 2 Rm

such that

mX
j=1

nX
i=1

xiyiHij < 0: (1)

It is possible (Safonov et al., 1994) with the
aid of suitably chosen \sector transforms" to for-
mulate many (perhaps even most) of the prob-
lems considered in the robust control literature
as BMI's. Such problems include �xed-order H1

control, �=km-synthesis, decentralized control, ro-
bust gain-scheduling, simultaneous stabilization,
and arbitrary combinations of these.

Thus, the solution of the BMI (1) may be regarded
as the central problem in robust control. If a reli-
able method can be devised to solve general BMI
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near matrix inequalities (BMI's) have a non-empty
ertain convex set is greater than two. The convex
psoids centered at the origin. This gives a new and
road class of robust control synthesis problems that
H1problems, �=km-synthesis, gain-scheduling, and

ramming, matrix inequalities; linear systems; opti-

problems, then all of the aforementioned robust
control synthesis problems will be solved.

For example, an immediate consequence of the
positive real lemma (e.g., Anderson and Vongpan-
itlerd, 1973) is that the problem of synthesizing a
constant output feedback u2 = Fy2 for the plant2
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so that the closed-loop transfer function Ty1u1(s)
is positive real is equivalent to the problem of �nd-
ing scalars p0,f0 and matrices ~P; ~F such that the
following matrix inequality is satis�ed:

herm

��
f0 ~Z 0

0 ~Z(f0R+ U ~FV )

��
> 0 (3)

subject to

~Z =

�
~P 0
0 p0I

�
; ~P = ~PT (4)

where (cf. Packard et al., 1992)

~F
�
= f0F (I �D22F )

�1; ~P
�
= p0P (5)

R
�
=

�
A B1

C1 D11

�
(6)

U
�
=

�
B2

D12

�
(7)



and

V
�
=
�
C2 D21

�
: (8)

Evidently, condition (3) is linear in p0; ~P , linear
in f0; ~F and hence bilinear in p0; f0; ~P; ~F . That
is, condition (3) is a BMI and can be represented
in the form (1).

We note that the approach of Packard (1992)
could be used to reduce the positive real synthe-
sis BMI to an LMI if the controller's order were
allowed to be the same as the plant's. Alterna-
tively, the related techniques of Iwasaki and Skel-
ton (1993) could be employed to enable positive
real synthesis to be reduced to a pair of LMI's with
a nonlinear coupling condition, but this technique
is not applicable to all BMI's and, in any case,
the nonlinear coupling seems to produce compli-
cations which make solutions di�cult to compute.
The attraction of the BMI representation of ro-
bust control problems is its simplicity and its gen-
erality. The ellipsoidal intersection interpretation
of the BMI which we will describe is an even fur-
ther simpli�cation, without any loss of generality.

The purpose of the present paper is to show that
the study of the BMI problem is equivalent to
studying whether the diameter of a certain con-
vex set is greater than two. The convex set in
our case turns out to be simply the intersection of
ellipsoids centered at the origin in Rn+m; so the
diameter is precisely twice the radius.

A conceptual algorithm for addressing the BMI
problem in this context is also presented. It
should be pointed out that besides its simplicity,
the problem of �nding the diameter of a convex
set is a nonconvex programming problem, since
it amounts to maximizing a convex function sub-
ject to a convex constraint set, a fact that attests
to the di�culty of the very broad class of robust
control problems represented by the BMI.

In the following we shall employ the notation
�max(H) to denote the greatest eigenvalue of a

hermitian matrix H and the notation �max(G)
�
=p

�max(G�G) to denote the greatest singular
value of a matrix G.

2. DIAMETER OF ELLIPSOID
INTERSECTIONS

In this section we present our main result | a
lemmawhich establishes equivalence of solving the
BMI with the problem of computing the diameter
of the intersection of ellipsoids.

We began by noting that the BMI (1) is equivalent

to

max
kzk=1

z2Rk

xTG(z)y < 0 (9)

where

[G(z)]i;j = zTHijz 2 Rn�m: (10)

Let � be a real positive number such that

� > max
kzk=1

��(G(z)) (11)

and let C � Rn+m be the convex set

C
�
= fw j wTQ(z)w � 1; z 2 Rk; kzk = 1g (12)

where

Q(z) =

�
I 1

�
G(z)

1
�
GT (z) I

�
: (13)

Notice that, by (11), the matrix Q(z) > 0 for all
kzk = 1. It follows that the set C is the intersec-
tion of ellipsoids in Rn+m.

Our main result is the following lemma:

Lemma 1 (BMI Diameter) There exists a pair
(x; y) such that the BMI (1) holds if, and only
if, the diameter of C is strictly greater than 2;
i.e.,

2 < max
w1;w22C

kw1 � w2k: (14)

Proof: (() Suppose that C has diameter strictly
greater than 2. C is the intersection of an in�nite
number of ellipsoids and thus its maximumdiam-
eter is achieved at some �w1 = (�x; �y) in the bound-
ary of C and, by symmetry, also at �w2 = � �w1. It
thus holds that

�wT
1 Q(z) �w1 � 1; 8z; kzk = 1 (15)

where

�w1
�
=

�
�x
�y

�
(16)

and

k �w1k = k�xk2 + k�yk2 > 1: (17)

Inequality (15) is equivalent to

k�xk2 + k�yk2 +
2

�
�xTG(z)�y � 1; 8z; kzk = 1 (18)

from which it follows that

2

�
�xTG(z)�y � 1� (k�xk2 + k�yk2) < 0: (19)



Thus

�xTG(z)�y < 0; uniformly in z; kzk = 1: (20)

and consequently �x; �y satisfy (1).

()) Suppose (�x; �y) satisfy (1). Without loss of
generality we may assume k�xk2 + k�yk2 = 1. It
then holds that�

�x
�y

�T
Q

�
�x
�y

�
= k�xk2 + k�yk2 +

2

�
�xTG(z)�y

(21)

= 1 +
2

�
�xTG(z)�y (22)

< 1 (23)

uniformly in z; kzk = 1. Thus the radius of the set
C is strictly greater than (k�xk2+k�yk2) = 1. Since
C is hermitian and centered about the origin, the
diameter is precisely twice the radius. Hence, the
diameter of C is strictly greater than 2.

3. DISCUSSION

The �'s used in (13) may all be the same or they
may be chosen to depend on z. All we need is to
guarantee that

Q(z) =

�
I 1

�
G(z)

1
�
GT (z) I

�
> 0 (24)

and thus we can take � to be z-dependent, e.g.,

� = �(z) > ��(G(z)): (25)

Finding a di�erent � for each z is a laborious task.
A single constant � that will satisfy (11) for all
z can be easily be computed by via the matrix
inequality

��(Q) � ��(abs(Q(z))) � ��( �Q) (26)

where ij-th entry of the the n � m matrix �Q is
given by

[ �Q]ij = ��(Hij): (27)

In view of Lemma 1, the following statement is
obvious: Consider the optimization problem

max
x;y

J
�
= kxk2 + kyk2 (28)

subject to

�
x
y

�T � I 1
�
G(z)

1
�
GT (z) I

��
x
y

�
� 1

8z 2 Rk; kzk = 1: (29)

Then, there exists a pair (x; y) solving (1) if, and
only if, the global optimum of (28) is strictly
greater than 1; note that since all points of the
form (x; y) = (x̂; 0) or (x; y) = (0; ŷ) with kx̂k =
kŷk = 1 satisfy (29), the optimumof (28) is always
greater than or equal to 1. Actually, instead of
solving the problem (28) for its global optimum,
all we need is a point (x; y) where J(x; y) > 1.
Note that (28) is a nonlinear programming prob-
lem where a convex function is to be maximized
subject to an in�nite number of quadratic con-
straints (parameterized by z) all of which are el-
lipsoids centered at the origin.

Problem 1 can also be written as:

Problem 10 Find an n � m matrix N of rank 1
(viz., N = xyT ) such that for all z with kzk = 1

< G(z); N > = trace(NTG(z)) (30)

= xTG(z)y < 0: (31)

That is, in the Hilbert space of n�m real matrices
with inner product < B;A >= trace(ATB), �nd a
hyperplane that strictly separates the origin from
the set W = fG(z) j kzk = 1g and in addition
it should hold that the matrix N that de�nes the
perpendicular to this hyperplane is of rank one.
In the absence of the restriction rank(N ) = 1,
the problem may be interpreted as a linear matrix
inequality (LMI), which is a special kind of linear
programming problem having an in�nite number
of constraints, viz.

�� = min
�;N

� (32)

subject to

< N;G(z) > � �; 8z; kzk = 1 (33)

j[N ]ijj � 1; 8i = 1; : : : ; n; j = 1; : : : ;m

(34)

and a solution exists if and only if the minimal cost
�� < 0. If the rank of N is restricted to be less
than minfm;ng, the LMI/linear-programming
formulation fails. Actually, if the restriction on N
is rank(N ) = ` < minfm;ng, then we can write

N =
X̀
i=1

xiy
T
i (35)

and thusly transform the problem into one of
the same type as (28) or the one described in
Lemma 1.



4. A CONCEPTUAL ALGORITHM

In order to solve (1) we can solve a sequence of
problems of the type (28), each one having a �nite
number of inequalities. At the beginning of Step
k, assume that the points z(1); : : : ; z(k�1) have
been generated from an arbitrary initial guess z(1)

with kz(1)k = 1. Then, the k-th step of the algo-
rithm is:

Step k Solve for a globally maximizing pair (x; y)

J
(k)
� = maxJ

�
= kxk2 + kyk2 (36)

subject to

�
x
y

�T " I 1
�(i)

G(z(i))
1
�(i)

GT (z(i)) I

# �
x
y

�
� 1;

8i = 1; : : : ; (k � 1): (37)

If the global minimumJ
(k)
� = 1, stop; the problem

(28) is infeasible. If J (k)� > 1, let the solution be
(x(k); y(k)) and solve

max
kzk=1

zT �H(x(k); y(k))z (38)

where

�H(x(k); y(k)) =
nX
i=1

mX
j=1

x
(k)
i y

(k)
j Hij: (39)

Note that the maximal value in (38) is the maxi-
mal eigenvalue �max( �H). Take z(k) 2 Rk to be
a maximizing z in (38), viz. z(k) is any unit
norm eigenvector of the matrix (39) associated
with �max( �H). If �max( �H) < 0, we stop and
x(k); y(k) provide a solution of (1); otherwise, we
choose �(k) > �max( �H) and go to Step k + 1.

It can be shown that this process will stop in a
�nite number of steps if (1) has a solution; other-
wise, (1) is infeasible.

It should be pointed out that solving (36) for the
global maximum may be quite a time consuming
problem, although there exist several algorithm
for solving nonconvex maximization problems of
this type | see, for example, (Horst and Tuy,
1990; Horst et al., 1991; Liu and Papavassilopou-
los, 1994).

Notice �nally that it is not necessary to solve (36)
for the global maximum but we can stop as long
as a point x(k); y(k) with kx(k)k2+ky(k)k2 > 1 has
been generated. This may be detrimental to the
speed of convergence of the algorithm but avoids
spending a lot of time in �nding the global max-
imum of (36). If one chooses to do this, it might
be advisable now and then to solve (36) globally.

5. CONCLUSION

The solution of Bilinear Matrix Inequality (BMI)
problems has been shown to be equivalent to de-
termining whether the diameter of certain convex
set determined by intersection of ellipsoids, cen-
tered at the origin in Rn+m, is greater than two.
This provides a new and conceptually simple ge-
ometric perspective on the very broad class of ro-
bust control problems that can be formulated as
BMI's. Additionally, we have described a concep-
tual algorithm for determining the radius (half the
diameter) of this intersection of ellipsoids. The
nonconvex nature of the optimization (36) in our
algorithm underscores the fact that, while BMI
robust control problems are conceptually simpli-
�ed by our new geometric interpretation in terms
of the diameter of intersections of ellipsoids, the
e�cient computation of globally optimal solutions
to general BMI robust control synthesis problems
may still be di�cult.
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