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Day Ahead (DA) market

What is a DA Market?

Most power markets rely on a central day-ahead auction in which
generators submit individual supply curves and the system operator
uses these to determine the market price.

The Independent System Operator (ISO) is responsible for its
operation and performs the following:

I Informs Power Producers of next day’s demand

I Collects bidding schedules of all participating Power Producers

I Performs the market clearance for each hour

I Determines Power Producers’ payments
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Market Clearance

Optimal Power Flow

Centralized determination of the production levels that minimize
the total cost of production to meet the given load, respecting the
network’s physical constraints.

Auctions:

I Single-side

I Uniform

I LAO or FRO

I Marginal price
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LMP & Market Power

Locational Marginal Price (LMP)

The locational marginal price is the marginal surplus of an extra
megawatt of generation needed to serve the unit increase of the
demand at that bus, given all the physical constraints.

Market Power

Market power is the ability to
profitably alter prices away
from competitive levels.

I Ask higher price than
marginal cost

I Withhold output that
could be produced
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Literature

Relevant Papers:

i Skoulidas, Vournas, Papavassilopoulos: ”An adaptive learning
game model for interacting electric power markets”

I Effects of interconnection’s capacity to coupled markets

ii Tellidou, Bakirtzis: ”Multi-agent reinforcement learning for
strategic bidding in power markets”

I Examine some variations of a sample network with constrains

iii Bach, Yao, Wang, Shengjie: ”Research and application of the
Q-learning for wholesale power markets”

I Study three cases which differ at the adopted learning technique

iv Ragupathi, Das: ”A stochastic game approach for modeling
wholesale energy bidding in deregulated power markets”

I Analyze the impact of constraints to producers’ financial results
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About the paper

What we do?

We use an agent based simulation model to replicate the market
outcome in three different versions of the network so as to identify
the effect of congestion to the market’s outcome in the long run.

Key points:

I Market modeled as a Stochastic Game

I State space transformation technique used

I Players adopt Reinforcement Learning

I Three different network versions examined
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Contributions

Main points:

I State space transformation technique
I Adapted to concepts of incomplete information
I Incorporate processed information

I R-Learning algorithm
I Temporal difference (TD) control method
I Off-policy generalized policy iterations (GPI) method

I Comparative study
I Three indicative levels of transmission constraints
I Transformation technique sufficient
I Algorithm efficient (greedy action plans were identified)
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Market Structure

We consider:

I N individual production units, the players, N = {1, . . . ,N}
I M available action functions, forming A = {a1, . . . , aM}
I K nodes, the transmission network’s buses, K = {1, . . . ,K}

For player n ∈ N , action ah ∈ A and bus k ∈ K we have:

Actions

αn =
[
α1
n, . . . , α

24
n

]
I daily bidding vector

I player’s choice variables

State

xk = (qk , pk) formed by

I load vector qk = [q1k , . . . q
24
k ]

I price vector pk = [p1k , . . . p
24
k ]
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Market Operation

Daily Operation:

1. ISO provides a forecast for load & price vectors

2. Players submit their bidding vectors to the ISO

3. ISO clears the market given the faced demand

4. Payments result from new load & price vectors

I (State x)

I (Action αn)

I (Transition)

I (Reward rn)
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Market Operation

Assumptions:

I Demand is • Exogenous • Inelastic • Stochastic

I Players behave Non-cooperatively
I Markov Property imposed

- ISO provides the current state as the forecast
- Players make decision given only current state
- p(x ′ | x , a) = Pr{Xt+1 = x ′ | Xt = x ,At = a}
- p(x ′ | x , a) is independent of time, previous states & actions

Competitive Markov Decision Process (CMDP)

Since market’s operation recurs daily, the discrete process
observed at t = 0, 1, 2, ..., with state Xt , constitutes a
Competitive Markov Decision Process, namely {Γ}t .
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Incomplete Information

The system’s current state is Xt = [x1,t , . . . , xK ,t ] where
xk,t = (qk,t , pk,t) is the state of the kth bus.

We assume that each player has his own comprehension about
the state, so we define the vector X̃ n

t to be the transformation of
the original state vector Xt that the nth player uses as information
set in decision making.

ϕn : Xt → X̃ n
t

Linear Examples (X̃ n
t = XtAn) :

I An identity matrix (original state)

I An projection matrix (part of state)

Non-Linear Examples :

I The maximum price is

I included at the state
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Reinforcement Learning (Algorithm)

Implemented R-Learning algorithm :

Initialization of learning parameters (λ, γ), action-value
function Qn(x̃n, αn) and average reward r̄n.

Repeat:
x̃n ← linear transformation of the current state
Player chooses action αn under a policy
System transitions to the new state x ′

Immediate reward r(x , αn, x
′) is received

D ← rn(x , αn, x
′)− r̄n + maxb Qn(x̃ ′

n, b)− Qn(x̃n, αn)
Qn(x̃n, αn)← Qn(x̃n, αn) + λt · D
r̄n ← r̄n + γt · [rn(x , αn, x

′)− r̄n]
Update the policy

The update rule:

Qn(x̃n, αn)← Qn(x̃n, αn) + λ
[
rn(x , αn, x

′)− r̄n + max
b

Qn(x̃ ′
n, b)− Qn(x̃n, αn)

]
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Reinforcement Learning (Policy)

Implemented learning policy :

I As the learning policy we define a sequence of probabilities
{cnt }t∈N for selecting a random action among the non-greedy
available actions

cnt = Pr

{
an 6= arg max

b
Qn

(
x ′, b

)}
(1)

cnt =
{
F (t) : lim

t→∞
cnt = L

}
(2)

I L is the weakened exploring rate occurred at the end.

I The effect of further exploitation controlled by λt , γt ∈ [0, 1].

I Step size parameters follow a descending course over time.
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Simulations’ Overview

I For the implementation we used a six-bus power network

I Half buses are generator buses, the rest are load buses

I Network’s topology resembles one of Wood & Wollenberg’s

I Simulations carried out with MATLAB (MATPOWER for OPF)

Cases

I A: Monopoly Market

I B: Uncongested Makret

I C: Congested Makret
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Cases examined

Non-competitive

I Monopoly, Case A
(Direct and exclusive
connection of production
and demand buses)

Competitive

I Uncongested, Case B
(Not constrained
transmission lines)

I Congested, Case C
(Uniform 50 MW line
capacity constraint)
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Stochastic Demand

Mean Loads

I for each bus

I for every hour

Indicative Sample

I Bounded Normal
distribution

I 32% at the
boundaries

Bounding Function ϕ(x) =


µ− σ , x < µ− σ
µ+ σ , x > µ+ σ

x , otherwise

x ∼ N (µ, σ2)
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Production side

I There is a lower and an upper bound in generation
capacity, namely Q i

min = 50MW and Q i
max = 150MW

I Constant marginal cost, equal with 4e/MWh.

Available Actions :

I Piece-wise linear bidding functions
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Results - Case A (Monopoly market) - 1/2

Action Space
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Results - Case A (Monopoly market) - 2/2

Av. Daily Profit & RL Av. Reward

Case A (Monopoly market)

I Players identify the lack of competition
I Players adopt the highest price action
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Results - Case B (Uncongested Case)

Av. Daily Profit & RL Av. Reward

Case B (Uncongested Case) - Case A (Monopoly market)

I Players adopt a mixed strategy action plan
I It’s the most competitive outcome (symmetric)
I Unconstrained transmission enforces competition
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Results - Case C (Congested Case)

Av. Daily Profit & RL Av. Reward

Case C (Congested Case) - Case B (Uncongested Case)

I Lines equally constrained, Outcome not symmetric (topology)
I Players identify the potential - Exert market power
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Conclusion

I State space transformation (incomplete information)
proved to be both sufficient and efficient.

I R-Learning algorithm enabled players to identify greedy
action plans so as to maximize their profits

I Cases examined aligned with intended purpose, three levels
of transmission constraints offered thorough benchmark

Case B (Uncongested Case) Case C (Congested Case)
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Relevant work

Different market structures & Different informational concepts

We study the implementation of

I State space transformation technique

I R-Learning algorithm

under

I two informational concepts
I only private information
I private information + aggregated demand + max price

I two different cases of ownership
I 3 firms own 3 units
I 2 firms own 3 units
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Thank you for your attention!!

Any questions?

Chrysanthopoulos Nikos

nikoschrys@mail.ntua.gr
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