	Conclusion

Assessing market power in an electricity market using an agent based simulation model

N. Chrysanthopoulos, G. P. Papavassilopoulos

School of Electrical & Computer Engineering National Technical University of Athens

10/06/2016

Introduction		Conclusion

Table of Contents

- Introduction
 - Overview
 - Literature
 - Contribution
- 2 Model Formulation
 - Market Structure
 - Incomplete Information
 - Reinforcement Learning
- 3 Simulations
 - Overview
 - Demand & Production Side
 - Results
- 4 Conclusion
 - Conclusion
 - Relevant work

Introduction		Conclusion
• 00 000		
Day Ahead (D	A) market	

What is a DA Market?

Most power markets rely on a central **day-ahead auction** in which generators submit individual supply curves and the system operator uses these to determine the market price.

The Independent System Operator (ISO) is responsible for its operation and performs the following:

- Informs Power Producers of next day's demand
- Collects bidding schedules of all participating Power Producers
- Performs the market clearance for each hour
- Determines Power Producers' payments

Introduction		Conclusion
00000		
Market Clearar	nce	

Optimal Power Flow

Centralized determination of the production levels that minimize the total cost of production to meet the given load, respecting the network's physical constraints.

- ► Single-side
- Uniform
- LAO or FRO
- Marginal price

Introduction		Conclusion
000000		
IMD & Marko	t Dowor	

LMP & Market Power

Locational Marginal Price (LMP)

The locational marginal price is **the marginal surplus of an extra megawatt** of generation needed to serve the unit increase of the demand at that bus, **given all the physical constraints**.

$$MC_A = 20 + q_A/50$$
 $MC_B = 30 + q_B/50$ $MC_C = 40 + q_C/50$

Market Power

Market power is the ability to profitably alter prices away from competitive levels.

- Ask higher price than marginal cost
- Withhold output that could be produced

Introduction		Conclusion
000000		
Literature		

Relevant Papers:

- i Skoulidas, Vournas, Papavassilopoulos: "An adaptive learning game model for interacting electric power markets"
 - Effects of interconnection's capacity to coupled markets
- ii Tellidou, Bakirtzis: "Multi-agent reinforcement learning for strategic bidding in power markets"
 - Examine some variations of a sample network with constrains
- iii Bach, Yao, Wang, Shengjie: "Research and application of the Q-learning for wholesale power markets"
 - Study three cases which differ at the adopted learning technique
- iv Ragupathi, Das: "A stochastic game approach for modeling wholesale energy bidding in deregulated power markets"
 - Analyze the impact of constraints to producers' financial results

Introduction		Conclusion
000000		
About the pape		

What we do?

We use an agent based simulation model to replicate the market outcome in three different versions of the network so as to identify the effect of congestion to the market's outcome in the long run.

Key points:

- Market modeled as a Stochastic Game
- State space transformation technique used
- Players adopt Reinforcement Learning
- Three different network versions examined

Contributions

Main points:

State space transformation technique

- Adapted to concepts of incomplete information
- Incorporate processed information

R-Learning algorithm

- ► Temporal difference (TD) control method
- ▶ Off-policy generalized policy iterations (GPI) method

Comparative study

- ► Three indicative levels of transmission constraints
- Transformation technique sufficient
- Algorithm efficient (greedy action plans were identified)

Model Formulation	Conclusion 00

Table of Contents

- Introduction
 - Overview
 - Literature
 - Contribution
- 2 Model Formulation
 - Market Structure
 - Incomplete Information
 - Reinforcement Learning
- 3 Simulations
 - Overview
 - Demand & Production Side
 - Results
- 4 Conclusion
 - Conclusion
 - Relevant work

	Model Formulation ●00000	Conclusion 00
Markat Structura		

We consider:

- ▶ *N* individual production units, the players, $\mathcal{N} = \{1, \dots, N\}$
- *M* available action functions, forming $\mathcal{A} = \{a_1, \ldots, a_M\}$
- *K* nodes, the transmission network's buses, $\mathcal{K} = \{1, \dots, K\}$

For player $n \in \mathcal{N}$, action $a^h \in \mathcal{A}$ and bus $k \in \mathcal{K}$ we have:

Actions

 $\alpha_n = \left[\alpha_n^1, \dots, \alpha_n^{24}\right]$

- daily bidding vector
- player's choice variables

State

$$x_k = (q_k, p_k)$$
 formed by
load vector $q_k = [q_k^1, \dots q_k^{24}]$

• price vector $p_k = [p_k^1, \dots p_k^{24}]$

Model Formulation	Conclusion
00000	

Market Operation

Daily Operation:

- 1. ISO provides a forecast for load & price vectors
- 2. Players submit their bidding vectors to the ISO
- 3. ISO clears the market given the faced demand
- 4. Payments result from new load & price vectors

- ► (State *x*)
- (Action α_n)
- ► (Transition)
- ▶ (Reward *r_n*)

	Model Formulation		Conclusion
000000	000000	0000000	00
Market Operat	ion		

Assumptions:

- Demand is
 Exogenous
 Inelastic
 Stochastic
- Players behave Non-cooperatively
- Markov Property imposed
 - ISO provides the current state as the forecast
 - Players make decision given only current state
 - $p(x' | x, a) = \Pr\{X_{t+1} = x' | X_t = x, A_t = a\}$
 - $p(x' \mid x, a)$ is independent of time, previous states & actions

Competitive Markov Decision Process (CMDP)

Since market's operation recurs daily, the **discrete process** observed at t = 0, 1, 2, ..., with state X_t , constitutes a **Competitive Markov Decision Process**, namely $\{\Gamma\}_t$.

Introduction 000000	Model Formulation	Conclusion 00
Incomplete Inf	ormation	

The system's current state is $X_t = [x_{1,t}, \ldots, x_{K,t}]$ where $x_{k,t} = (q_{k,t}, p_{k,t})$ is the state of the k^{th} bus.

We assume that each player has **his own comprehension** about the state, so we define the vector \widetilde{X}_t^n to be the **transformation** of the original state vector X_t that the n^{th} player uses as information set in decision making.

$$\varphi_n: X_t \to \widetilde{X}_t^n$$

Linear Examples $(\widetilde{X}_t^n = X_t A_n)$:

- A_n identity matrix (original state)
- ► *A_n* projection matrix (part of state)

Non-Linear Examples :

- The maximum price is
- included at the state

Model Formulation	Conclusion
000000	00

Reinforcement Learning (Algorithm)

Implemented R-Learning algorithm :

Initialization of learning parameters (λ , γ), action-value function $Q_n(\tilde{x}_n, \alpha_n)$ and average reward \bar{r}_n .

Repeat:

 $\widetilde{x}_n \leftarrow \text{linear transformation of the current state}$ Player chooses action α_n under a policy System transitions to the new state x'Immediate reward $r(x, \alpha_n, x')$ is received $D \leftarrow r_n(x, \alpha_n, x') - \overline{r}_n + \max_b Q_n(\widetilde{x}'_n, b) - Q_n(\widetilde{x}_n, \alpha_n)$ $Q_n(\widetilde{x}_n, \alpha_n) \leftarrow Q_n(\widetilde{x}_n, \alpha_n) + \lambda_t \cdot D$ $\overline{r}_n \leftarrow \overline{r}_n + \gamma_t \cdot [r_n(x, \alpha_n, x') - \overline{r}_n]$ Update the policy

The update rule:

$$Q_n(\widetilde{x}_n, \alpha_n) \leftarrow Q_n(\widetilde{x}_n, \alpha_n) + \lambda \left[r_n(x, \alpha_n, x') - \overline{r}_n + \max_b Q_n(\widetilde{x}'_n, b) - Q_n(\widetilde{x}_n, \alpha_n) \right]$$

	Model Formulation	Conclusion
	000000	
Reinforcement	Learning (Policy)	

Implemented learning policy :

▶ As the learning policy we define a sequence of probabilities $\{c_t^n\}_{t \in N}$ for selecting a random action among the non-greedy available actions

$$c_t^n = \Pr\left\{a_n \neq \arg\max_b Q_n\left(x', b\right)\right\}$$
(1)

$$c_t^n = \left\{ \mathcal{F}(t) : \lim_{t \to \infty} c_t^n = L \right\}$$
(2)

- ▶ *L* is the weakened exploring rate occurred at the end.
- ▶ The effect of further exploitation controlled by $\lambda_t, \gamma_t \in [0, 1]$.
- Step size parameters follow a descending course over time.

	Simulations	Conclusion

Table of Contents

- Introduction
 - Overview
 - Literature
 - Contribution
- 2 Model Formulation
 - Market Structure
 - Incomplete Information
 - Reinforcement Learning
- ③ Simulations
 - Overview
 - Demand & Production Side
 - Results

4 Conclusion

- Conclusion
- Relevant work

		Simulations ••••••	Conclusion 00
Simulations' Ove	rview		

- ▶ For the implementation we used a six-bus power network
- Half buses are generator buses, the rest are load buses
- Network's topology resembles one of Wood & Wollenberg's
- Simulations carried out with MATLAB (MATPOWER for OPF)

Cases

- A: Monopoly Market
- B: Uncongested Makret
- C: Congested Makret

	Simulations 0000000	Conclusion 00

Cases examined

Non-competitive

 Monopoly, Case A (Direct and exclusive connection of production and demand buses)

Competitive

- Uncongested, Case B (Not constrained transmission lines)
- Congested, Case C (Uniform 50 MW line capacity constraint)

	Simulations	Conclusion 00

Stochastic Demand

Mean Loads

- for each bus
- ► for every hour

Indicative Sample

- Bounded Normal distribution
- 32% at the boundaries

$$\varphi(x) = \begin{cases} \mu - \sigma &, x < \mu - \sigma \\ \mu + \sigma &, x > \mu + \sigma \\ x &, otherwise \end{cases} \quad x \sim \mathcal{N}(\mu, \sigma^2)$$

Bounding Function

	Simulations	Conclusion 00
Production side		

- ► There is a lower and an upper bound in generation capacity, namely Qⁱ_{min} = 50MW and Qⁱ_{max} = 150MW
- **Constant marginal cost**, equal with $4 \in /MWh$.

Piece-wise linear bidding functions

	Simulations	Conclusion 00
(Massaultan) 1	1./0	

Action Space

	Simulations ○○○○●○○	Conclusion 00

Results - Case A (Monopoly market) - 2/2

Av. Daily Profit & RL Av. Reward

Case A (Monopoly market)

- Players identify the lack of competition
- Players adopt the highest price action

	Simulations ○○○○○●○	Conclusion 00
Develo		

Results - Case B (Uncongested Case)

Av. Daily Profit & RL Av. Reward

Case B (Uncongested Case) - Case A (Monopoly market)

- Players adopt a mixed strategy action plan
- It's the most competitive outcome (symmetric)
- Unconstrained transmission enforces competition

	Simulations	Conclusion 00

Results - Case C (Congested Case)

Av. Daily Profit & RL Av. Reward

Case C (Congested Case) - Case B (Uncongested Case)

- Lines equally constrained, Outcome not symmetric (topology)
- Players identify the potential Exert market power

	Conclusion

Table of Contents

- Introduction
 - Overview
 - Literature
 - Contribution
- 2 Model Formulation
 - Market Structure
 - Incomplete Information
 - Reinforcement Learning
- 3 Simulations
 - Overview
 - Demand & Production Side
 - Results

Conclusion

- Conclusion
- Relevant work

	Conclusion ●○

- Conclusion
 - State space transformation (incomplete information) proved to be both sufficient and efficient.
 - R-Learning algorithm enabled players to identify greedy action plans so as to maximize their profits
 - Cases examined aligned with intended purpose, three levels of transmission constraints offered thorough benchmark

Assessing market power in an electricity market

		Conclusion
		00
Relevant work		

Different market structures & Different informational concepts

We study the implementation of

- State space transformation technique
- R-Learning algorithm

under

- two informational concepts
 - only private information
 - ▶ private information + aggregated demand + max price
- two different cases of ownership
 - 3 firms own 3 units
 - 2 firms own 3 units

			Conclusion
000000	000000	0000000	00

Thank you for your attention!!

Any questions?

Chrysanthopoulos Nikos

nikoschrys@mail.ntua.gr