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ABSTRACT 
In this paper we will apply the combination of 

the continuous VSC law and the switching-a modi- 
fication control law, the optimal hold force/ torque, 
and the optimal moving force/torque to the control of 
tlie multi-arm dynamics with some unknown parame- 
ter and torque error. We prove stability and calculate 
the error bounds. We assunie that w: can measure or 
estimate the resultant force/torque Ft, which may be 
or may be not equal to desired resultant force/torque 
ti, exerted on the object by the multi-arm manipu- 
lators. The proposed control law can achieve better 
tracking precision than a simply continuous VSC law 
and a simply switching-a modification control law and 
also exerts minimal force/torque on the common rigid 
object. In the simulation, we can see that this con- 
trol law has good tracking precision performance even 
if we have actuator unmodeled dynamics and the es- 
timate resultant force/torque f" is not equal to the 
desired resultant force/torque F,i. 

1. INTRODUCTION 
A particular class of problems arising in the 

robotic area are control problems, where one is in- 
terested in creating a controller which will make the 
robot arms move in a certain way. Owing to the 
nonlinearity, unknown parameters, and bounded dis- 
turbance of the manipulator's dynamics , the design 
of the manipulator's controller is a difficult problem. 
This leads to interesting robust variable structure (121- 
131) and adaptive control ([4]-[5]) problems for the 
control of multi-arm dynamics. In recent years, sev- 
eral papers appeared regarding the control of dual- 
arm and multi-arm dynamics. Zheng and Luh ([7]-[9]) 
studied the problems of two industrial robots holding 
a single object. Pittelkau [IO] studied the adaptive 
load sharing force control for dual-arm manipulator. 

In his paper, he did not mention how to find the o p  
timal hold force which is important in dual-arm and 
multi-arm dynamics control, and he did not gener- 
alize his scheme to the control of multi-arm dynam- 
ics. Nakamura, Nagai, and Yoshikawa [ 111 studied the 
mechanics of coordinative manipulation by multiple 
robotic mechanisms. The scheme they present to find 
the minimal internal force exerted on the common ob- 
ject by the multiple robots is not simple and they also 
did not consider the optimal moving force/torque. 
Seraji [ 141 studied adaptive control strategies for co- 
operative dual-arm manipulator. He linearized the 
nonlinear dynamic eqnation at tlie operating point, 
and then developed his adaptive controller based on 
the linearized model. Cole, Hauser, and Sastry  [13] 
studied kinematics and control of multifingered hands 
with rolling contacts , but they did not deal with 
the calculation of the optimal hold force and moving 
force. 

This paper is organized as fol1ows:In Section 2, 
the dynamic model of the multi-arm manipulator 
holding one common rigid object is given. In this 
model we assume that the contacts between the multi- 
arm manipulator and the common rigid object are the 
point contacts so that the torques of contact are zero. 
In Section 3, we apply the combination of the continu- 
ous VSC law and the switching-a modification control 
law, the optimal hold force/torque, and the optimal 
moving force/torque to the control of the multi-arm 
dynamics with some unknown parameter and torque 
error. We also state the error boundsfor this con- 
trol law. In Section 4, the simulations of dual-arm 
manipulators, each arm with two rigid links, holding 
a common rigid object with controllers are presented. 
These simulations show that the proposed control law 
has better tracking performance even if actuator un- 
modeled dynamics and torque error are considered in 
the simulations. The conclusion is given in Section 5 .  
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2. FORMULATION 
Figure 1 shows a m-arm manipulator which has 

m arms, each one of which has n rigid links, hold- 
ing one common rigid object together. In Fig- 
ure 1, Xb,Yb, Z b  denote the base frame, Xo,Yo,  Z,  
denote the object frame fixed at  the mass center 
of the common rigid object, the (3 x 1) vectors 
f l ,  f 2 , .  . . , f,denote the end-effector forces exerted on 
the common object by each arm with reference to the 
base frame, the (3 x 1) vectors n1,n2, . . , n, denote 
the end-effector torques exerted on the common ob- 
ject by each arm with reference to the base frame, 
the (3 x 1) vector p ,  denotes the position vector of the 
mass center of the common rigid object with reference 
to the base frame, the (3 x 1) vectors pi ,  p 2 , .  . . , p m  
denote the position vectors of the contact points with 
reference to  the base frame, and the (3 x 1) vectors 
T I ,  r2, dots, r ,  denote the vectors from the mass cen- 
ter of the common object to the each contact point 
with reference to  the object frame, respectively. We 
also denote by the (3 x 1) vectors f t ,  nt the resultant 
force and torque exerted on the common object, re- 
spectively. We denote by y = [O 0 - 9.8IT E R3 the 
gravitational accelerational vector, by M the mass of 
the common object , and by R, the rotational ma- 
trix of object frame X , ,  Yo, Z, with reference to base 
frame Xc,, I$, Z,.  Assuming the contacts between the 
arms and the common rigid object are the point con- 
tacts,i.e., the torques exerted on the object by each 
arm ni, a = 1,2 ,  ",  m are zero, then the following 
equations liold:([ll]-[l3]) 

m 

nt = C ( R o r i )  @ fi (2.2) 
i = l  

where 8 in (2.2) denotes the cross product of two 
column vector. Then the dynamic equations of the 
common object can be represented by the following 
Newton and Euler equations. 

I w + w @ ( I w ) = n t  (2.4) 

where po E R3 is the linear accelerational vector of 
the mass center of the object with reference to the 
base frame, w , w  E R3 are the angular position and 
velocity vectors of the object with reference to the 
base frame, and I E R3x3 is the inertial matrix of 
the object with reference to  the base frame. Note 
that the inertial matrix varies with the orientation of 

the common rigid object([ll]-[13]). We can write the 
dynamic equation of the common object from (2.1) to  
(2.4) as follows. 

where 

M c = (  M I  o 3  0 I ) , X c = ( p o ~ g )  

f ( f i  , . . . f m ) T ,  Ft o = (0, 8 ( 1 ~ ) ) ~  
where W is a (6 x 3m) matrix, and f is a (3772 x 1) 
vector. 

We also let 

m 

W f = Ft = Fi, Fi = ( ji ) (2.6) 
i= 1 (Rori) 8 fi 

i = 1 , 2  ,..., m. 

where Fl ,  F2, " ' ,  F,,, E RG are the force/ torque ex- 
erted on the object by each arm, and Ft E RG is the 
resultant force/torque exerted on the object by the 
m-arm manipulators. The dynamic equation of each 
arm with n links in joint space is as follows[l]. 

7% = D(qE)QZ + H ( q z ,  Q t ) Q Z  +G(q , )  + ( J ( q , ) ) T F ,  (2.7) 

where 7; E Rn is the vector of joint torques sup- 
plied by the zth  robot arm actuators; D(qi)  E 
Rnxn is the z t h  robot arm mass (inertial) matrix 
which is symmetric and positive definite; qi ,  q i ,  qi E 
R'l are z t l L  robot arm vectors of joint displacement 
,velocity and acceleration, respectively; H ( q i ,  q i )  

E Rnxn  is the matrix from centrifugal, Coriolis and 
frictional forces for z t h  robot arm; G(q,)  E Rn is 
the z t h  robot arm vector of gravitational torque ; 
J ( q ; )  E R G X n  is the Jacobian for z t h  robot arm; 
Fi E RG is the Cartesian force/torque vector acting 
on the mass center of the object by zth,  robot arm. 
Finally, we can write the dynamic equation of m-arm 
manipulators in joint space as follows. 
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H(q,  4) = diag(H(q1,41), * . 3 H(qm, 4;)) 

G(q) [G(q1) * .  . ~ ( q m ) I ~  

J = d i a g ( ( J ( q l ) ) T ,  + 3 ( J ( q m ) ) T )  

F =  [Fl . . .  FmIT 

where 7 E R"",D(q) E RmnX"" 9 Q E R"", H ( q ,  4) 
E Rmnxmn , J ( q )  E RGmXmn, and F E RG". There- 

fore, our problem is to design a controller which uses 
the control law 7 as a function o,f the state q,  q, the 
estimated unknown parameter P in (3.2), the esti- 
mated optimal moving force/torque F"" in (3.8) and 
the estimated optimal hold force/torque Foh in (3.8) 
which will make (2.8) to have q -+ q(t in the presence 
of torque error and unknown parameters, where qci is 
the desired trajectory. 

3. ROBUST VARIABLE STRUCTURE AND 
ADAPTIVE CONTROL OF MULTI-ARM 
For the control of the multi-arm manipulators 

holding one common rigid object, there are several ob- 
jectives we want to achieve. First, we want the mass 
center of the common rigid object to move along the 
desired trajectory in the Cartesian space. Second, we 
want to achieve no slipping of the common rigid object 
from the manipulators, i.e., multi-arm manipulators 
can firmly hold the common rigid object without slip- 
ping. Third, we want to achieve that the force/torque 
exerted on the common rigid object by the multi-arm 
manipulators is minimum(optima1). 

In 1151, we study and simulate the combina- 
tion of the continuous VSC law and switching-sigma 
modification control law and show that it has bet- 
ter tracking performance than a simply continuous 
VSC law, and switching-sigma modification control 
law for the single-arm dynamics. In [lS], we present 
several slchemes which can find the optimal hol$ force/ 
torque Foh and optimal moving force/torque F"" ex- 
erted on the common rigid object by the multi-arm 
manipulators. In this section, we apply the optimal 
hold force/torque, the optimal moving force/torque, 
and the combination of the continuous VSC and the 
switching-sigma modification control laws to the con- 
trol of multi-arm manipulators holding a rigid object. 
Our control scheme can achieve not only the good 
tracking performance but also the smallest-magnitude 
force/torque exerted on the common rigid object by 
the multi-arm manipulators. 

Assume the estimated resultant force/torque 
pt exerted on the common rigid object by the 
multi-arm manipulators is available, which may 
be or may be not equal to the desired resultant 
force/torque Fli, where the desired resultant force/ 
torque Et is a force/torque which can move the 

object along the desired trajectory. We also let 
the multi-arm manipulators move in a coordina- 
tive way.([7]-[9]) First, we calculate the optimal 
hold force/to:que $Oh,  and the optimal moving 
force/torque ym based on the estimated resultant 
force/torque Ft and the scheme in [16], and then 
add JT(q)poh and J T ( q ) P m  into our control law, 
where J T ( q )  is Jacobian which is a mapping from 
velocities in joint space to velocities in Cartesian 
space, and its transpose maps Cartesian force/torque 
acting on the end-effector into equivalent joint 
torques. Applying the control law in (3.8) to the 
control of multi-arm manipulators holding one com- 
mon rigid object, it can surpress the torque error and 
achieve better tracking performance. 

We choose the following function as a Lyapunov 
function candidate of the dynamic equation (2.8). 

v(t, s, (a) = (i/z)sTqq)s + (ip)aJT@ (3.1) 

where D(q)  E R""'"" is an inertia matrix which is 
a symmetric and positive definite, I' E Rmzxmz is a 
diagonal positive definite constant matrix chosen by 
the designer, and (a(t) E R"" is defined as follows. 

(a(t) = P ( t )  - P ( 3 4  

where mz is the number of unknown parameter, P is 
an unknown constant parameter vector, P ( t )  is the 
estimate of P ,  and (a(t) is the estimated error of the 
parameter vector. We define S ( t )  E R"" as follows. 

S ( t )  = i ( t )  + Aa(t), S ( t )  = $(t)  + Ai(t)  (3.3) 

where 

a( t )  = q ( t )  - Q d ( t ) ,  h(t)  = 4(t) - h ( t )  (3.44 

q(t)  = q ( t )  - &(t) (3.4b) 

q d ( t ) ,  &(t)  and &(t) E Rmn are the desired joint po- 
sition, velocity and acceleration of multi-arm manip- 
ulators, and A E Rmnxmn is a constant diagonal pos- 
itive definite matrix chosen by the designer. We also 
define the reference signal q r ( t )  E R"" as follows: 

qr ( t )  = q<i(t) - A J,' q( t )d t  (3.5) 

Therefore 
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From Lemma 1 in [15], we know V ( t ,  S ,  (a) is posi- 
tive definite and decresent. In the following we only 
state the control law, the detail proof is given in[17]. 
Lemma 1 Consider the following adaptive control 
law for (2.8): 

7 = b(q1 P)ir + A(q, 4, P ) j r  + k(q, PI+ 
JT(q)Poh + J T ( q ) P o m  - K,iS(t) - d s a t ( S )  (3.8) 

i ( t )  = P ( t )  = -r-lwT(q, 4, ir, Q;)s- 
c l P  (3.9) 

where 

00 > 0 is a scalar, Po > llPll, and 1 1  * 1 1  is a 12 norm. 
Here 

J T ( q ) ( P f I m  + Poh - F) = d 

= ( d l ( t ) ,  ' ' ,  d,n(t))T E RmTL 

do = d i a g ( d 1 0 , .  . . ,  d,,o)andldi(t)I 

(3.11) 

5 d i o , i =  1 , 2 , . . . , m n  (3.12) 

s a t ( S )  = (sat(S1), sut(S2),  ' ", S.t(S",&))' 

S i / b i ,  if ISi/bil < 1 
1, if Si/q& > 1 (3.13) 
-1, if St/$i < 1 

where 

B = A - H , D  = .D - D , G  = 6 - G (3.15) 

where & , 6 , k  are the estimate of H , D , G ,  and 
R,D,G are the errors. K,i and I? are arbitrary con- 
stant diagonal positive definite matrices designed by 
the designer. Then we can guarantee that q is closed 
to q,1 in a bound. The block diagram of multi-arm 
dynamics and its controller are shown in Figure 2. 

4. SIMULATION 
We present one example in our simulation. Fig- 

ure 3 shows a dual-arm manipulator which moves the 
object along a curve. We let the base frame TI,, yc, of 
the two arms be the same as the world frame, and the 
object frame z,, yo, its origin is located at the mass 
center of the object, be parallel to the base frame. 
We assume that all the link's length is 1 meter, link's 

mass is 1 kilogram, the object's length from the con- 
tact point with left arm to the contact point with 
right arm be 0.2 meter, the origin of the object frame 
z,, yo is initially located at  (1.1, -1) meters with ref- 
erence to  the base frame, the left and right contact 
points of the object with the dual-arm manipulators 
are initially located at (1, -1) meters and (1.2, -1) 
meters with reference to the base frame, the gravita- 
tional acceleration vector is (0 ,  -9.8)T meter squared 
per second, and the maximum static frictional coeffi- 
cients at the contact points is A. We assume that the 
mass of the object M +  2 kilogram, but the estimated 
mass of the object M is within the bound,i.e.,l. 5 
h 5 3, where the unit is kilogram. Our objective 
is to apply the optimal hold force/torque and op- 
timal moving force/torque calculated based on the 
estimated mass and desired trajectory of the object, 
maintain no slipping of the object from the manip- 
ulators, and the mass center of the object track the 
desired trajectory (0.6 + 0.5/(1 + t ) ,  - e p t )  with ref- 
erence to the base frame. Therefore the desired re- 
sultant force/torque required to move the mass cen- 
ter of the object along the desired trajectory is F,t = 
(2(1 + t ) - 3 1  19.6 - 2 e - t ) T ,  and the estimated reyl-  
tant force/torque is within the bound 0.5F,i 5 Ff 5 
1.5Fci. According to  the scheme in [16], we can get 
the following optimal force/torque: The desired opti- 
mal moving force/torque is: F"" = (F,?"', F;,nL)= = 
((1 + t ) - 3 , 9 . 8  - e W t ,  (1 + t ) -3,9.8 - The de- 
sired optimal hold force/torque is: FYh = (1 + t ) - 3  + 
m ( 9 . 8  - e - t ) ( l , O ) T ,  F,"h = -FYh The estimated 
optimal moving force/torque is: 0.5F"'" 5 F,,, 5 
1.5F"" The estimated optimal hold force/ torque is: 
0.5F;'h 5 fiyh 5 1.5F;'h,&'h = -FYh In order to 
maintain no slipping of the object from the manip- 
ulators, we apply the upper bound of optimal hold 
force/torque to the object. We also consider actuator 
unmodeled dynamics, its cut off frequency is 100 ra- 
dians per second and DC gain is 1, in the simulation. 
The control law for the right and left arms can be 
obtained from (3.8). 

In Figure 4, the Cartesian position error of the 
object inass center for different boundary layer 0.1 
and 1 are plotted as the desired force/torque is known. 
In Figures 5 and 6, the Cartesian position error of 
the object mass center for different boundary layer 
0.1,1,10, and 100 are plotted as only the estimated 
resultant force/torque which is within some bound 
stated above is known. In Figure 4, the Cartesian 
position error for different boundary layers O , l , l  are 
very small, the Cartesian position error of the bound- 
ary layer 0.1 is smaller than those of the boundary 
layer 1, and the Cartesian position error goes to zero 
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finally since the desired force/torque is known. In Fig- 
ure? 5 and 6, we see the smaller the boundary layer 
is, the smaller the position error is, and the Cartesian 
position error will not go to zero since the estimated 
force/torque is not equal to the desired force/torque. 
We also can see that the smaller the torque error is, 
the smaller the Cartesian position error is. 

5. CONCLUSIONS 
In this paper, we have analyzed and simulated 

the combination of the continuous VSC and the 
switching-sigma modification control laws for the 
multi-arm manipulators with rigid links holding a 
rigid object. Although the simulations show that the 
Cartesian position error is small if the boundary layer 
is small and(or) the estimated resultant force/torque 
is close to the desired resultant force/torque even 
if the actuator unmodeled dynamics are considered, 
the small boundary layer is limited by the physi- 
cal limitation and the closeness between the esti- 
mated resultant force/torque and the desired resul- 
tant force/torque is also limited by the measurement 
or estimation. 
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b 

Figure I: m-arm manipulators holding rigid object 

Figure 2: block diagram of multi-arm dynanlics and its controllers 
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Figure 3 dual-arm manipulators move the 

object along a curve in the x-y plane 
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