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Abstract 

In this paper, we present a new control law which is a combina- 
tion of the continuous variable structure control (VSC) law and the 
switchiug-a modification control law for the control of a single-arm 
manipulator with rigid links holding a rigid object. In the analysis, 
we show that this new control law has a smaller error bound than 
a simply continuous VSC law or switching -a modification control 
law. We also present some simulations, where the proposed control 
law has better tracking precision performance both in transient state 
and steady state which agree with the theoretical analysis, and it still 
maintains the good tracking precision even if actuator unmodelled 
dynamics are considered. 
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1 Introduction 

The area of robotics is a very important one and has received the 
attention of many researchers and practitioners from several fields 
of engineering. A particular class of problems arising in this area 
are control problems, where one is interested in creating a controller 
which will make the robot arms move in a certain way. Owing to 
the nonlinearity, disturbance, and unknown parameters (e.g., loads) 
of the manipulator's dynamics, the design of the manipulator's con- 
troller is a difficult problem. This leads to interesting and difficult 
robust variable structure control (see [9]-[18]) and adaptive control 
(see [20]-[27]) problems. 

VSC ([9]-[18]) is a high-speed switching feedback control, where 
the control law switches to different values according to some rule. 
This control law can drive the nonlinear plant's state trajectory onto 
a sliding surface which is designed by the designer, and maintain the 
plant's state trajectory on the designed sliding surface afterwards. 
Its control law is very robust to system's disturbance. Adaptive con- 
trol (see [20]-[27]) is Merent from the conventional fixed parameter 
control. It estimates the unknown parameter then uses the estimated 
parameter into its control law, and thus its tracking performance is 
better than that of the conventional fixed parameter control. Adap- 
tive control is a very effective tool for the control of a manipulator 
in the presence of the uncertainties in the manipulator's dynamic 
equation. 

Slotine and Li ([23]-[26]) exploited the structure of manipulator 
dynamics, which is assumed to be disturbance free, to develop a glob- 
ally convergent adaptive scheme for position control of a single-arm 
manipulator. This scheme does not require measurements of the ma- 
nipulator's joint accelerations, nor inversion of the estimated inertia 
matrix. The analysis and simulations show that the unknown pa- 
rameters can be precisely estimated if disturbances are not involved 
in the manipulator dynamics. They also mentioned the possibility 
of applying the VSC for the control of the single-arm dynamics with 
bounded disturbance. But there are several important aspects they 
did not consider. First, they did not apply the estimation law which 
can guarantee that the estimated parameter will not drift to infinity 
in the presence of bounded disturbance. Second, they did not find 
the control law in Cartesian space which can derive the relationship 
between the reference variable in joint space and the reference vari- 
able in Cartesian space. This relationship is necessary for the control 
of single-arm dynamics as the desired trajectory is in the Cartesian 
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space. Finally, they did not simulate and discuss VSC law if distur- 
bances and unmodeled dynamics are considered. Reed and Ioaunou 
(see [19],[27]) developed two new robust adaptive controllers which 
are based on the switching-a modification control and the computed 
torque method [l] for the control of a single-arm manipulator with 
rigid links. Their control laws can guarantee that the tracking er- 
ror belong to some error set in the presence of bounded disturbance 
and time-varying parameters. But they did not apply the VSC law 
to their adaptive controllers. In this paper, we will apply VSC and 
switching-a modification control to the control of the single-arm dy- 
namics with some unknown parameters and bounded disturbance. 

In Sections 2 to 5, we will analyze and compare four control laws 
which are related to VSC and switching-a modification control for the 
single-arm dynamics with some unknown parameters and bounded 
disturbance. The new proposed control law which is a combination 
of the continuous VSC law and the switching-a modification control 
law is presented and analyzed in Section 5. Although Slotine and Li 
([23]-[26]) have already analyzed the single-arm manipulator's track- 
ing error of VSC law based on the sliding surface equation, our ap- 
proach, which is related to the analysis in 1271 but in multi-variable 
sense, based on Lyapunov function is different from theirs. Besides 
the error bounds for these four control laws derived from our ap- 
proach are of a similar type, and thus it is easy to compare them. 
In Section 6, we derive the control law in Cartesian space and find 
the relationship between the reference variable in joint space and the 
reference variable in Cartesian space. In Section 7, we simulate and 
discuss these control laws in the presence of bounded disturbance 
and unknown parameters with and without unmodeled dynamics in- 
volved. The simulations show that the control laws works very well 
even in the presence of unmodeled dynamics which is not considered 
in our analysis. As was to be expected from our theoretical analysis, 
the simulations demonstrate that the combination of the continuous 
VSC law and the switching-a modification control law works better. 
(Proofs are not provided here and can be found in [28].) 

2 Discontinuous VSC Law 

In this section we study the control of a single-arm manipulator with 
bounded disturbance and unknown parameters with discontinuous 
VSC law. This problem was also studied in [24]-[26]. Our results are 
the same as those of [24]-[26], but our analysis is different since we 
use Lyapunov function for analysis whereas [24]-[26] use an analysis 
based on the sliding surface equation (2.4). The dynamic equation 
of single-arm manipulator with n links in joint space is as follows 
(see [11-[41). 

T = w a  + ml, 414 + G(d - d(t )  (2.1) 
where T E R" is the vector of joint torques supplied by the actuators; 
D(q) E RnX" is the arm mass (inertial) matrix which is symmetric 
and positive definite; q, 4, E R" are the vectors of joint displace- 
ment, velocity and acceleration, respectively; A(q,4) E RnX" is the 
matrix from centrifugal, Coriolis and frictional forces; G(q) E Rn 
is the vector of gravitational force; d ( t )  E R" is an upper uniformly 
bounded disturbance. Our objective is to find a controller which uses 
the control law T as a function of the state q,4 and the estimated 
unknown parameter P in (2.3) which will make (2.1) to have q 4 qd 
in the presence of disturbance d(t )  and unknown parameter P, where 
qd is the desired trajectory. 



In designing a VSC law for anonlinear system, we need to specify 
a sliding surface. If all the terms in VSC law are continuous with 
respect to the sliding surface variable, we call the VSC law continuous 
VSC law, otherwise discontinuous VSC law. Since the sgn(S) term 
in the control law (2.9) changes W t e l y - f a s t  between two different 
values -1 and 1 according to the sign of the sliding surface variable 
S, we call (2.9) discontinuous VSC law, where our sliding surface is 
chosen to be as the set of points where S( t )  = 0, where S ( t )  as in 
(2.4) (see [2],[24]-[26]). Since we know that the joint positions q ( t )  
of the single-arm will be equal to the desired joint positions qd(t) if 
S ( t )  is equal to zero and A which is chosen by the designer is positive 
definite (from (2.4) and (2.5)), our objective in this section is to find 
the discontinuous VSC law of the dynamic equation (2.1) such that 
S( t )  wil l  be equal to zero. 

We choose the following function as a Lyapunov function candi- 
date of the dynamic equation (2.1). 

V ( t ,  S, *) = (l /2)S(t)TD(q)S(t) + (1/2)*(t)Tr*(t) (2.2) 

where D(q)  E Px" is the arm inertia matrix which is symmetric and 
positive definite, r E R"'x"" is a diagonal positive definite constant 
matrix chosen by the designer, and + ( t )  E R"' is: 

* ( t )  = P ( t )  - P (2.3) 

where ml is the number of unknown parameter, P is an unknown 
constant parameter vector, P ( t )  is the estimate of P, and * ( t )  is the 
estimate error of the parameter vector. We assume that the desired 
trajectory qd is twice differentiable, then we define s(t) E R" as 
follows: 

S(t)  = G(t) + Aq(t ) ,  S( t )  = t(t) + Ah(t )  (2.4) 
where 

q(t)  = q( t )  - cld(t), ir(t) = a( t )  - (id(t), a(t)  = a( t )  - @d(t) (2.5) 

qd(t), &(t)  and &(t)  E R" are the desired joint position, velocity and 
acceleration of the single arm, and A E RnX" is a constant diagonal 
positive defhite matrix chosen by the designer. We also define the 
reference variable q,(t) E R" as follows: 

where H, D, G are the estimate of If, D ,  G ,  and H ,  D ,  G are the er- 
rors. Kd and r are arbitrary constant diagonal positive definite ma- 
trices chosen by the designer. Then 

d t )  + qd(t),as t + W. (2.16) 

Although the discontinuous VSC law can guarantee that the 
tracking error goes to zero, it has two drawbacks. First, it has the 
infinitely-fast switching term &sgn(S) which may excite the high- 
frequency unmodeled dynamics. Second, we can not implement the 
infinitely-fast switching term &sgn(S) of this control law owing to 
physical limitation. In the next section, We present the following 
switching-a modification control law which does not have idnitely- 
fast switching term &sgn(S).  

3 Switching-a Modification Control Law 

In this section, we consider the switching-a modification control law 
for a single-arm manipulator with bounded disturbance and unknown 
parameters. The switching-a modification control law can guarantee 
that there is no estimated parameter drift in the presence of the 
bounded disturbance by adding a sigma term to the estimation law. 
This sigma term can prevent the estimated parameter drifting by 
changing the sign of the derivative of the estimated parameter. The 
results presented are the same with those of [19], the detail proof is 
in [19]. 

Lemma 3 Consider the following adaptive control law for equation 
(2.1) : 

7 = h(q ,P)@,  + B(q,4,p)dv + G(q,p)  - KdS( t )  (3.1) 

&( t )  = P ( t )  = -r-lwT(q,p,d,,i7)s - ar-lP 

0 IlPll I Po 

a0 2PO < IlPll 

(3.2) 
where 

(3.3) 

(2'6) a0 > 0 is a scalar, and PO > IIPII, where 11 * 11 is lz norms for the 
vectors *, and the other variables are defined in Section 2. Then we 
can guarantee q is close to Qd in a bound related to (3.4), as 1 + w 

Therefore 

S(t )  = 4(t)  - & ( t )  = h(t) (2.8) where 

Lemma 1 V ( t ,  S, @) is  positive definite and decresent. KeKT = Kdrdoo = ( d i o , d z ~ , . - . , & o ) ~  

Lemma 2 Consider the following adaptive control law for equation 
(2.1): 

7 = D(q,p)& + 8(!7,4,p)'& + G(q,P)  - KdS( t )  - dosgn(s) (2.9) 

(3.4) means that the mean value of STKdS will be bounded from 
above by Ild;f,K;'11' as T goes to infinity. The variables Kd and 
40, i = 1,2, .  . . , n are defined in Section 2. 

The switching-a modification control law can relax the two draw- 
backs of discontinuous VSC law, but it can only guarantee that the 
tracking precision is inside some error bound. Since there is a term 
KdS(t)  in (3.1), the switching-a modification control law has the 
same robustness as the PD controllaw with respect to the structured 
uncertainties. Ideally, the switching-a modification control law (see I 

[19],[27]) can guarantee the tracking error to be zero if Kd goes to 
infinity. But in a real world we can not have a controller with an i d -  
nite gain, and very large Kd will make the system control bandwidth 
so large that it may excite the high frequency unmodeled dynamics. 

1 ifs; > 0 
-1 ifs; < 0 sgn(S;) = (2.13) 4 Continuous VSC Law 

w(q, tj,&, &)* = b(q, 4,p)dr + D ( ~ ,  + G ( ~ ,  p) (2.14) 

(2*15) 

Here we study the continuous VSC law of single arm problem with 
bounded disturbance and unknown parameters. This problem was 
also studied in [24]-[26], but our analysis is different and we provide 
a different error bound than that of [24]-[26]. Our error bound is of 

where 
= & - H , D  = D - D , G  = G - G  
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a s i "  type as that of the switching-o modification control of the 
previous section and they are easily comparable. In om continuous 
Vsc law, the sat(S/#)  termin the controllaw (4.2) changes between 
two different values -1 and 1 according to the sign of the variable S 
an S is outside the boundary layer, i.e. IS1 > +;while this term is 
a straight line fiom (-4, -1) to (4,l) as S is inside the boundary 
layer, i.e.(SI < 4 (Figure l), where 4 (called boundary layer) is a real 
vector C ~ O S ~  by the designer. 

Lemma 4 Consider the following adaptive control law for equation 
(2.1): 

7 = B(q9 .P)fr t B ( q ,  4, P)dr t G(q, P) - &S(t) - h s a t ( S / 4 )  (4.1) 

where 

4 = (41,4z,***,$l)T (4.5) 

where iu called the boundary layer for the corresponding variabk 
Si, and the other variables are defined in Section 2. Then we can 
guarantee q k cbse to qd in a bound as in (4.15) of [28]. 

The error bounds calculated by Slotine are as follows (see [24]-[26]): 

where 

Using (2.4) and (4.6), we can find: 

where 

Also for the error bound that we calculated in (4.15), it holds that: 

(4.9) 

Comparing (4.15) of [28], (4.7)-(4.9), we can see that the error bound 
for limT+.&T) j2+T ST(Kd+do/4)Sdt that we calculated in (4.15) 
of I281 is much smaller than the error bound in (4.7) and (4.8) ob- 
tained from Slotine's error bound (4.6). Although the continuous 
VSC law can relax the two drawbacks of the discontinuous VSC law, 
it can only guarantee that the tracking precision is inside some er- 
ror bound. From (4.6) and (3.20), we know the error bound for the 
continuous VSC law is smaller than that of the switching-a modi- 
fication control law if the boundary layer is not very large. If we 
choose a large boundary layer, the control law may not excite the 
high frequency unmodeled dynamics and can be implemented in the 
real world, but we will have a large error for the tracking precision. 
If we choose a s m a l l  boundary layer, we will have a small error for 
the tracking precision, but the control law may excite the high fre- 
quency unmodeled dynamics and may not be realizable. Therefore, 
there is a trade-off between tracking precision and robustness with 
respect to the unmodeled dynamics. Another drawback of this con- 
trol law is that the estimated parameter may drift to infinity. In the 
next section, we combine the switching -a modification control and 
continuous VSC laws to get the better performance and prevent the 
estimated parameter from driiting to infinity. 

5 Combination of the Continuous VSC Law 
and the Switching -0 Modification Control 
Law 

The combination of the continuous VSC law and the switching-u 
modification control law for the control of a single-arm manipulator 
with bounded disturbance and unknown parameters is presented here 
for the first time. Our analysis is a combination of the techniques 
used earlier and the error bound is better than those of Sections 3 and 
4. The block diagram of combination of the switching-o modification 
control law and the continuous VSC law in joint space for the single- 
arm manipulator is shown in Figure 2. 

Lemma 5 Consider the following adaptive control law for ewation 
(2.1): 

where the variables are defined in Sections 2-4. Then we can guar- 
antee q is dose to qd in a bound as in (5.6). 

6 Single-Arm Simulation 
In this section we use a single-arm manipulator with two rigid links 
as our simulation example (Figure 3). The link lengths are both 1, 
the first and second link's mass are ml and mz, the first and second 
joint angles are q1 and qz, the first and second joint torques are 71 
and 72, and d1,dz are disturbances. The Lagrange-Euler equation of 
motion for this single-arm manipulator with two links is as follows 
(see [1]-[4]): 

(:) = 

In the simulation we let both ml and m2 be 1 kilogram, 1 be 1 
meter for simplicity, and the disturbances d1, dz be as follows: 

(6.2) dl = dZ = 2/(1 f t )  

where t represents time in seconds. 
We also let the desired trajectory for joint 1 and 2 be as follows: 

qld = sin(t)  j- O.lsin(3t) 
qZd = O.lsin(2t) + O.lsin(4t) 

We simulate the four robust position control laws mentioned in the 
previous sections. We use Adams variable step-size predictor-corrector 
algorithm to solve these equations. We simulate the control laws 
without unmodeled dynamics and with actuator unmodeled dynam- 
ics involved. We model the actuator unmodeled dynamics as a first- 
order low pass filter, where its cut off frequency is 100 radians per 
second and DC gain is 1. More details about the simulations for each 
control law are given next. 

6.1 Discontinuous VSC Law 

Bom (2.9)-(2.15) and (6.1) we can express the discontinuous VSC 
law ~ 1 ~ 7 2  as follows: 

(6.3) 
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where the estimation law can be expressed as follows: 

where 

pi, = qid  - A i ( q i  - q i d )  

& = &d - X Z ( q Z  - q2d) 

qi ,  = Qi'd - Al(d1 - q i d )  

& = $id - A Z ( d 2  - q i d )  

sl = (dl - qid)  t X l ( q 1  - q l d )  

SZ = (4% - qid)  f A Z ( P Z  - PZd) (6.6) 

We let initial values of the estimated parameter mi1 = 0.8, n i z  = 1.2, 
controller gains kdl  = kdZ = 2, and chosen scalars A1 = 20,Xz = 15, 
where nil and n i z  are the estimates of ml and m2, respectively. 
We let dlo and dzo be upper bound of disturbance dl  and dz, thus 
dlo = dzo = 2. We did not simulate the discontinuous VSC law since 
the chattering of the control laws makes the system of differential 
equations very stiff. But in Section 6.3 we simulate the continuous 
VSC law with a very small boundary layer which is very similar to 
the discontinuous VSC law. 

6.2 

From (3.1)-(3.3) and (6.1) we can express the switching-a modifica- 
tion control law 7 1 , ~ ~  as follows: 

The Switching-a Modification Control Law 

1 .. 1 4 
T1 = n i i ( Z q i r  t TgcOs(p1) )  t niz((3 t cos(qz))giv t 

where the estimation law can be expressed as follows: 

We choose a0 = 5, mo = 1.1, y 1  = yz = 1/2.3. In Figures 5 and 6, we 
can see that the estimated parameter converges to the value which is 
very close to 1, but the joint position error is larger than any other 
figures plotted by another control laws. Since Figure 5 is a plot with 
actuator unmodeled dynamics, the joint position error of Figure 5 is 
larger than those of Figure 4. 

The estimation law is the same as (6.5), and the variables of (6.11) 
and (6.12) are defined in (6.6). In the simulation the different bound- 
ary layers 0.1 and 10 are used. Their plots are in the Figures 6 and 
7 for the case without unmodeled dynamics, and in Figures 8 and 9 
for the case with actuator unmodeled dynamics, respectively. From 
these figures, we can see that the bigger the boundary layer is, the 
larger the joint position error is. From Section 2, we know that a very 
small boundary layer is l i i t e d  by physical limitation, and thus we 
have to choose proper boundary layer for realization. From the the- 
oretical analysis, we know that the small boundary layer may excite 
the high frequency unmodeled dynamics which will cause instabili- 
ties, but the simulations show that the system with small boundary 
layer (Figure 8) still has good tracking precision even if actuator un- 
modeled dynamics are considered. However, comparing Figures 6,7 
with Figures 8,9 we see that the joint position error without unmod- 
eled dynamics is smaller than those with unmodeled dynamics. 

6.4 Combination of the Continuous VSC and the 
Switching-a Modification Control Laws 

The control laws T ~ , T Z  are the same as in (6.11) and (6.12), while 
the estimation law is the same as in (6.9) and (6.10). In the simula- 
tion the different boundary layers 0.1 and 10 are used. Their plots 
are in Figures 10, l l  for the case without unmodeled dynamics, and 
in Figures 12,13 for the case with actuator unmodeled dynamics. 
Comparing Figures 10, l l  with Figures 6,7 we can see that the joint 
position errors of Figures 10, l l  are smaller than those corresponding 
Figures 6,7. We also can see that the joint position errors of Figures 
10, l l  are smaller than those of Figure 4. Thus the tracking precision 
performance of combining the continuous VSC and the switching-a 
modification control laws are better than the switching-a modiiica- 
tion control law and continuous VSC law. Comparing Figures 12,13 
with Figures lO,ll,  we see that the joint position error of combin- 
ing the continuous VSC law and the switching-a modification control 
laws for the case without unmodeled dynamics are smaller than those 
of the case with unmodeled dynamics as was to be expected. 

7 Conclusions 

In this paper, we have analyzed and simulated four robust position 
control laws for the single-arm dynamics with bounded disturbance, 
unknown parameter, and actuator unmodeled dynamics. We can see 
that the combination of the continuous VSC law and the switching-c 
modification control law has better tracking precision performance 
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than the VSC control and switching-a modification control laws for 
both cases without unmodeled dynamics and with actuator unmod- 
eled dynamics. From the theoretical analysis, we know that the 
s m a l l  boundary layer may excite the high frequency unmodeled dy- 
namics which will cause instabilities, but the simulations show that 
the system with a small boundary layer (Figure 8) still has good 
tracking precision even if actuator unmodeled dynamics are consid- 
ered. The reason is that the high-frequency amplitude of the control 
torque is smal l .  However the joint position error without unmodeled 
dynamics is smaller than those of with actuator unmodeled dynam- 
ics. Although the simulation shows that the s m a l l  boundary layer 
can achieve better tracking even if actuator unmodeled dynamics are 
considered, it is limited by physical limitation. The combination of 
the continuous VSC law and the switching-u modification control 
law to  the control of dual-arm dynamics is under investigation. 

References 
[I] J.J. Craig, Introduction to Robotics: Mechanics and Control, 

Addison- Wesley Publishing Company 1986. 

[2] H. Asada and J.J.E. Slotine, Robot Analysis and Control, John Wiley 
and Sons 1986. 

[3] R.P. Paul, Robot Manipulators:Mathmatics, Programming and Con- 
trol, MIT Press, Cambridge, MA, 1981. 

[4] K.S. Fu, R.C. Gonealee, and C.S.G. Lee, Robotics Control, Sensing, 
Vision, and Intelligence, McGraw-Hill, 1987. 

[5] G. Strang, Linear Algebra and Its Application, Academic Press, 1980. 

[e] R.L. Burden, J.D. Faires, and A.C. Reynolds, Numerical Analysis, 
Wadsworth International. 

[7] G.C. Goodwin and K.S. Sin, Adaptive Filtering, Prediction and Con- 
trol, Prentice-Hall 1984. 

[E] Y.D. Landau, Adaptive Control The Model Reference Approach, 
Marcel Dekker, N.Y., 1979. 

[e] V.I. Utkin, Sliding Modes and Their Application in Variable Structure 
System, Moscow, Soviet Union:MIR Publishers, 1978. 

[lo] V.I. Utkin, "Variable Structure Systems with Sliding Modes,"IEEE 
l inns.  Auto. Control, 1977, pp.211-222. 

[ll] V.I. Utkin, 'Variable Structure Systems-Present and Future," Auto. 
Remote Control, 1983, pp.1105-1120. 

[12] V.I. Utkin and K.D. Yang, "Methods for Construction of Dis- 
continuity Planes in Multidimmensional Variable Structure Sys- 
tems,"Automation Remote Control, 1978, pp. 1466-1470. 

[I31 V.I. Utkin, "Equations of the Sliding Regime in Discontinuous Sys- 

[14] J.J. Slotine and S.S. Sastry, 'Tracking Control of Non-linear Systems 
Using Sliding Surface with Application to Robot Manipulators,"Int. 
J. Control, 1983, pp. 465-492. 

tem,"Automation Remote Control, 1972, pp.211-218. 

[15] A.F. Filippov, "Differential Equations with Discontinuous Right Hand 
Sides,"Am. Math. Soc., 1964, pp. 199-231. 

[16] Y.Y. Hsu and W.C. Chan, "Optimal Variable-Structure Controller for 
DC Motor Speed Contro1,"Pmc. Inst. Elec. Eng., 1984, pp. 233-237. 

[17] R.A. DeCarlo , S.H. Zak and G.P. Matthews, "Variable Structure 
Control of Nonlinear Multivariable Systems:A Tutorial," Proceedings 
Of The IEEE 1988. 

[U] J.J.E. Slotine, "On Modeling and Adaptation in Robot Contro1,"Pmc. 
IEEE Int. Conference on Robotics and Automation 1986. 

[IS] J.S. Reed and P.A. Ioannou,"Instability Analysis and Robust Adap 
tive Control of Robotic Manipulators,"IEEE Transactions on Robotics 
and Automation June, 1989. 

[20] T.C. Hsia, "Adaptive Control of Robot Manipulators-A Review,"Proc. 
IEEE Int. Conf. on Robotics and automation, 1988, pp.183-189. 

[21] S. Dubowsky and D.T. Desforses, "The Application of Model Refer- 
enced Adaptive Control to Robot Manipulators," ASME J.  Dynamics 
Sys., Meas., and Control, VoLlOl, sep. 1979. 

[22] J.J. Craig, P. Hsu, and S.S. Sastry, "Adaptive Control of Meehani- 
cal Manipulator,"IEEE Pmc. Int. Conf. on Robotics and automation, 
1986, pp.190-195. 

[23] J.J.E. Slotine, "Sliding Controller Design for Nonlinear System,"lnt. 
J .  COntT., Vol. 40, 1984. 

[24] J.J.E. Slotine and W. Li, "On the Adaptive Control of Robot Manip 
ulators,"ASME Winter Annual Meeting, Anaheim, CA, 1986. 

[25] J.J.E. Slotine and W. Li, " Adaptive Manipulator ControLA Case 
Study,"Pmc. IEEE Int. Conf. on Robotics and Automation, Raleigh, 
NC, 1987. 

[26] J.J.E. Slotine and W. Li, "On the Adaptive Control of Robot Manip 
ulator,"Int. J. Robotics, vol. 6, 1987. 

[27] P. Ioannou and J. Sun "Robust Adaptive Control, "Class Notes of 
EE685, USC, 1988. 

[28] L-W. Chen and G. P. Papavassilopoulos, "Robust Variable Structure 
and Adaptive Control of Single-Arm Dynamics," Dept. of Electri- 
cal Engineering-Systems, University of Southern California, December 
1990. 

P i  1: contineolu vsc Law 

371 



F w e  6: Cantinu- Variable Structure Control Without 
U-deled Dynamics 

bo" layer O.l&id line:pint 1,dot line:joint 2 

P i  8: Contin"n Variable Structure Control With 
Actuator U d e k d  Dynamics 

boundary byer O.l,sotid line:jaint 1,dot line:joint 2 

1 :  1 :  

F i e  11: c o m b i o n  of the Cantin- Variable Structure 
and the Sritching-r Modifiution Control La- 

Withoot Unmodeled Dymmicl 
b o u n d y  layer 10jolid line:pint 1,dot line:joiit 2 

F i  1 2  Comhiaation of the Continuona Variable S t r u c t w  .nd 
the Switching-r Modifisation Contrd Irrs With Actaator 

Unmodekd Dynamics 
boundary lagex O_l+olid line:joint 1,dot line:Wt 2 

Pi- 13: Combmtien of the Cantiiuous Variable S t m c t u n  and 
the Switching-= ModSCrtion Contml Laws WBth A c W m  

UnmadeledDynamics 
boundary hyex l 0 , d d  line:pint 1,dot line:joiit 2 
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