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Abstract 

An on-board scheduling algorithm is developed for 
scheduling tasks on a spacecrap. For ofline scheduling, a 
heuristic routine generates a feasible schedule and order- 
based genetic algorithms improve the schedule. For 
online scheduling, two heuristic routines generate a good 
schedule in near real-time. The on-board scheduling 
algorithm is applied to a large problem of IO00 tasks, IO0 
resources and 365 time units. The results were successful: 
The on-board scheduling algorithm could generate 
various schedules according to time requirements. 

1 Introduction 

Developing on-board scheduling algorithms is 
essential for autonomous spacecraft, which can take over 
many mission operations that traditionally have been 
performed on the earth. Traditional spacecraft have used 
older proven technologies than newer unsafe ones, 
because spacecraft mission is too valuable to take risk. 
The objective of NASA's New Millenium Program 
(NMP) is to test and validate the new technologies for 
future space mission [SI. 

On-board scheduling enables spacecraft to be more 
responsive to unexpected opportunities and more robust 
to sudden failures. When spacecraft flies by a target to 
take a sequence of images, an unexpected important 
object may appear. On-board scheduling can utilize the 
opportunities, and produce a better outcome of space 
mission. Traditional ground scheduling approach could 
not react on component failures promptly, due to the 
communication delay between the spacecraft and the 
earth. The new approach is also less costly. The usage of 
ground station's resources to resolve the component 
failures, and network of antennas for the communication 
can be minimized. For example, the Deep Space One 
(DSl), which is the first mission of New Millenium 
Program (NMP), requires approximately one pass of Deep 
Space Network (DSN) coverage per week [ 5 ] .  
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Task scheduling on a spacecraft is selecting and 
arranging tasks to maximize the successful outcome of a 
space mission while satisfying resource and temporal 
constraints. Tasks have different duration and resource 
demands. The resource demands can be constant or time 
varying. Payment values are assigned to tasks, and used to 
measure the quality of the outcome. Various resource 
types are used to represent resource constraints. Laser 
instruments can be represented by renewable resource 
constraint. Amount of fuel can be represented by a non- 
renewable resource constraint. A feasible schedule also 
must satisfy many temporal constraints, including 
precedence constraints (e.g. the engine should be. warmed 
up before firing), non-overlapping constraints (e.g. a laser 
instrument cannot be used for two separate objects), and 
specific range constraints (taking images of an object 
should be done within specific time range). 

The Hubble Space Telescope (HST) scheduling is 
another application of on-board scheduling algorithms. 
The HST scheduling need to process some 10,000 to 
30,000 observation per year, and each observation is 
restricted by available observing time, computer storage, 
tape recorder storage, and amount of communication data 
[4]. The HSP scheduling is mostly offline scheduling, 
however online scheduling is also necessary. For example, 
a new important observing target, component failures, and 
changes in observing programs require online scheduling. 

Some scheduling tools have been developed for 
spacecraft scheduling. For example, GERRY has been 
applied to the Space Shuttle Ground Operations Problem 
[8]. GERRY uses a constrained-based iterative repair 
method, which iteratively modifies a given complete but 
possibly infeasible schedule to improve the quality of the 
schedule. To avoid local minima and cycles, the system 
used simulated annealing algorithms while keeping the 
best schedule separately. Another example of the 
scheduling tools is SPIKE, which has been developed for 
the HST scheduling problem [4]. SPIKE uses a heuristic 
repair-based scheduling method, which selects the best of 
many trials of different initial guess and repair heuristics. 
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Our on-board scheduling algorithm consists of three 
routines: routine 1, routine 2, and the order-based genetic 
algorithm. Routine 1 removes infeasible tasks to generate 
a feasible schedule. Routine 2 adds feasible tasks to refine 
the schedule. The order-based genetic algorithm improves 
the schedule iteratively. To test on-board scheduling 
algorithm, we generate a problem consisted of 1000 tasks, 
100 resources, and 365 time units. We tested the on-board 
scheduling algorithm under dynamic situation. 

The remaining part of this paper is organized as 
follows: Section 2 defines problems to solve. We examine 
task, resource, and temporal constraints. We also discuss 
scheduling objective. Section 3 describes our on-board 
scheduling algorithm. We explain each routine of 
scheduling algorithm and each stage of scheduling. 
Section 4 shows experimental results. The experiments 
are intended to show how the scheduling algorithm 
performs on actual spacecraft scheduling situation. 
Finally, Section 5 presents conclusions. 

2 Problem Description 

A task i is characterized by duration di and resource 
demand rrk on resource k. If the task i is scheduled to start 
at r,, then the task i will be completed at t = t, + d,. We 
assume that the time t is an integer and 0 I t I T, where T 
is an scheduling period. Sometimes, the task i can be 
performed in more than one mode. To include such case, 
we generalize the above symbols: a task i in mode m has 
duration d,, and resource demand rlmk on resource k. 

Resources are categorized into three groups [6, 71: 
renewable resources, non-renewable resources, and 
doubly constrained resources. Renewable resources are 
restorative, and have the maximum allowable limit on a 
period-by-period basis. Thus, a previously consumed 
amount does not need to be considered. Non-renewable 
resources are consumable. The maximum allowable limit 
is on a total period basis. The available amount of non- 
renewable resources depends on the amounts previously 
consumed. Doubly constrained resources have both 
characteristics of renewable and nonrenewable resources. 

We consider three types of temporal constraints: 
precedence constraints, non-overlapping constraints, and 
specific range constraints. Precedence constraints confirm 
that some tasks are performed before others. If a task i 
should be finished before a taskj, then: 

where qj is a minimum time interval between the task i 
and the task j .  Non-overlapping constraints restrict 
overlapping of two tasks. They can be expressed as: 

t i>  $ + d/m + qi or $2 ti + dim + qj 

and, in this case, the task i and the task j cannot be 
executed at the same time. The qj = 5, is an additional 
time interval between the two tasks. Specific period 
constraints restrict the start time of a task i within a given 
period. 

O <  a <  t i <  b S T  

For example, some observations need to be performed at a 
certain time due to the location of a spacecraft. 

Because the time interval [0, 7'J of a space mission is 
predefined and limited, it may be impossible to select and 
schedule all intended tasks: We may need to reject some 
tasks. To distinguish rejected tasks and selected tasks, we 
use a parameter e, E (0, l}: e, = 0 indicates that a task I is 
rejected, and e, = 1 indicates that the task i is selected. We 
assume that y, 0 is the reward when the task i is selected 
and p, < 0 is penalty when the.task i is rejected. Then: 

where wi is a payment of the task i. 
We want to find a schedule S(t/ ,..., t,,,el ,..., e,,) that 

maximizes the payment of all selected tasks while 
satisfying all constraints. In other words: 

Problem: 
so that: 

Find ei E (0, I }  and t, E [ O ,  T-d,], i = 1, ..., n, 

subject to: S(tl ,..., &,el,.. .,e,,) satisfies all constraints. 

When we can easily select all tasks or when we want to 
find the minimum makespan, we need to replace (1) with: 

n 
max wi ei + T - m p  ( t i  + d i )  (2)  

e, ;=I I 

The T ensures that the result of (2)  is positive. For multi- 
mode problems, (2) should be: 

N 

max ei + T - max ( t i  + din, ) (3) 
e, ;=I I 

3. On-board Scheduling Algorithm 

Figure 1 shows the block diagram of the on-board 
scheduling algorithm. Section 3.1 explains each routine of 
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the scheduling algorithm, and Section 3.2 shows how the 
routines work for offline and online scheduling. 

no more tasks are available (i.e. all tasks are selected) or 
the time reaches the end of an intended period. The 
algorithm of routine 2 is as follows: 

INCREASE 
QUALITY 

Input: output: 
(Infeasible) 0pt”zed 
schedule schedule 

Feasible 
schedule 

SPEED 

Figure 1. Block diagram of on-board schedulin 
aIgorithm 

3.1 Routines of On-board Scheduling Algorithm 

0 Routine 1 
The input of routine 1 is a schedule: The schedule could 
be a randomly generated one or previously optimized one. 
If the schedule is not feasible, routine 1 removes 
infeasible tasks from the schedule to generate a feasible 
schedule. The major role of routine 1 is generating a 
feasible schedule as soon as possible when a sudden 
change occurs. For example, if a very important observing 
opportunity appears during a space mission, the on-board 
scheduling algorithm has to rearrange tasks to 
accommodate the opportunity. Also, if some resources 
become unavailable because of some components’ failure, 
on-board scheduling algorithm has to remove all tasks 
that require the resources. The algorithm of routine 1 is as 
follows: 

f o r t = l  : T 
for task = first-task : last-task 

if task is scheduled at t 
if task does not satisfy constraints 

end 
remove task; 

end 
end 

end 

Routine2 
Routine 2 [3] takes an order of tasks as input and 
generates a feasible schedule. From the first time unit t = 
1, the routine 2 checks whether the task, which is selected 
according to the given order, satisfies all given constraints. 
If the task satisfies the constraints, the routine places the 
task at the time unit. The above procedures continue until 

f o r t =  1: T 
for task = first-task : last-task 

if task is not scheduled 
if task satisfies constraints 

end 
add task at t; 

end 
end 

end 

Order-based Genetic Algorithms 
The order of tasks determines the quality of a schedule. 
Thus, to increase the quality, we need to find better order 
of tasks. Order-based genetic algorithms are selected for 
the purpose. We selected PMX (Partially Mapped 
Crossover) [ 11 as crossover and SIM (Simple-Inversion 
Mutation) [2] as mutation. 

The PMX tries to preserve the orders and positions of 
parents as many as possible. For example, consider the 
following two parents: 

P , = [ 2 6 5 3 8 7 9  141, 
P 2 = [ 9 5 3 4 8 2  1671.  

To generate two offsprings O1 and 02, the PMX randomly 
selects two cut points. Suppose they are the third and 
seventh intervals, which are indicated by ‘1’: 

P l = [ 2 6 5 1 3 8 7 9 1  141, 
P 1 = [ 9 5 3 ) 4 8 2 1  1671. 

The substrings between the two cut points are called the 
mapping segments. They defines the following mappings: 
3 t) 4, 8 t) 8, 7 t) 2, and 9 ++ 1. First, swap the 
mapping segments (the symbol ‘x’ represents ‘currently 
unknown’): 

0 1 = [ ~ ~ ~ 1 4 8 2  1 Ixx], 
0 2 =  [X x x 13 8 7 9 I x x]. 

Then, replace the ‘x’ with the elements of parents, if it is 
not conflicted with the elements of the mapping segment. 
The result will be: 

O 1 = [ ~ 6 5 1 4 8 2  1 I x x ] ,  
0 2 =  [X 5 x 13 8 7 9 16x1. 

Finally, replace the ‘x’ with the mappings that are defined 
previously. For example, the first element of 0, should be 

1184 



7, because the mapping 7 t) 2. The final offsprings will 
be: 

0 1 = [ 7 6 5 ( 4 8 2  11931, 
0 2  = [ 1 5 4 I 3 8 7 9 I 6 21. 

The SIM chooses a substring at random and reverses 
the elements of it. For example, if substring [5 3 8 71 is 
reversed from parent P =  [2 6 5 3 8 7 9 1 41, offspring will 
be 0 = [2 6 7 8 3 5 9 141. 

3.4 Stages of On-board Scheduling Algorithm 

On-board scheduling algorithm has four stages. Stage 
1 is for offline scheduling. Stage 2, 3 and 4 are for online 
scheduling. 

Stage I : ofline scheduling (Figure 2) 
We emphasize the quality of a solution. Routine 2 
generates a feasible schedule from the order of tasks, and 
the order-based genetic algorithm finds better order of 
tasks based on the quality of the schedule. The quality of 
the schedule serves as a fitness value for the genetic 
algorithm. This stage generally requires a long execution 
time, but we can use a powerful computer or several 
computers. 

Order of tasks1 pess 

Input: Output: 
Emw Optimized 

schedule schedule 

Figure 2. Stage 1 of on-board scheduling algorithm 

We emphasize the speed of a solution. We use the 
previously optimized schedule and the order of tasks. If 
we need to execute a new important task at a time, we 
place the task at the time. Routine 1 removes any 
infeasible tasks from the placement and generates a 
feasible schedule. However, it is still possible that the task 
cannot be scheduled because of temporal constraints. 

If some instruments are inoperative, the resource 
capacities of the instruments will suddenly change. In 
such case, the scheduling algorithm automatically 
removes infeasible tasks and generates a feasible schedule. 

Stage 2: online scheduling (Figure 3) 

Find the best 
order of tasks 

Input: output: 
Previous Optimized 
schedule schedule 

(New task) 
+ 

1 

Figure 3. Stage 2 of on-board scheduling algorithm 

Routine 2 improves the schedule of Stage 2. We expect 
the improvement within a reasonable time. Two methods 
can be used: First, we simply add remaining tasks on the 
schedule of Stage 2. It is faster than the next method but 
the quality will be worse. Second, we totally reschedule 
except completed tasks and currently running tasks. We 
take the second method in this paper. 

Stage 3: online scheduling (Figure 4) 

Find the best 
d e r  Of tasks 

output: 
Better 

schedule . z; 
Figure 4. Stage 3 of on-board scheduling algorithm 

This stage improves the previous solution further by the 
order-based genetic algorithm. This stage is optional but 
recommended if major changes occur. 

Stage 4: optional online scheduling (Figure 5) 

Order of tasks 1 P-'. 
Input: output: 

(Infeasible) Optimized 
schedule schedule 

I ,=;; 
Figure 5. Stage 4 of on-board scheduling algorithm 
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4 Experimental Studies 

The performance of the on-board scheduling 
algorithm is examined in this section. The performance of 
execution time is main interest. The initial test data is as 
follows: The number of tasks is 1000, and each task 
requires 50 simple renewable resources and 50 simple 
non-renewable resources. Each resource demand is a 
randomly generated integer between 0 and 10. The task 
duration is a randomly generated integer between 1 and 
10. The payment of task i is calculated by: 

100 

k=l 
wi = di x q k  

Scheduling period is 365 time units. Tasks has following 
precedence constraints: 

For the order-based genetic algorithms, the number of 
population is 10 and the number of generation is 50. The 
PMX is used for crossover and the SIM is selected for 
mutation. The crossover rate is set to 0.9 and mutation 
rate is set to 0.001. 

The on-board scheduling algorithm is implemented 
using MATLAB. An IBM compatible PC (Intel Pentium 
133Mhz processor and 32 h4b of main memory) is used 
for experiments. 

4.1 Test 1: Sudden New Task 

0 Stage I 
The on-board scheduling algorithm searches the best 
order of tasks that generates an optimum schedule by an 
order-based genetic algorithm. After 50 generations, the 
scheduling algorithm found the order of tasks XI and a 
schedule S1. The number of selected tasks of the schedule 
S1 is 775 and the total payment is 2151672. The total 
search time was about 38 hours, which is quite long but 
this stage is usually performed before the launch of a 
spacecraft. To reduce the scheduling time, a simple 
parallel algorithm can be used. For example, each 
individual can be independently evaluated; if we have 10 
computers, we can find the XI about 3.8 hours. 

Stage2 
At time = 100, one new task was added for immediate 
execution: This was done by setting start time = 100 and 
level = 0 (the highest level) for the task. First, our 

scheduling algorithm removed all uncompleted job, 
whose finish time is greater than 100, and placed the new 
task. Then, the on-board scheduling algorithm placed all 
feasible tasks according to the schedule SI.  The new 
schedule S2 included total 757 tasks and had total 
payment 2094941. The execution time was about 15 
seconds. 

Stage 3 
On-board scheduling algorithm added remaining 
unscheduled tasks onto the schedule S2 according to the 
order of tasks X1. The new schedule S3 included total 775 
tasks and had total payment 2134544. The execution time 
was about 230 seconds. 

e Stage 4 
Order-based genetic algorithm improves the schedule S3. 
Order-based genetic algorithm uses the same number of 
population and generation. Because the range of 
scheduling period is between 100 and 365, the execution 
time was shorter about 24 hours 30 minutes. The total 
payment of stage 4 is lower than the payment of stage 1. 
It is reasonable because there will be some losses due to 
removal of tasks that were not completed before 100. The 
results of above stages are summarized in Table 1. 

Stage3 I 230seconds I 775 I 2134544 
Staee4 I 24.5 hours I 775 I 2140243 

Table 1. Result of test 1 

4.2 Test 2: Unexpected Resource Failure 

Stage I 
This is same as above case: The number of selected tasks 
of the schedule SI was 775 and the total payment was 
215 1672. The total search time was about 38 hours. 

Stage 2 
At time = 200, the capacity of one renewable resource 
was reduced to half. The on-board scheduling algorithm 
placed all feasible tasks according to the schedule SI .  The 
new schedule S2 included total 618 tasks and had total 
payment 1721898. The execution time was about 9 
seconds. 

Stage 3 
The on-board scheduling algorithm added remaining 
unscheduled tasks onto the schedule S2 according to the 
order of tasks X1. The new schedule S3 included total 676 
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tasks and had total payment 188622 1 .  The execution time 
was about 120 seconds. 

0 Stage 4 
The order-based genetic algorithm improved the schedule 
S3. It took about 12 hours 30 minutes for 10 population 
and 50 generations. The improvement from the results of 
Stage 3 was noticeable, because there were significant 
changes on data set. The results of above stages are 
summarized in Table 2. 

I -  , I ~ 

1 Stage2 I 9seconds I 618 I 1721898 1 
stage 3 j 120 seconds j 676 I 1886221 
Stage4 I 12.5 hours I 705 I 1942539 

Table 2. Result of test 2 

5 Conclusions 

The performance of the on-board scheduling 
algorithm is demonstrated on a problem having 1000 
tasks, 100 resources, and 365 scheduling period. Stage 1 
of on-board scheduling algorithm took 38 hours for 50 
generations of 10 individuals. The scheduling time can be 
greatly reduced if each individual is evaluated on separate 
computers. Stage 2 generated a feasible schedule about 15 
seconds for Test 1 and about 9 seconds for Test 2. Stage 3 
improved the feasible schedule within a reasonable time: 
230 seconds for Test 1 and 120 seconds for Test 2. Stage 
4 searched an optimum solution iteratively. The results of 
each stage can be used according to situation: If a feasible 
schedule is required urgently, the result of stage 2 or stage 
3 has to be used; if there is enough time, the result of 
stage 4 will be desired. 
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