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Abstract 
Many robust control synthesis problems, including p/km- Syn- 
thesis, have been shown to be reducible to the problem of finding 
a feasible point under a Biaffine Matrix Inequality (BMI) con- 
straint. The paper discusses the related problem of minimizing 
the maximum eigenvalue of a biaffine combination of symmetric 
matrices, a biconvex, nonsmooth optimization problem. Vari- 
ous properties of the problem are examined and several local 
optimization approaches are presented, although the problem 
requires a global optimization approach in general. 

1 Introduction 
In [35], it is shown that a wide variety of key robust control 
synthesis problems may be reduced to BMI feasibility problems. 

Definition 1.1 (The BMI Feasibility Problem) Given mu- 
trices Fj,j = 45 E R""", f o r  i E (0,. . . nz}, j E {O,. . .ny}. 
Define the biufine function F : R"" x RnS + Rmxm: 

ns "U nl n v  

i=1 ,=I i=l j=1 
F(z, Y )  := F0,o + x~iF;,o + yjF0,j + Ziyjpi,j (1) 

Find, if it exists, (x,y) E R"= x Rnu such that 

F(x,zl)  > 0 (2) 
Clearly, a Linear or Affine Matrix Inequality (LMI/AMI) 

constraint (see [6] and references therein) is a special case of 
(2). 

Define the function 

A(z,y)  := -X{F(x,y)} (3) 
and consider the following biconvex nonsmooth optimization 
problem: 

It is obvious that the solution set to the BMI feasibility problem 
(2) is nonempty if and only if 

min A(x,y) ,  (x,y) E Rnr x Rnu (4) 

0 > min A(x,y)  
(w) 

This paper discusses the properties of the function A(x, y) 
and various preliminary approaches for minimizing i6. The or- 
ganization is as follows: basic properties and trivial cases for (4) 
are discussed, and upper and lower bounds are derived. A geo- 
metrical viewpoint is then presented. Various local optimization 
approaches are discussed. A brief overview of applicable global 
optimization approaches is also included. 
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R,RP,RPXq The sets of real numbers, of ydimensional real 
vectors, and of p x q real matrices, respectively. 
i j th  element or submatrix of matrix X .  
A matrix with i j th element given by I E R. 
The vector and matrix transposes, respectively. 
X E Rpxp is symmetric positive definite. 
The least eigenvalue of square matrix X .  
The greatest eigenvalue of square matrix X .  

The inner product of matrices X ,  Y of 
same dimension, (X, Y )  := tr{YTX}. 
The Euclidean norm on vector x ,  := a. 
The unit sphere in Rp, {z E Rp : (11112 = 1). 
The Frobenius norm on matrix X ,  := d m .  
The convex hull of a set X. 

tr{X} := xi X ( i ,  i). 

Table 1: Notation 

1.1 Background: Eigenvalue Optimization 
Problems 

A brief survey of previous work on eigenvalue optimization is 
presented. An extensive survey is found in [6]. 

Standard early references on perturbation theory for eigen- 
values of matrices are [3S, 251. An early investigation into the 
problem of optimizing eigenvalues of matrices is given in [SI, 
which established the nonsmoothness of the problem and pro- 
posed a generalized gradient descent type algorithm. It is of 
interest to note that considerable attention was devoted to sin- 
gular value (and hence eigenvalue) optimization based on gen- 
eralized gradients in the early robust control literature [lo, 331. 

A quadratically convergent algorithm for minimizing the 
largest (in absolute value) eigenvalue of an affine combination 
of symmetric matrices is given in [31]. The numerical range ap- 
proach is used in [ll, 21, the key concept being the reduction of 
the LMI problem to the problem of finding the minimum norm 
point in the convex hull of a numerical range [16]. 

Approaches based on interior point methods [22, 12, 241 have 
recently gained prominence, e.g., [28,23,5,37], particularly with 
regard to generating polynomial time algorithms. 111 fact, a 
commercially available software package, LMI-LAB, for solving 
LMIs based 011 interior point methods has been introduced [14]. 

2 Preliminaries 
We will now discuss the properties of a BMI. Table 1 provides 
a summary of our notation, which is standard. 

There are certain cases where the solution to the BMI (2) is 
trivial, or where the BMI reduces to an AMI. For example, if 
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Fi,j = 0 for all i = 1,. . . ,n,, j = 1,. . . , n y  then F ( x ,  y) > 0 is 
in fact an AMI in (2, y). Also, obtaining a feasible point for the 
BMI (2) is trivial whenever any one of the Fi,j is sign definite. 
Further, note that if any of the AMIs in x: Fo,o+C?:~ xiFi,o > 0, 
2 ; b , o + F o , j + C ~ ~ ~ x ; ( F j , o + F j , j )  > 0 , j  = 1 ,..., ny, has asolution, 
then the solution to the BMI problem (2) trivially follows. The 
game holds for the corresponding AMIs in y. 

If the BMI constraint is linear in at least one of the variables, 
jay x, then F(x,y) > 0 w F(nz,y) > 0 for all K > 0, i.e. 
the feasible set of (2) will be unbounded if it is non-empty and 
maxX{F(x, y)} is either unbounded or negative. 

Further, if the BMI is actually linear in both I and y, then 
F ( z , g )  > 0 e F ( ' E ~ ~ , K , ~ )  > 0 V K ~ K ,  > 0. Hence if the 
feasible set is non-empty, it is unbounded. 

2.1 Upper and Lower Bounds 
The next few facts arise from the inequalities 

- X{A} + X{B} 5 X { A  + B }  I X { A }  +A{@ ( 5 )  

which hold for all symmetric A, B,  [38]. We first have the fol- 
lowing facts about the affine matrix function H ( x )  := H, + 

xiHi from [23] (all maximizations being over x E R"): 

X { Z i o }  5 maxX{H(z)l (6) 

ma.xX{lZ(z)} < 00 H maxX CziHi = O  (7) 

maxX{H(z)} < 00 ej maxX{H(x)} 5 x { H , }  (8) 
L:, I 

Similarly, for the function F ( z ,  y) of ( l ) ,  we have: 

Proposition 2.1 It  holds that max,,yX{F(z, y)} is unbounded 
if and only if 

We now present some useful lower and upper bounds for 
max,,yX{F(x, y)}. Define the affine matrix function 

nu n, n= nu 

j=1 i=l i= l  j=1 

where w E Rn"'U, and the index IC := ( i  - 1)n, + j .  

Theorem 2.1 It holds that 

FL(x, Y, 20) := FO,O + YjF0,j + xiFi,o + wgFi,j (10) 

I T${F(Z, Y)} (11) 

and 
T$xxX{F(x, Y)} I F $ { F L ( Z ,  Y, w ) }  (12) 

Further, if maxZ,y,w x { F ~ ( x ,  y, w ) }  is bounded, 

maxA{F(x, Z,Y Y)} I F;${FL'L(", Y, w)) I J{Fo,o) (13) 

Proof: The proof for the lower bounds are of course trivial, 
and the proof for the upper bound (12) is obvious. The upper 
bound (13) comes from (8). Q.E.D. 
Note that all the upper and lower bounds are at most AMI 
problems which are easily computable. 

2.2 Biconvexity and the BMI 
We now investigate the underlying geometry of the problem of 
finding a feasible point under a BMI constraint. 

Consider some set X x y c R"= x R"u, where X is con- 
vex in Rnz and y is convex in R"v. Define the x and y- 
sections of B as follows: B, := {y E y : (2, y) E B} and BY := 
{.E X : (x,y) E 8). 

Definition 2.1 (Biconvexity of a Set) The set B C X x y 
is biconvex if B, is convex for every x E X and By is convex for 
every y E Y .  

Proposition 2.2 The set B c X x y is biconvex if and only if 
for every quadruple of the form 
(a, Y l ) ,  (21, YZ), (x2,y1), (22,  Y2) E B, it holds that 

(zp,y-,) := ( (1  - P ) . I - t  Px2,  (1 - 7)YI + 7Y2) E B 

for every ( P , Y )  E [O ,  11 x [0,11. 

A biconvex set is not necessarily convex, e.g., consider the 
shape "L" on the R x R product space, which is biconvex but 
not convex and also the level sets for f(x, y) = xy < 1, f(x, y) = 
xy < -1, the latter of which is not even connected, but is still 
biconvex. 

Definition 2.2 (Biconvexity of a Function) Given a func- 
tion f : X x y + R, f(z,y) is biconves in (x,y) if it is convex 
in x for every fixed y E y and convex in y for everyfised x E X. 

Proposition 2.3 f (2, y) is biconvex over X x y if and only if 
for any (~I,Yl),(~l,Y2),(~2,Y1),(.2,YZ) E X x Y ,  

f((%Y7)) I (1 - P)(1 - 7)f("l,Yl) + (1 - P)rf(zl,Yz) + 
P(1 - Y)f(.Z,YI) + P-Yf(.z,Yz) (14) 

for every (p ,~ )  E [0,1] x [0,1], where (xp, y-,) := ((1 - P ) ~ I  + 
Px2, (1 - 7)Yl + YY2). 

Clearly, just as one dimensional interpolation always overes- 
timates a convex function, two dimensional interpolation always 
overestimates a biconvex function. 

Proposition 2.4 If f(x,  y) is biconvex, then its level sets, L, := 
{(x,y) E X x )' : f(x,y) 5 c}, c E R, are biconvex for all c. 

One of the reasons for the study of convexity of functions is 
that if a function is convex, then every local minimum is a global 
minimum. However, convexity is not a necessary condition for 
the local-global property, and in fact arcwise strict quasiconvex- 
ity is a sufficient condition for every local minimum to be global 
minimum [20]. Unfortunately, biconvexity, as we have defined 
it, does not imply the local-global property. 

Returning to the function h(s, y) of (3), we have: 

Theorem 2.2 The function h ( x ,  y) is biconves over Rnr x RnY . 
The proor follows trivially from the well established fact that 
AMI/LMIs are convex. 

In general, BMI problems are multiextremal, and therefore 
global optimization techniques based on biconvexity will need 
to be considered in the minimization of h(x,y). However, it is 
also quite easy to generate non-trivial BMIs (i.e. not AMIs) for 
which only one minimum of A(r ,  y) exists. 
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2.3 Connection between Biaffine and Bilin- 
ear Cases 

Theorem 3.1 The BhfI (2) has a solution ifthere exists a dyad x E R(n=+1)x(nY+1) such that 

We now examine the relationship between the bilinear and bi- 
affine matrix inequalities. 

a biaffine matrix function @(I, y) E;:, z i y j c j  + 
YjFOj + FO,O is easily generated, where Fo,o, 

f 0 , j  and E,o are all zero matrices. Clearly then F ( z , y )  > 0 e 

( X , W )  > 0 (19) 

Given a bilinear matrix function F ( r ,  y )  := Eyzl E;:, s ~ Y ~ I ; ; , ~ ,  for all W E W(I;;,j),  and the (1 , l )  element of X is non-negative. 
Conversely, a dyad X E R(nz+')X(nw+') such that (29) holds := 

s;E,o + 
F ( x ,  Y ) .  

On the other hand, given the biaffine matrix function of (I), 

n, nw 
we may define 

P(Z,  9) := Zj9jFi.j (15) 
i=O j=O 

It then holds that 

Prop_osition 2.5 If there exist i E Rns+' and fi E R"u+* such 
that F(5,fi) > 0 and Z&, 2 0, then there exist I' E Rn= and 
y' E RnW such that F(z*,  y*) > 0. 

Also note that it is possible to convert biaffine problems into 
bilinear problems by using the embedding suggested in [35]. 

3 A Geometrical Interpretation of 
the BMI Feasibility Problem 

Given a set of symmetric matrices Fi,j defining a BMI, from (1) 
and (2), define the matriz numerical range: 

W(p i , j )  := {W E R(n=+')x(n~+') : 

~ ~ F o . 0 2  

W ( z )  = ; .-. zTF~'nuz ] , llzllz = l} (16) 

The concept of a matrix numerical range introduced here is an 
obvious extension of the concept of an m-dimensional field of 
values (191, or an m-form numerical range [ll]. We may convert 
the problem of finding the feasible set of a BMI into a matrix 
numerical range problem as follows: 

[ zTFn,,oz ... zTFn,,nyz 

For any fixed z E R" with llzllz = I, 

n, nW 

i=l j=l 
z T F ( r ,  y ) .  = zTFo,oz + IiZTE,oz + yjzTFo,jz 

+ 2 5 ziyjzTFi, jz  
i=l j=1 

where W ( z )  is as given in (16), so that clearly IY(z) E W(E, j ) .  
It follows that 

We may then give an equivalent formulation of the BMI Prob- 
lem: 

for all W E W ( F i , j )  exists if the BMI (2) has a solution. 

Proof: The proof for the converse part is trivial. Suppose 
(i,$ is in the feasible set S of the BMI (1). Then clearly, 

x := 1 1 [ 1 9' 1 gives (19). 
L J  

On the other hand, suppose there exists a dyad X such that 
(19) holds and the (1,l) element of X is positive. Since (19) 
holds for X if and only if it holds for every KX, K > 0, we may 
normalize the (1,l) element of X ,  and the factorization of X 

to [ ] [ 1 iT 3 ,  where (Z,c) is in the feasible set S trivially 

follows. 
Suppose the (1,l) element of A' is 0. Then if we write A' = 

5yT where f := [ ] and y := [ yo yT 1, it holds that either 

or both of IO and yo are zero. Assume xo = 0, yo < 0 ,  then (19) 
implies 

EYg1 E;:, xiYjE,j + Cy21 xiyoE,o 
xyz1 E;:, zi$yjFi,j + Erz1 1iFi.0 

> 0 
< O 

so that there exists a K < 0 such that F(nz, k y )  > 0. The proof 
for the cases yo > 0 and ( I O ,  yo) = (0,O) are similar. Q.E.D. 

We also have the following corollary: 

Corollary 3.1 If the BMI (1 )  is linear in either x or y or both, 
then the BMI (1)  has a solution if and only i f  there exists a dyad 
X E R(nr+')X(nU+l) such that (19) holds for all I+' E W(Fi,j). 

For the rest of the discussion in this section, we will assume 
that the BMI (1) is bilinear. 

3.1 Finding the Minimum Norm Element 
Now, clearly, a necessary condition for the dyad X := xoyT 
to exist such that (19) holds is for CO W ( F i , j )  to exclude the 
origin. However, the condition is not sufficient, because a dyad 
zoyT fulfilling condition (19) may not exist even if CO W ( c , j )  
excludes the origin. 

We introduce the following terminology: 

i.e., Pr(W(Fi,,)) is the minimum norm element of CO W(Fi,j). 
Given the convex set CO W ( F i , j ) ,  it is fairly easy to find 

P r ( W ( F i , j ) )  using the algorithm of [16], with its various refine 
ments [4, 39, IS], provided that given any WO E W(I;; , j ) ,  a 
V E W(F;,j) such that (WO, V )  = minwEw(Fi,,) (WO, IV) can 
be found. This is achieved as follows: 

First note that given WO E W(F;,j), 

= h(5~"P.jc,j} i=l j = 1  (21) 
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which is of course easily computed. The minimizing V E W (  E,j) 
is then obtained from setting z to be the normalized eigenvector 
corresponding to X{C:;, E;!!l WY,~F;,,}. Note that wtj, i = 
1,. . . ,nz, j = 1,. . . , ny are the entries of WO. The connection 
to the upper bound (12) should be noted. 

The real question then is as follows: Given that there exists 
a known W := Pr(W(F;j)) of rank greater than 1, such that 
(1v, W) > 0, for all W E W(F;,j), can we find a dyad zyT 
such that (qT, 14') > 0, V 14' E W(E, j )  ? 

3.2 Finding the Dyad 
Given a matrix H E RnZx"~, the "best" approximation of a 
matrix H with a dyad is the one given by the singular vectors 
of H corresponding to its largest singular value. 

Proposit ion 3.1 Given H E Rpxq of rank pl with non-zero 
singular values u1 > 02 > . . . > up > 0 and with corresponding 
left and right orthonormal singular vector sets ulr  u2,. . . , up, and 
V I ,  v2, . . . , wql it holds that 

and the minimum value is dl1 Hllg - U:. Further, for any 7 > 0, 

and the maximum value is &. 
As we have shown above, given a matrix H # 0, finding a 

dyad xyT so that (xyT, H> > 0 is easy. Suppose now we have 
a set of matrices Q := { H I , .  . . , H N } .  The problem 

is considerably more difficult. In fact, [3G] shows that the prob- 
lem is equivalent to the problem of determining whether the di- 
ameter of an intersection of ellipsoids centered about the origin 
is greater than 2. 

Choose p > maxH,€g a(€Z;) so that [ +HiT I * ] > 0 for 
I LH. 

all i = 1,.  . . , N .  Define ellipsoids 

The following result then holds: 

Proposit ion 3.2 ([36]) There exists (2, y) such that 

(zyT,IZi) > 0, Vi = 1,. . . , N (26) 

if and only if there erists a vector w such that llwllz > 1 and 
w E nC,ci. 

We may therefore conclude that given the set of matrices Q, 
the task of finding a dyad which separates the matrices from the 
origin is equivalent to the optimization problem 

N 
max llwll: subject to w E n Ci (27) 

i=l 

a maximization of a convex function over a convex set ng, C;; 
a difficult global optimization problem although various algo- 
rithms exist, see 1211. 

4 Local Optimization Approaches 
While it is clear from the preceding sections that the use of 
standard nonlinear programming techniques on the function 
A(z,y) := -X{F(x,y)}, even if it were differentiable, is going 
to be suboptimal due to the multi-extrema1 or nonlocal-global 
nature of h ( x ,  y), it remains true that the development of local 
procedures constitutes an important first step towards establish- 
ing viable global optimization approaches. 

4.1 
As is clear, if x is fixed, finding a y such that (2) holds is a 
LMI feasibilty problem, which has been extensively studied and 
for which various reliable and efficient algorithms exist, as we 
have already noted. We may therefore propose the following 
algorithm: 

Algorithm 4.1 Alternating Minimization of h(s, y) 

The BMI as a Double LMI 

given: IC := 0, Arbitrary do) E R"=. 
repeat: 

RI. Set IC := IC + 1. 
R2. Find yfk) := argmin {A(&'),y) : y E R".}. 

R3. Find d') := argmin { ~ I ( x , y ( ~ ) )  : z E R".}. 

until: A(&-'),Y(~)) < 0 or h ( ~ ( ~ ) , y ( ' ) )  < 0. 

Clearly, the subproblems R2 and R3 are unconstrained con- 
vex AMI minimization problems. Taken together, the two AMI 
subproblems may be regarded to be analogous to a cyclic coor- 
dinate descent algorithm in coordinates I and y. 

Unfortunately, since A(z, y) is nonsmooth, f minimizing 
h(z,jj) and jj minimizing A(",@) separately do not imply that 
h ( x ,  y) is even stationary at (5,g). As an example consider the 
continuous but non-differentiable function 

1 
f(x,  y)  := max y - 2a, x - 2y, -(zz + y2 - 16)) (2s) 

which has a minimum at (2,2). Note that f(1,y) is minimized 
at y = 1 and f(z,  1) is minimized at x = 1, but (1,l)  clearly is 
not a minimum. It therefore holds that Algorithm 4.1 will not 
work in general. 

( 4 

4.2 Subgradient Descent Methods 
In theory, one may use standard nonsmooth optimization meth- 
ods [34, 7, 261 specialized for eigenvalue type problems [33, 321 
to obtain local minima of h ( z ,  y). First note that: 

Proposit ion 4.1 A(x,  y) is locally Lipschitz continuous. 

This follows from ( 5 ) .  
Let 1 5 k(x, y) 5 m denote the multiplicity of the minimum 

eigenvalue of F(z,y). Then h(x,y) is differentiable at all (z,y) 
such that k(z,y) = 1. Let U(z,y) be any orthonormal ma- 
trix which spans the null space of X{F(s,  y)} I - F ( x ,  y). Then 
U ( z ,  y)z is an orthogonal eigenvector of F ( z ,  y) corresponding to 
- X{F(r ,  y)} for any z E SR'. It then holds that the generalized 
gradient (or the subdifferential) of A(x, y) is: 

a N x ,  Y) = 
a 

CO { [ ",: ] E Rn=+"y : := - zTUT--F( i , y )  Uz, ax; 

(29) 
a wj" := -zTUT-F(z,y) UZ,Z E SR' 

aYj 

853 



where we have written V(r,y) = U for brevity. The computa- 
tion of &F(I, y) is trivial, e.g., 

Further, if (%, a)  gives a local minimum of A(z, y), then 

0 E (30) 

Unfortunately, the practical implementation of subgradient 
descent methods remains problematic. Refer to [33,32] for more 
details. 

4.3 Interior Point Methods 
As we have previously noted, interior point methods form the 
core of much of the progress achieved with LMI problems. How- 
ever, the application of interior point methods to nonconvex 
problems remains rare, although we note that the proofs for con- 
vergence to local minima for the interior point methods given in 
[12], e.g. Theorems 8 and 32, do not require convexity. 

Given the biaffine matrix function F(x,y) of ( l ) ,  introduce 

(31) 
Here, note that $o(~, y) is convex in (5, a), and also convex in 
(y,a) and smooth. Clearly, 40(z,y,a) < 00 ($ a-A(z,y) > 0. 
For some 0 < B < 00, define 
U := {(z, y) E R"'x"u : 1 1 1 1 1 ~  5 B, llylloo I B ,  B < m}. 
Then &(z,y), and A(z,y) are both bounded below over U. 

The derivatives of &(x, y) are straightforward extensions of 
the derivatives of the barrier functions of [37, 231 and are as 
given below, with G := G(x,  y, a) := [a1 + F ( z ,  y)]-': 

j=1 k=l 
nu nr 

j=1 k=l  
+ YjZk tr{GFi,jGFk,l} - tr{GF;.,i} (34) 

The following modified method of centers [22, 12, 51 type 
algorithm may then be defined: 

Algorithm 4.2 BMI Method of Centers  Algorithm 

0 given: k := 0, 6 E (0 , l ) .  

0 repeat: 
Arbitrary (~('1, y'")) E B and do) > A(d0), ~('1). 

Rf. Find (~(~+l),y(~+')) := argmin&(w(x,y), (x,y) E U. 
RZ. Set := + (1 - 13)h(z(~+'),y('++')). 
R3. Set k := I C +  1. 

'Since &,(z,y) is not convex, the term "centers" is used very loosely. 

0 until: a@) converges or  a(') < 0. 

Note that if 6 = 0, then we get the "puren method of centers 
algorithm as dicussed in [22, 121. Now, notice that since a(k) := 
Ba("-') + (1 - B)h(~(~)),y(~)), and > h(~(')),y(~)) always, 
we have 

a ( k )  - a ( k - l )  = -(I - 0 )  (&-I) - h(~(~),y(~))) < 0 (35) 

so that a(k) is strictly monotone decreasing. Since A(z,y) is 
bounded below, there must exist 6 > -00 such that dk) \ 
6. then dk--l) - A(z(~),~(~)) \ 0 and a(k) - A(dk),y(')) \ 
0. It therefore holds that Algorithm 4.2 approaches the "pure" 
method of centers as IC -+ 00. From [12, Theorem 321, then 
converges to a local minimum of A(I, y) if the minimization of 
Step R1 is local. 

We recognise that if we can obtain global solutions to the 
minimization of +o(~,y) for each fixed a, then Algorithm 4.2 
will indeed solve the BMI problem (4). We note however that 
because &(I, y) is not continuous in general, global optimiza- 
tion of &(x, y) is difficult. 

A barrier method type [12, 231 algorithm with &(z,y) re- 
placed by 

may also be used, where \ 0, and at each iteration 
t,b,(r) (I, y, a) is minimized over (z, y, a). Note that convergence 
to a local minimum is then guaranteed by [12, Theorem 81. 

We will now discuss the application of gradient descent meth- 
ods for the local minimizations required by Algorithm 4.2. We 
recognise that since &(x, y) is self-concordant [29] with respect 
to I if y is fixed and vice-versa, if 40(~,y) is to be minimized 
with respect to x and y alternatingly with fixed y and I respec- 
tively, a very effective approach would be to use the Newton's 
method of [29], which would give polynomial time convergence 
for each of the alternating minimization steps. Furthermore, 
since &(I, y) is smooth for the region under consideration, con- 
vergence to a stationary point of &(x, y) is guaranteed. Note 
that even if a stationary point of q50(~,y) is reached, the possi- 
bility that the point is a saddle point, and not a local minimum, 
needs to be checked. 

Descent along joint (x, y) directions may also be attempted, 
although since the Hessian of &(x, y) may not be positive def- 
inite, pure Newton descent cannot be used. However, our com- 
putational experience indicates that joint descent is more effi- 
cient than alternating descent. The computation of the Hessian 
of &(x,y) with respect to ( q y )  is expensive, and can be cir- 
cumvented by the use of the very standard Broyden-Fletcher- 
Goldfarb-Shanno quasi-Newton method [27, 171. 

Our computational experience with the Algorithm 4.2 is fa- 
vorable in general. The main difficulty that arises seems to be 
the problem of ill conditioning as -A(&), y@)) \ 0, which 
is an inherent characteristic of interior point problems, e.g. [23]. 

$ f i ( k )  (I, Y, a) := a + p(k)&(z ,  Y) ' (36) 

5 Biconvex Global Optimization 
We now briefly discuss possible global optimization approaches 
for the problem (4). Examples of the application of global opti- 
mization techniques to robust control problems include [9,3,30]. 

We first note that, in general, global optimization problems 
are NP-hard. This, of course, does not mean that the problems 
are unsolvable, only that they will require algorithms which will 
not have worst case polynomial time bounds, unlike, say, LMI 
or linear programming problems. 
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With regard to our particular problem of finding a global 
minimum to a biconvex function, the references [l, 211 may be 
consulted for surveys of various approaches to the bilinear and 
biconvex programming problems. 

Branch and bound methods seem to be a relatively promising 
approach for exploiting biconvexity and the preliminary study 
of (11 is worth further investigation in this respect. We also have 
the Benders decomposition approach of [15] and the references 
therein, which leads to the primal-relaxed dual algorithm of [13]. 
Multistart methods may also be used. 

6 Summary and Conclusion 
This paper presents a preliminary study of the BMI feasibility 
problem (2) and its associated nonsmooth biconvex optimiza- 
tion problem (4). Trivial cases and upper and lower bounds are 
examined. A geometric perspective is presented. Extensions of 
LMI type minimum eigenvalue maximization approaches to the 
Bh,II case are discussed. The main difficulty in approaching BMI 
problems seems to be its nonsmooth biconvex nature. In this 
respect, the key seems to be to construct a global optimization 
approach which fully exploits the biconvexity of the problem. 
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