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Abstract. The problem of minimizing the rank of a positive semi-definite matrix, subject to
the constraint that an affine transformation of it is also positive semi-definite, is considered. In
this direction, we demonstrate that certain instances of this problem can be solved by semi-definite
programming. An illustrative example from control theory is also provided.
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1. Introduction. This note is concerned with the solution to the following,
henceforth referred to as the MIN-RANK problem,

(1.1) minrank X
(1.2) subject to: Q4+ M(X) =0
(1.3) Xx0

In (1.1)=(1.3), M is a symmetry preserving linear map on the space of symmetric
matrices, Q is a symmetric matrix (of appropriate dimensions), and the ordering “>"
is to be interpreted in the sense of Lowner, i.e., A > B if and only if A~ B is positive
semi-definite; similarly A > B indicates that A — B is positive-definite.

The MIN-RANK problem has many applications in control and system theory.
For example, the Bilinear Matrix Inequality problem (BMI) can be shown to be equiv-
alent to a MIN-RANK problem (possibly with some additional constraints) (7], [11].
The BMI, on the other hand, has been shown by Safonov et al. [10] to be a unifying
formulation for a wide array of control synthesis problems, including, the fixed-order
H® control, u/km-synthesis, decentralized control, robust gain-scheduling, and si-
multaneous stabilization. Similarly in [4], El Ghaoui and Gahinet have shown that
the important problems of static output feedback stabilization, dynamic reduced or-
der output-feedback stabilization, reduced order H* synthesis, and u-synthesis with
constant scaling, can be formulated as a rank minimization under an LMI constraint,
clearly an instance of the MIN-RANK problem.

We shall restrict our attention to linear maps M in (1.2) of a particular structure;
they are assumed to be of the type Z:

DEFINITION 1.1. A symmetry preserving linear map M : SR**" — SR"*" is of
the type Z, if it can be represented as,

k
(1.4) M(X)=X =) MXM
i=l
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Jor some matrices M; € R"*" (1 <i < k), and integer k > 1.

The approach that we adopt for solving MIN-RANK problems with the type Z
linear maps, is strongly motivated by the results pertaining to the linear complemen-
tarity problems (LCPs) with a Z matrix (and hence the notation Z for maps of the
form (1.4)) [2], [3], [6], [9). Recall that a matrix is a Z matrix if all of its non—diagonal
elements are non—-positive. More specifically, we pose the following question:

Can one solve a MIN-RANK problem with the type Z linear map

via a semi-definite program (SDP) (a linear program over the cone

of positive semi-definite matrices)?
The answer to the above question, as we shall show below, is affirmative, provided
that Q in (1.2) is negative semi-definite.

The organization of this note is as follows. In Section 2, we show how a MIN-
RANK problem with the type Z linear map can be solved by formulating it as a SDP.
In this direction, we present an extension of the notion of a lattice (in fact, a meet
semi-lattice), for the space of symmetric matrices. In Section 3, a control example
demonstrating the applicability of our result is presented; few remarks then concludes
the paper.

A few words on the notation. T¥ and A(T") denote the transpose and an eigenvalue
of the matrix 7', respectively. The space of n x n real matrices is denoted by R**", its
symmetric subset by SR"*", its symmetric positive semi-definite subset by SR}*",
and its identity matrix by J,. Finally, the inner product of two square matrices A
and B in SR™*" is denoted by AeB, which is equal to the trace of the product AB.

2. The MIN-RANK Problem. In this section, we first develop an extension
of the notion of a lattice (for vectors, with component-wise ordering), for the space of
symmetric matrices (with the Lowner ordering). We then demonstrate the usefulness
of this notion by showing that a MIN-RANK problem with the Z linear map, reduces
to a semi-definite program, provided that Q < 0.

For a given pair of n x n symmetric matrices, consider the set
A(A,B):={X€SR"™™:0< X <A, 0<X <B)}

In [1], Ando has shown that although the set A(A, B) does not possess a maximal
point, it has in a sense, “many maximal elements,” with respect to the Lowner order-
ing.

The set of the maximal points of A(A, B), which shall be denoted by A..,(A, B),
has the following property:

VD € A(A, B),3Z € Awpl(A, B) :
Z€A(A,B),D<Z;
(2.1) & BWEA(AB):WHZ,WxZ

The matrix Z € Aup(A, B) that satisfies the condition (2.1), not only depends on
the matrices A and B, but also on the specific matrix D.
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In [1], a complete characterization of the maximal points of the set A(A, B),
along with an algorithm for their computation are provided. More explicitly, in [1]
the set Auup(A, B) is parameterized by a subspace N’ C range(A) N range(B), and
an ny-by-n; matrix K, such that K*K < [,,, where ny (respectively ni) is the
number of positive (respectively negative) eigenvalues of the matrix [AM]A — [N]B,
with multiplicity counted; the notation [NV].4 denotes the short of the matrix A to the
subspace A" [1]. Moreover, given a matrix D € A(A, B), a matrix £ € Agp(A, B)
satisfying (2.1) is constructed as:

(22 Z = 3{INMA+ VB - LIL~ (M8 - NJA)L~|L)

where L := ([N]A + [N](B) — 2D)*/3, L~ is the inverse of L restricted to the range
of [N]A = [N]B, and |A| denotes the positive square root of the matrix A*. For more
details on this construction, and in particular, the reason for the existence of the
restricted inverse of L, the reader is referred to [1] (page 5: lines 15-16; page 10: lines
5-T).

Analogous to the case of the component-wise ordering for vectors, we define the
following generalization of a (meet semi-) lattice.

DerFiviTION 2.1. A set I' C SRL™" is called a (meet semi-) hyper-lattice if for
all pairs X and Y in ', there exists Z € A(X,Y) such that Z € T.

Define,
(2.3) = {X>0:Q+M(X)>0}

to be the feasible set of the MIN-RANK problem (1.1)-{1.3). We shall assume that
the set T’ is non—empty.

We now demonstrate that I' (2.3) is indeed a (meet-semi) hyper-lattice when @
is negative semi-definite.

LEMMA 2.2, Let the linear map M in the definilion of T' [2.5) be of the lype Z.
Then ' is a (meet semi-) hyper-lattice when Q is negative semi-definite.

Proof. We would like to show that for two symmetric matrices 4 and 8 in T,
there exists 2 € A(A, B) such that Z €T.

We first note that the set A(A, B) is convex and compact. It suffices to show that
for some Z € A(A, B),

k
Zx-Q+Y MZIM,.
i=]

Since £ < A and Z < B, one has

S O MZM{ <Y MiAM]
i i
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SO MZM] <Y MiBM|
i i
As a result of the assumption A, B € T, one concludes that,
Ar—Q+) MAM{ = -Q+3) MZM >0
i ]
and
Br-Q+) MBM{>-Q+) MZIM|>0
i i
for all Z € A(A, B) (recall that @ is assumed to be negative semi-definite). Hence for
all Z € A(A, B), (-Q + 1_; MiZM]) € A(A, B).
In particular, for all Z € A(A, B), there exists Y € Agyp(A, B) such that

(24) Yr-Q+3 MZM|
i

by the definition of the set Aup(A, B). Let g : A(A, B) =+ A(A, B) be the point-to-set
map such that,

(2.5) 9(Z) ={Y €A(A,B): Y = -Q+ Y M;ZM]}
i

The map g is upper semi-continuous. To see this, let {Zi}s>) and {Yi}ip1 be a
sequence of matrices such that

Yo Q4+ ) MiZyM]
i
and let Zy — 2%, and Yy — Y*. Since A(A, B) is compact, ¥* € A(A, B). Define
M(Zh,Ye) :=Q+Ye— 3 MiZuM{
i

The map M is linear on SR™™" x SR™*", and is therefore continuous. Since the cone
of positive semi-definite matrices is closed,

0= *l_ip M(2,, V) = M(Z2°,Y")



and therefore,
Y'>-Q+ ) MZ°M]
i

and hence Y* € g(2°*).

Since g is upper semi-continuous on the convex and compact set A(A, B), it has
a fixed point via the Kakutani's Fixed Point Theorem [5]. That is, there exists a
matrix Z € A(A, B) such that Z > ~Q + 3, MiZM/. Hence, T is indeed a (meet
semi~) hyper-lattice.

The following theorem answers the question posed in Introduction.

THEOREM 2.3. A minimal rank element of I' (2.5) can be found by a semi-definite
program when Q is negative semi-definite matriz.

Proof. Consider the following semi-definite program,

(2.6) min Je X
(2.7) subject to: Q4+ X — 3. Mi XM/ >0
(2.8) X0

Recall the T is the set defined by (2.7)-(2.8). Since I' is assumed to be non-empty,
let A €T (2.3) (such a matrix can be found be a semi-definite program itself). Now
consider instead the problem,

(2.9) minJe X
(2.10) subject to: Q+ X - Y, MiXM[ > 0
(2.11) X>0
(2.12) TeX < JeA

It should be clear that the optimum of both SDPs (2.6)-(2.8) and (2.9)-(2.12), are the
same. The latter SDP has an optimum since, I'N {X : JeX < JeA} is a compact set,
and [eX is a linear functional in X. Let X be the optimal solution of (2.6)-(2.8). We
now claim that X is of minimal rank in I'. To show this, let Y € ' and Z € A(X,Y),
such that Z € I' (this is possible since I" (2.3) is a (meet semi-) hyper-lattice). By
the optimality of X,

(2.13) Y NX) <3 M(2)
i i
On the other hand since Z € A(X,Y), one has,

(2.14) A(2) < X(X) (i=1,...,n)
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and
(2.15) Mi(2) s MlY) (i=1,...,n)

In view of (2.13), (2.14) implies that A;(Z) = Ju{f‘_l (i=1,...,n). Thus by (2.15),
for an arbitrary matrix Y € T,

(2.16) NE)Y< Y)Y (i=1,...,n)

Eunpmmthﬂqfhmtdnﬁnimdmkinl‘. Thunlhg_nuimi"’nchthu
M(Y) = 0 and Mi(X) # 0, for some index i. Since X > 0, Xi(X) > 0, which violates
(2.16). Hence X is of minimal rank in T'.

3. A Control Example. Let £ be the discrete time, linear time invariant dy-
namical system:

(3.1) E: Zp41 = Azy + Buy
(3.2) e = Czp + Duy

with matrix A € R"*" (and all other matrices of appropriate dimensions).

Suppose that it is desired to synthesis a controller for £ such that the closed loop
system is internally stable, as well as satisfying a H°° norm constraint from u to y,
in face of a given structured uncertainty (the structured optimal performance control
problem (SOPC)) [8].

In [8], Packard et al. show that this important problem in control theory can be
reduced to a MIN-RANK problem.

THEOREM 3.1 ([8]). The structured optimal performance control problem (SOPC)
is solvable if for a given sei of mairices M, and M; and an inieger J, there enist
matrices R and S (possibly structured), such that,

(3.3) M,RM - R <0
(3.4) MiSMy -5 <0
and
R I
(3.5) ( i ) >0
R I
(3.6) r.mt( R ) <
Let,

Uy~
U
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Then it can be shown that the above problem reduces to solving the following instance
of the MIN-RANK problem,

(3.7) minrank X
(3.8) subject to: AXA' - X <Q
(3.9) Xel
(3.10) X»0

for an appropriate choice of the matrices A and (symmetric) Q; moreover the set £
is defined as,

(3.11) c;={x:x=('{ ",);U.V-ymmmic}

The subset £ can for example be defined by a set of linear equalities of the form
$E;jeX = 1, where E; is a matrix whose all entries are zero, except the ij-th entry
which is one (this fixes the ij-th entry of the matrix X to one).

Let us rewrite the above problem, for ¢ > 0, as:

(3.12) minrank X
(3.13) subject to: (Q —ef) + X — AXA' >0
(3.14) XeL
(3.15) X>0

We now realize that the above problem is exactly a MIN-RANK problem with a linear
map of type Z, except that the solution has to be found in the affine set £. Fortu-
nately, this additional constraint does not introduce a difficulty for the applicability
of the approach described earlier. This is due to the fact that if the matrices A and
B are in L, the set A(A, B) can be shown to belong to £ [1].! Consequently, given
that the set I' (2.3), with the linear map

M(X):=X - AXA'

and Q — ¢J <0 is a (meet semi-) hyper-lattice, its restriction to £, if non-empty, is
a (meet semi-) hyper-lattice as well.

In order to solve this instance of the MIN-RANK problem arising from the SOPC
problem, one thus consider the following semi-definite program, for ¢ > 0,

(3.16) niin fe X
(3.17) subject to: (Q — ef) + X = AXA' >0
(3.18) XecL
(3.19) X»0

where Q — ¢/ is required to be negative semi-definite. This approach consequently
results in an efficient way of studying the structured optimal performance synthesis
problem for the discrete time linear time invariant systems.

'Refer to the construction of Ando on pages 8-9 of [1].
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4. Concluding Remarks. In this note, we have described an approach for
solving the problem of minimizing the rank of a positive semi-definite matrix, subject
to the constraint that an affine transformation of it is also positive semi-definite. In
this direction, an approach analogous to finding the least element of a meet semi-
lattice, which has been extensively studied in the context of the LCP, is developed.
However our analysis uses some additional ideas and concepts since the positive semi-
definite ordering can not be used to introduce a lattice structure on the space of
symmetric matrices. The applicability of our results to certain synthesis problems in
control theory is also discussed.
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