
Proceedings of the 2000 IEEE
International Conference on Robotics & Automation

San Francisco, CA 0 April 2000

On-board Task Scheduling Algorithm for Spacecraft

11-Jun Jeong', George Papavassilopoulos', and David S. Bayard2

Department of Electrical Engineering
University of Southern California

Los Angeles, CA 90089

Abstract

An on-board scheduling algorithm is developed for
scheduling tasks on a spacecrap. For ofline scheduling, a
heuristic routine generates a feasible schedule and order-
based genetic algorithms improve the schedule. For
online scheduling, two heuristic routines generate a good
schedule in near real-time. The on-board scheduling
algorithm is applied to a large problem of IO00 tasks, IO0
resources and 365 time units. The results were successful:
The on-board scheduling algorithm could generate
various schedules according to time requirements.

1 Introduction

Developing on-board scheduling algorithms is
essential for autonomous spacecraft, which can take over
many mission operations that traditionally have been
performed on the earth. Traditional spacecraft have used
older proven technologies than newer unsafe ones,
because spacecraft mission is too valuable to take risk.
The objective of NASA's New Millenium Program
(NMP) is to test and validate the new technologies for
future space mission [SI.

On-board scheduling enables spacecraft to be more
responsive to unexpected opportunities and more robust
to sudden failures. When spacecraft flies by a target to
take a sequence of images, an unexpected important
object may appear. On-board scheduling can utilize the
opportunities, and produce a better outcome of space
mission. Traditional ground scheduling approach could
not react on component failures promptly, due to the
communication delay between the spacecraft and the
earth. The new approach is also less costly. The usage of
ground station's resources to resolve the component
failures, and network of antennas for the communication
can be minimized. For example, the Deep Space One
(DSl), which is the first mission of New Millenium
Program (NMP), requires approximately one pass of Deep
Space Network (DSN) coverage per week [5] .

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 9 1 109

Task scheduling on a spacecraft is selecting and
arranging tasks to maximize the successful outcome of a
space mission while satisfying resource and temporal
constraints. Tasks have different duration and resource
demands. The resource demands can be constant or time
varying. Payment values are assigned to tasks, and used to
measure the quality of the outcome. Various resource
types are used to represent resource constraints. Laser
instruments can be represented by renewable resource
constraint. Amount of fuel can be represented by a non-
renewable resource constraint. A feasible schedule also
must satisfy many temporal constraints, including
precedence constraints (e.g. the engine should be. warmed
up before firing), non-overlapping constraints (e.g. a laser
instrument cannot be used for two separate objects), and
specific range constraints (taking images of an object
should be done within specific time range).

The Hubble Space Telescope (HST) scheduling is
another application of on-board scheduling algorithms.
The HST scheduling need to process some 10,000 to
30,000 observation per year, and each observation is
restricted by available observing time, computer storage,
tape recorder storage, and amount of communication data
[4]. The HSP scheduling is mostly offline scheduling,
however online scheduling is also necessary. For example,
a new important observing target, component failures, and
changes in observing programs require online scheduling.

Some scheduling tools have been developed for
spacecraft scheduling. For example, GERRY has been
applied to the Space Shuttle Ground Operations Problem
[8]. GERRY uses a constrained-based iterative repair
method, which iteratively modifies a given complete but
possibly infeasible schedule to improve the quality of the
schedule. To avoid local minima and cycles, the system
used simulated annealing algorithms while keeping the
best schedule separately. Another example of the
scheduling tools is SPIKE, which has been developed for
the HST scheduling problem [4]. SPIKE uses a heuristic
repair-based scheduling method, which selects the best of
many trials of different initial guess and repair heuristics.

0-7803-5886-4/00/$10.00@ 2000 IEEE 1 182

Our on-board scheduling algorithm consists of three
routines: routine 1, routine 2, and the order-based genetic
algorithm. Routine 1 removes infeasible tasks to generate
a feasible schedule. Routine 2 adds feasible tasks to refine
the schedule. The order-based genetic algorithm improves
the schedule iteratively. To test on-board scheduling
algorithm, we generate a problem consisted of 1000 tasks,
100 resources, and 365 time units. We tested the on-board
scheduling algorithm under dynamic situation.

The remaining part of this paper is organized as
follows: Section 2 defines problems to solve. We examine
task, resource, and temporal constraints. We also discuss
scheduling objective. Section 3 describes our on-board
scheduling algorithm. We explain each routine of
scheduling algorithm and each stage of scheduling.
Section 4 shows experimental results. The experiments
are intended to show how the scheduling algorithm
performs on actual spacecraft scheduling situation.
Finally, Section 5 presents conclusions.

2 Problem Description

A task i is characterized by duration di and resource
demand rrk on resource k. If the task i is scheduled to start
at r,, then the task i will be completed at t = t, + d,. We
assume that the time t is an integer and 0 I t I T, where T
is an scheduling period. Sometimes, the task i can be
performed in more than one mode. To include such case,
we generalize the above symbols: a task i in mode m has
duration d,, and resource demand rlmk on resource k.

Resources are categorized into three groups [6, 71:
renewable resources, non-renewable resources, and
doubly constrained resources. Renewable resources are
restorative, and have the maximum allowable limit on a
period-by-period basis. Thus, a previously consumed
amount does not need to be considered. Non-renewable
resources are consumable. The maximum allowable limit
is on a total period basis. The available amount of non-
renewable resources depends on the amounts previously
consumed. Doubly constrained resources have both
characteristics of renewable and nonrenewable resources.

We consider three types of temporal constraints:
precedence constraints, non-overlapping constraints, and
specific range constraints. Precedence constraints confirm
that some tasks are performed before others. If a task i
should be finished before a taskj, then:

where qj is a minimum time interval between the task i
and the task j . Non-overlapping constraints restrict
overlapping of two tasks. They can be expressed as:

t i> $ + d/m + qi or $2 ti + dim + qj

and, in this case, the task i and the task j cannot be
executed at the same time. The qj = 5, is an additional
time interval between the two tasks. Specific period
constraints restrict the start time of a task i within a given
period.

O < a < t i < b S T

For example, some observations need to be performed at a
certain time due to the location of a spacecraft.

Because the time interval [0, 7'J of a space mission is
predefined and limited, it may be impossible to select and
schedule all intended tasks: We may need to reject some
tasks. To distinguish rejected tasks and selected tasks, we
use a parameter e, E (0, l}: e, = 0 indicates that a task I is
rejected, and e, = 1 indicates that the task i is selected. We
assume that y, 0 is the reward when the task i is selected
and p, < 0 is penalty when the.task i is rejected. Then:

where wi is a payment of the task i.
We want to find a schedule S(t/ ,..., t,,,el ,..., e,,) that

maximizes the payment of all selected tasks while
satisfying all constraints. In other words:

Problem:
so that:

Find ei E (0, I } and t, E [O , T-d,], i = 1, ..., n,

subject to: S(tl ,..., &,el,.. .,e,,) satisfies all constraints.

When we can easily select all tasks or when we want to
find the minimum makespan, we need to replace (1) with:

n
max wi ei + T - m p (t i + d i) (2)

e, ;=I I

The T ensures that the result of (2) is positive. For multi-
mode problems, (2) should be:

N

max ei + T - max (t i + din,) (3)
e, ;=I I

3. On-board Scheduling Algorithm

Figure 1 shows the block diagram of the on-board
scheduling algorithm. Section 3.1 explains each routine of

1183

the scheduling algorithm, and Section 3.2 shows how the
routines work for offline and online scheduling.

no more tasks are available (i.e. all tasks are selected) or
the time reaches the end of an intended period. The
algorithm of routine 2 is as follows:

INCREASE
QUALITY

Input: output:
(Infeasible) 0pt”zed
schedule schedule

Feasible
schedule

SPEED

Figure 1. Block diagram of on-board schedulin
aIgorithm

3.1 Routines of On-board Scheduling Algorithm

0 Routine 1
The input of routine 1 is a schedule: The schedule could
be a randomly generated one or previously optimized one.
If the schedule is not feasible, routine 1 removes
infeasible tasks from the schedule to generate a feasible
schedule. The major role of routine 1 is generating a
feasible schedule as soon as possible when a sudden
change occurs. For example, if a very important observing
opportunity appears during a space mission, the on-board
scheduling algorithm has to rearrange tasks to
accommodate the opportunity. Also, if some resources
become unavailable because of some components’ failure,
on-board scheduling algorithm has to remove all tasks
that require the resources. The algorithm of routine 1 is as
follows:

f o r t = l : T
for task = first-task : last-task

if task is scheduled at t
if task does not satisfy constraints

end
remove task;

end
end

end

Routine2
Routine 2 [3] takes an order of tasks as input and
generates a feasible schedule. From the first time unit t =
1, the routine 2 checks whether the task, which is selected
according to the given order, satisfies all given constraints.
If the task satisfies the constraints, the routine places the
task at the time unit. The above procedures continue until

f o r t = 1: T
for task = first-task : last-task

if task is not scheduled
if task satisfies constraints

end
add task at t;

end
end

end

Order-based Genetic Algorithms
The order of tasks determines the quality of a schedule.
Thus, to increase the quality, we need to find better order
of tasks. Order-based genetic algorithms are selected for
the purpose. We selected PMX (Partially Mapped
Crossover) [11 as crossover and SIM (Simple-Inversion
Mutation) [2] as mutation.

The PMX tries to preserve the orders and positions of
parents as many as possible. For example, consider the
following two parents:

P , = [2 6 5 3 8 7 9 141,
P 2 = [9 5 3 4 8 2 1671.

To generate two offsprings O1 and 02, the PMX randomly
selects two cut points. Suppose they are the third and
seventh intervals, which are indicated by ‘1’:

P l = [2 6 5 1 3 8 7 9 1 141,
P 1 = [9 5 3) 4 8 2 1 1671.

The substrings between the two cut points are called the
mapping segments. They defines the following mappings:
3 t) 4, 8 t) 8, 7 t) 2, and 9 ++ 1. First, swap the
mapping segments (the symbol ‘x’ represents ‘currently
unknown’):

0 1 = [~ ~ ~ 1 4 8 2 1 Ixx],
0 2 = [X x x 13 8 7 9 I x x].

Then, replace the ‘x’ with the elements of parents, if it is
not conflicted with the elements of the mapping segment.
The result will be:

O 1 = [~ 6 5 1 4 8 2 1 I x x] ,
0 2 = [X 5 x 13 8 7 9 16x1.

Finally, replace the ‘x’ with the mappings that are defined
previously. For example, the first element of 0, should be

1184

7, because the mapping 7 t) 2. The final offsprings will
be:

0 1 = [7 6 5 (4 8 2 11931,
0 2 = [1 5 4 I 3 8 7 9 I 6 21.

The SIM chooses a substring at random and reverses
the elements of it. For example, if substring [5 3 8 71 is
reversed from parent P = [2 6 5 3 8 7 9 1 41, offspring will
be 0 = [2 6 7 8 3 5 9 141.

3.4 Stages of On-board Scheduling Algorithm

On-board scheduling algorithm has four stages. Stage
1 is for offline scheduling. Stage 2, 3 and 4 are for online
scheduling.

Stage I : ofline scheduling (Figure 2)
We emphasize the quality of a solution. Routine 2
generates a feasible schedule from the order of tasks, and
the order-based genetic algorithm finds better order of
tasks based on the quality of the schedule. The quality of
the schedule serves as a fitness value for the genetic
algorithm. This stage generally requires a long execution
time, but we can use a powerful computer or several
computers.

Order of tasks1 pess

Input: Output:
Emw Optimized

schedule schedule

Figure 2. Stage 1 of on-board scheduling algorithm

We emphasize the speed of a solution. We use the
previously optimized schedule and the order of tasks. If
we need to execute a new important task at a time, we
place the task at the time. Routine 1 removes any
infeasible tasks from the placement and generates a
feasible schedule. However, it is still possible that the task
cannot be scheduled because of temporal constraints.

If some instruments are inoperative, the resource
capacities of the instruments will suddenly change. In
such case, the scheduling algorithm automatically
removes infeasible tasks and generates a feasible schedule.

Stage 2: online scheduling (Figure 3)

Find the best
order of tasks

Input: output:
Previous Optimized
schedule schedule

(New task)
+

1

Figure 3. Stage 2 of on-board scheduling algorithm

Routine 2 improves the schedule of Stage 2. We expect
the improvement within a reasonable time. Two methods
can be used: First, we simply add remaining tasks on the
schedule of Stage 2. It is faster than the next method but
the quality will be worse. Second, we totally reschedule
except completed tasks and currently running tasks. We
take the second method in this paper.

Stage 3: online scheduling (Figure 4)

Find the best
d e r Of tasks

output:
Better

schedule . z;
Figure 4. Stage 3 of on-board scheduling algorithm

This stage improves the previous solution further by the
order-based genetic algorithm. This stage is optional but
recommended if major changes occur.

Stage 4: optional online scheduling (Figure 5)

Order of tasks 1 P-'.
Input: output:

(Infeasible) Optimized
schedule schedule

I ,=;;
Figure 5. Stage 4 of on-board scheduling algorithm

1185

4 Experimental Studies

The performance of the on-board scheduling
algorithm is examined in this section. The performance of
execution time is main interest. The initial test data is as
follows: The number of tasks is 1000, and each task
requires 50 simple renewable resources and 50 simple
non-renewable resources. Each resource demand is a
randomly generated integer between 0 and 10. The task
duration is a randomly generated integer between 1 and
10. The payment of task i is calculated by:

100

k=l
wi = di x q k

Scheduling period is 365 time units. Tasks has following
precedence constraints:

For the order-based genetic algorithms, the number of
population is 10 and the number of generation is 50. The
PMX is used for crossover and the SIM is selected for
mutation. The crossover rate is set to 0.9 and mutation
rate is set to 0.001.

The on-board scheduling algorithm is implemented
using MATLAB. An IBM compatible PC (Intel Pentium
133Mhz processor and 32 h4b of main memory) is used
for experiments.

4.1 Test 1: Sudden New Task

0 Stage I
The on-board scheduling algorithm searches the best
order of tasks that generates an optimum schedule by an
order-based genetic algorithm. After 50 generations, the
scheduling algorithm found the order of tasks XI and a
schedule S1. The number of selected tasks of the schedule
S1 is 775 and the total payment is 2151672. The total
search time was about 38 hours, which is quite long but
this stage is usually performed before the launch of a
spacecraft. To reduce the scheduling time, a simple
parallel algorithm can be used. For example, each
individual can be independently evaluated; if we have 10
computers, we can find the XI about 3.8 hours.

Stage2
At time = 100, one new task was added for immediate
execution: This was done by setting start time = 100 and
level = 0 (the highest level) for the task. First, our

scheduling algorithm removed all uncompleted job,
whose finish time is greater than 100, and placed the new
task. Then, the on-board scheduling algorithm placed all
feasible tasks according to the schedule SI. The new
schedule S2 included total 757 tasks and had total
payment 2094941. The execution time was about 15
seconds.

Stage 3
On-board scheduling algorithm added remaining
unscheduled tasks onto the schedule S2 according to the
order of tasks X1. The new schedule S3 included total 775
tasks and had total payment 2134544. The execution time
was about 230 seconds.

e Stage 4
Order-based genetic algorithm improves the schedule S3.
Order-based genetic algorithm uses the same number of
population and generation. Because the range of
scheduling period is between 100 and 365, the execution
time was shorter about 24 hours 30 minutes. The total
payment of stage 4 is lower than the payment of stage 1.
It is reasonable because there will be some losses due to
removal of tasks that were not completed before 100. The
results of above stages are summarized in Table 1.

Stage3 I 230seconds I 775 I 2134544
Staee4 I 24.5 hours I 775 I 2140243

Table 1. Result of test 1

4.2 Test 2: Unexpected Resource Failure

Stage I
This is same as above case: The number of selected tasks
of the schedule SI was 775 and the total payment was
215 1672. The total search time was about 38 hours.

Stage 2
At time = 200, the capacity of one renewable resource
was reduced to half. The on-board scheduling algorithm
placed all feasible tasks according to the schedule SI . The
new schedule S2 included total 618 tasks and had total
payment 1721898. The execution time was about 9
seconds.

Stage 3
The on-board scheduling algorithm added remaining
unscheduled tasks onto the schedule S2 according to the
order of tasks X1. The new schedule S3 included total 676

1186

tasks and had total payment 188622 1 . The execution time
was about 120 seconds.

0 Stage 4
The order-based genetic algorithm improved the schedule
S3. It took about 12 hours 30 minutes for 10 population
and 50 generations. The improvement from the results of
Stage 3 was noticeable, because there were significant
changes on data set. The results of above stages are
summarized in Table 2.

I - , I ~

1 Stage2 I 9seconds I 618 I 1721898 1
stage 3 j 120 seconds j 676 I 1886221
Stage4 I 12.5 hours I 705 I 1942539

Table 2. Result of test 2

5 Conclusions

The performance of the on-board scheduling
algorithm is demonstrated on a problem having 1000
tasks, 100 resources, and 365 scheduling period. Stage 1
of on-board scheduling algorithm took 38 hours for 50
generations of 10 individuals. The scheduling time can be
greatly reduced if each individual is evaluated on separate
computers. Stage 2 generated a feasible schedule about 15
seconds for Test 1 and about 9 seconds for Test 2. Stage 3
improved the feasible schedule within a reasonable time:
230 seconds for Test 1 and 120 seconds for Test 2. Stage
4 searched an optimum solution iteratively. The results of
each stage can be used according to situation: If a feasible
schedule is required urgently, the result of stage 2 or stage
3 has to be used; if there is enough time, the result of
stage 4 will be desired.

Acknowledgments

We are grateful to David H. Collins and William
“Curt” Eggemeyer of the Jet Propulsion Laboratory for
helpful discussions, and to Hamid Kohen of JPL for
additional software support on this project. The research
described in this document was carried out for the Jet
Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space
Administration.

References

Algorithms and Their Applications, Pittsburgh, PA,
pp. 154-159, 1985.

J. H. Holland, Adaptation in Natural and Artrfcial
Systems, Ann Arbor, MI, The University of
Michigan Press, 1975.

I. Jeong, G. Papavassilopoulos, and D. S. Bayard,
“Task Scheduling on Spacecraft by Hybrid Genetic
algorithms,” Proceedings of the IEEE International
Conference on Robotics & Automation, Detroit, MI,
pp. 441-446, 1999.

M. D. Johnston and G. E. Miller, “SPIKE:
Intelligent Scheduling of Hubble Space Telescope
Observations,” in Intelligent Scheduling, M. Zweben
and M. S. Fox, Ed., Morgan Kaufmann, pp. 391-422,
1994.

N. Muscettola, C. Fry, K. Rajan, B. Smith, S. Chien,
G. Rabideau, and D. Yan, “On-Board Planning for
New Millennium Deep Space One Autonomy,”
Proceedings of IEEE Aerospace Conference,
Snowmass, CO, 1997.

R. Slowinski, “Multiobjective network scheduling
with efficient use of renewable and nonrenewable
resources,” European Journal of Operational
Research, vol. 7, pp. 265-273, 1981.

J. Weglarz, “Project scheduling with discrete and
continuous resources.” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 9, pp. 644-650,
1979.

M. Zweben, B. Daun, E. Davis, and M. Deale,
“Scheduling and rescheduling with iterative repair,”
in Intelligent Scheduling, M. Zweben and M. S. Fox,
Ed., Morgan Kaufmann, pp. 241-255, 1994.

[l] D. E. Goldberg and J. R. Lingle, “Alleles, loci, and
the traveling salesman problem,” Proceedings of the
First International Conference on Genetic

1187

