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Kalman Filtering for a Generalized Class of Nonlinear
Systems and a New Gaussian Quadrature Technique

Alexandros C. Charalampidis and George P. Papavassilopoulos

Abstract—The class of nonlinear systems treated in this technical note
consists of the discrete time nonlinear systems that are formed by the inter-
connection of linear systems through static nonlinearities with few inputs.
This special structure is exploited to reduce the dimension of the integrals
involved in the propagation of mean values and covariances, thus permit-
ting accurate calculations. Furthermore, a new quadrature scheme suitable
for nonlinear Kalman filtering is introduced. The proposed techniques are
applied to a seven-dimensional numerical example. The results show that
they can increase the performance significantly.

Index Terms—Covariance matrices, Kalman filtering, nonlinear filters,
numerical methods.

I. INTRODUCTION

The Kalman filter (KF) [1]–[4] provides an exact solution to the re-
cursive state estimation problem for linear systemswith Gaussian noise
and initial condition. In that case the state distribution is also Gaussian
and it can be fully described by its mean and covariance matrix. For
nonlinear systems there exist cases, for example when the state proba-
bility density function (pdf) is multimodal, where more computation-
ally intensive techniques [5]–[9] have to be used. However, there also
many practical situations in which it is possible to use a Gaussian to
approximate the state distribution, and KF-based techniques (in which
this approximation is made) have been widely studied and used in ap-
plications [10]–[14].
The nonlinear KF variants incorporate a technique to compute the

expected values of nonlinear functions of the state, as is explained
in more detail in the next section. Thus -dimensional quadrature is
needed, which can be very computationally demanding in order to be
accurate when is not small. In the Extended Kalman Filter (EKF) [2],
[10] the functions are linearized, but this approximation can be very
poor and may lead even to instability. The Unscented Kalman Filter
(UKF) [15], [16] is more robust, and its computational cost is small.
However, its performance is not as high as that of other filters in which
more accurate approximations are made.
In [17] the use of Gauss-Hermite quadrature [17]–[19] has been sug-

gested, but this approach is infeasible for high-dimensional systems.
Furthermore, Gauss-Hermite quadrature has not been designed for the
nonlinear recursive state estimation problem, in which neither the exact
distribution nor its parameters are known exactly. An interesting class
of systems consists of the systems formed by the interconnection of
dynamical systems through nonlinear static characteristics [20], [21].
In [19] it was shown that for the case of linear dynamical systems and
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single-input nonlinear characteristics it is possible to substitute inte-
gration in -dimensions by solving a number of linear systems in -di-
mensions and integration in one and two dimensions.
In this technical note, using analogous techniques it is shown how

the dimensionality of the integration can be reduced when the nonlinear
characteristics have many inputs. Furthermore, an alternative quadra-
ture scheme suitable for the recursive estimation is introduced. The two
proposed techniques can be applied combined or separately.
The technical note is structured as follows. Section II presents the

problem formulation and some basic results. In Section III the class
under study is defined and it is shown how the dimensionality of the
integration can be reduced. Section IV presents the new quadrature
technique, while Section V presents a numerical example comparing
the performance of the proposed techniques with the standard ones.
Section VI contains the conclusion.

II. BACKGROUND

The general nonlinear filtering problem for dynamic systems with
additive noise is to estimate the state of systems of the form

(1)

(2)

where is the state of the system and the measured output at time
. is the disturbance, also referred to as process noise, and is the
measurement noise. In this technical note it is assumed that the random
variables (r.v.) , , and , are mu-
tually independent and normally distributed with known parameters.
Furthermore, and have zero mean.
Using Bayes Rule [22], [23] it is possible [19], [22] to obtain re-

cursive integral equations. However, the integrals involved cannot be
evaluated analytically. As stated in the introduction, the problem can
be solved exactly when the system is linear. This is done as follows.
Suppose that a dynamical system is described by

, where and
are normally distributed with zero mean, while their covariance
matrices are and respectively. Suppose also that it is known
that follows the normal distribution with mean and covari-
ance . Then, a priori with respect to follows the
normal distribution with mean and covariance given by

, . The predicted value
of is then while its covariance is

, and the cross covariance of
and is equal to . The value of
can be then used to refine the distribution, according to the following
equations:

(3)

Remark 1: If the Gaussian assumption is removed, KF gives the
linear minimum covariance estimate of the state [1], [3].
In the case that the system is nonlinear, the above equations cannot

be applied. For example, instead of it holds
,

where . Instead of

. Similar expressions
are derived for the correction step. Therefore the nonlinear KF variants

must incorporate a numerical technique approximating expected
values of the form . Then, they apply (3).
If has mean and covariance , then it holds

(4)

thus approximating is a numerical integration problem
in -dimensions, which is computationally demanding for high ,
considering that it has to be done on-line and in every time step.

III. ANALYSIS FOR THE CLASS UNDER STUDY

A. Description of the Class

Let us consider a set of linear dynamical systems described
by , for

. Suppose that these systems are interconnected linearly
as well as through nonlinear functions, so that

(5)

Thus, the matrix describes the linear interconnection of the
subsystems, while the nonlinear interconnection is made through the
nonlinear functions , . The matrix has rows and
without loss of generality it is assumed of full row rank. The gain from
the output of to the input of is equal to the th element of the
matrix . In this situation, the following proposition holds.
Proposition 1: Consider the linear systems defined above,

whose interconnection is described by , and , for
. Suppose further that the total system with

state is subject to additive disturbance .
Define the block diagonal matrix with diagonal entries

and define also similarly and .
Then the state of the total system is described by the following
dynamics:

(6)

where is the -th column of and
.

Proof: Substituting (5) and
in yields

. By
rewriting these relations in matrix form and taking also into account
the additive noise , (6) is obtained.
The measured output of the total system may contain both a linear

and a nonlinear part. It is described by

(7)

is a column vector containing the nonlinear outputs.
has rows and, like , it is assumed of full row rank. If only

linear outputs exist, then and . If only nonlinear
outputs exist, then is the empty matrix and .
The class described above is strictly larger than the class studied in

[19], because in that class and ( and in the notation
of that paper) were row vectors, while now they may have more rows.
Equivalently, now the static nonlinearities may have more than one
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real-valued inputs, while in that paper they had only one real-valued
input.
Finally, we note that the system under study can be time-variant since

all the analysis is done separately for each time step. This includes both
the dynamical systems as well as their interconnection. The linear sys-
tems can be multi-input or multi-output but then some of the matrices
have to be block matrices (such as and ).

B. Building Blocks of the Algorithm

As will be made apparent in the next subsection, the algorithm
needs to calculate expectations of the three following forms: ,

and , where is -dimensional and fol-
lows the Gaussian distribution with mean and covariance matrix ,
, and are , and full row rank matrices,
and is a nonlinear function. In the following, it is explained how
each of them is computed.
1) : The r.v. is -dimensional and Gaussian,

with mean and covariance matrix , thus the computation of
is an -dimensional integration problem, and

any quadrature technique can be used to yield an approximation.
2) : Let us define the -dimensional r.v.

. It holds

(8)

therefore can be approximated using
-dimensional quadrature. Possibly, however,
. In that case, it is possible to find matrices and such that

. Indeed, if is composed from linearly indepen-
dent rows of , then every row of is a linear combination of
the rows of , therefore it suffices to set the elements of equal to the
corresponding coefficients.
Let us now define the -dimensional r.v. . is Gaussian,

with and . It holds ,
thus . If the function is defined,
combining all the above results yields ,
thus the computation of is a problem of -dimensional
quadrature.
3) : In this case the computation of is re-

duced to dimensions using the following proposition, whose proof
is given in the Appendix:
Proposition 2: Suppose that is a normally distributed random vari-

able with values in , mean and covariance matrix , is a
full row rank matrix and is a Borel-measurable

function such that has finite variance. Suppose also that
is a full row rank matrix such that . Let

. Then is the unique solution of the linear system

(9)

Remark 2: Such an always exists, because is positive definite
and is of full row rank. In fact, if is endowed with the inner
product , then .

Remark 3: Proposition 2 holds for normal random variables, while
the true state distribution is not normal. However, in the nonlinear
Kalman filters the expectations are computed for a Gaussian distribu-
tion even without the use of Proposition 2. Thus, if the quadrature is
accurate, the usage of the proposition does not affect the results.
Remark 4: Proposition 1 of [19] is a special case of the above propo-

sition, covering the case of having one row.
The numerical approximation of the integrals can be made with any

standard quadrature technique, such as the Gauss-Hermite quadrature,
or with the technique described in Section IV.

C. Proposed Filtering Algorithm

The analysis is similar to that of [19], especially for the prediction
step. The key idea is that all expectations which must be calculated
have one of the above three forms.
1) Prediction Step: Assume that has mean and covariance

matrix . Then (6) yields

(10)

is of the first form of the previous subsection as seen in
(11), shown at the bottom of the page.
Remark 5: All expectations in this paragraph are conditioned upon
and , but the conditioning is omitted for brevity. For example,

is written instead of and instead of
.

The prediction step includes also calculation of the a priori covari-
ance matrix of . It holds

(12)

It is known that and .
The second term of (12) is equal to

(13)

(11)
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For , is of the first form
of the previous subsection, while for it is of the second form.
The fourth term of (12) is the transpose of the third term, so it suffices

to approximate the third term only. It holds

(14)

has the third form of the the previous subsection.
2) Correction Step: Again the expectations involved in the analysis

have one of the three forms of the previous analysis. The quantities
that must be computed for the correction step are , and

.
With respect to , from (7) it follows that:

(15)

Remark 6: All expectations in this paragraph are condi-
tioned upon and , but the conditioning is omitted
for brevity. For example, is written instead of

.
is given by

(16)

where is an matrix whose -th column
is , and similarly is a row
vector.

is given by (11) where is the transpose of the matrix in the
symmetric position.
After the calculation of , and , the correction

step is completed using (3).
Finally, we state without detailed proof the following proposition,

analogous to Proposition 2 of [19]. Its proof, whose key idea is that the
expectations of the nonlinear functions do not change (namely ,
etc.), follows the same lines with the proof of Proposition 2 in [19] and
is omitted.
Proposition 3: Consider the system described by (6), (7) and the

coordinates transformation . If and are the estimates
produced by the proposed filter for the initial coordinates while and

are those for the transformed coordinates, then for every it
holds

(17)

IV. NOVEL GAUSSIAN QUADRATURE TECHNIQUE

As in [17], the one-dimensional quadrature is used as a basis for the
multidimensional quadrature. This is done as follows.

Suppose that is the approximation made for
when follows the standard normal distribution. Let us now consider
the approximation of when is -dimensional Gaussian with
mean and covariance matrix . Let the th column of ,
where is a matrix such that . is obtained using Cholesky
decomposition. Then if , , are independent r.v. fol-
lowing the standard normal distribution, is equidistributed
with . Thus it is reasonable to make the following approximation:

(18)
However, in the nonlinear filtering problem, the parameters of

the state distribution are not known exactly. Thus, it is advanta-
geous to use an approximation which is robust with respect to
parameter deviations. The sensitivity of the approximation with
respect to is a sum of the form , where

is the total number of the points, whose locations are
given by and weights by . This sum is the inner product

. Since
is not known a priori (in fact

even is unknown since the algorithm does not depend on it), it is
reasonable to minimize the norm of .

, , is minimized when all the weights
are equal to (note that their sum must be equal to 1). This choice
would also minimize the variance of the inner product if
were i.i.d. random variables. The weights , , are all
equal if and only if the weights , , are all equal. The
proposed algorithm, thus, chooses for the one-dimensional
case, in order to get a robust estimate.
Therefore, the approximation made for is

which is, in fact, equal to when follows a discrete distri-
bution, whose possible values are equiprobable and equal to ,

. It is reasonable, therefore, to choose , , so that
the corresponding distribution is close to the Gaussian distribution. The
values of , , are chosen using the following proposition.
Its proof is given in the Appendix.
Proposition 4: Let be the cumu-

lative distribution function (cdf) of the standard normal distribution. If
is the cdf of the point set, then for every , the crite-

rion is minimized for the point set

(19)

An interesting question is whether the approximation convergences
to the true expectation when . The answer is affirmative for a
rather large class of functions:
Proposition 5: Suppose that is an almost everywhere continuous

function of exponential order, namely there exist , such that
. Then

(20)

Proof: See the Appendix.

V. NUMERICAL EXAMPLE

The system under study consists of three nonlinearly interconnected
linear systems. The first has a real pole at 0.9 and a complex pair of
poles at . The second has a real pole at 0.9 and a
complex pair of poles at . The third has one real
pole at 0.9. They have no zeros and they are scaled so that when driven
by Gaussian white noise (GWN) with unit variance, the variance of
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Fig. 1. Block diagram of the example systems.

their output is also equal to 1. The above systems are described in state
space by the following (rounded) matrices:

(21)

These linear systems are interconnected only through nonlinear char-
acteristics, namely . With respect to the nonlinear character-
istics, there are two of them, and . For it holds

, while for it holds
, where is the output of the

th linear system. The outputs of and are driven to the input of

the third system, namely . Each of the first and second

linear system is driven by GWN with variance equal to 10. The ini-
tial state is supposed to have zero mean and covariance matrix equal to

. The output of the system has both a linear and a nonlinear part.
The linear part consists of . The nonlinear output variables are equal
to the outputs of the two nonlinear characteristics, namely ,

, , 2. All three measurement sequences are corrupted by
additive GWNwith variance equal to 10, or equivalently .
The block diagram of the system is presented in Fig. 1.
Suppose that the goal is to estimate the linear part of the output,

namely . This estimation problem can be dealt with effectively using
the proposed techniques. Indeed, the total order of the system is 7, thus
7-dimensional quadrature would be needed for the direct computation
of the involved expectations. Since , only up to 3-di-
mensional quadrature will have to be deployed with the proposed al-
gorithm.
Both for Gauss-Hermite as well as for the novel quadrature intro-

duced in this technical note, in equation (18) has been set equal to 5.
UKF has been also applied to the problem for comparison purposes.
Direct quadrature was too slow even for (about 100 times
slower), while its results were very close to those of the reduced-order
quadrature.
The results from 100 runs are presented in Table I. The Gauss-Her-

mite KF with reduced integration order (GHKF-RO) yields signifi-
cantly better results, especially for the worst case. The order reduction
enables to get the improved results in reasonable time. Usage of the

TABLE I
TABLE OF RMS ESTIMATION ERROR

novel quadrature (NQKF-RO) further improves the results, and this im-
provement comes at no cost in comparison with GHKF-RO. The com-
putational demands presented are per time step and have been recorded
on a 64-bit PC clocked at 2.9 GHz and runningMATLAB 7.2 for Linux.
It is noted that the values of in (19) are computed off-line, since they
do not change in each time step.

VI. CONCLUSION

This technical note generalized the results of [19] by showing that
the nonlinear filtering problem can be solved without using computa-
tionally intensive high-order quadrature when the system under study
consists of a number of linear subsystems interconnected through non-
linear characteristics. These characteristics, in contrast with [19], can
potentially be multi-input. Additionally, a novel quadrature technique
is presented which is designed using norm minimization concepts. The
proposed techniques are shown to be effective in a seven-dimensional
example, in which they yield better results than UKF. In the same ex-
ample, the proposed quadrature technique outperforms the Gauss-Her-
mite quadrature.

APPENDIX

Proof of Propostion 2: It is easy to prove that . In-
deed, in different case there exists a non-zero vector ,
, such that . Post-

multiplying the last equation by yields
. But since and ,

thus . This implies that . Since , it
follows that . This completes the argument and shows that (9)
has a unique solution.
Let us now show that satisfies (9). Obviously

. To prove the second vector equa-
tion, the fact that and are independent is used. Indeed,

, and since is Gaussian this implies
that and are independent. Then and are indepen-
dent, therefore ,
and the proof is completed.
Proof of Propostion 4: Let us consider first the case
. Then, for any choice of , let

be the associated value of the criterion
. It holds

(22)

Then

(23)

Thus for while
for . Note that

. Since is
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strictly increasing, this implies that for while
for .

Using the last statement it is easy to prove that for any
it holds .

Indeed, if set for and ,
while if , let the least index such that and
set for and for . Then, in
any case, and . In
the same way, an -tuple can
be constructed such that
and , . After steps, an -tuple

is constructed with the properties
and ,

. Combining all the inequalities obtained at these steps
yields .
Let us now consider the case . It can be checked that

for the proposed points the value of the criterion is
. For any -tuple ,

the following intervals can be defined: ,
, and

for .
Since their union is the unit interval, at least one of them has length
greater than or equal to . But if is the cdf of the -tuple

, the value of
is greater than or equal to the maximum length of these inter-
vals. Indeed, and

. Furthermore, for
, is constant on . Let its value on

this interval (it is supposed that , otherwise neither
nor is the interval with the maximum length). Then obviously

. Noting that

and

completes the proof.
Remark 7: It is easy to see that the above arguments also show that

the choice of , is unique. Additionally, the proof holds
verbatim for any continuous and strictly increasing . For it is
also required that is finite. It is easy to verify that if
where is a random variable with cdf , then .
Proof of Propostion 5: Consider first that is continuous and

let any . It must be proved that there exists such that
for every , .

Since ,
it is possible to find such that

.
Similarly, it is possible to find such that

. Let us set
and define , where is the characteristic
function of the set , and .
Then is equal to

(24)

For the first term of the right-hand part of (24) it holds

(25)

The third term of the right-hand part of (24) is also bounded by .
This can be proved as follows. Let us denote by the least index
such that . Then

(26)

From the definition of , for it holds
. Thus

(27)

because implies which in turn implies
. Furthermore, . Therefore

(28)

The above arguments yield

(29)

The second term in the right-hand part of (24),
, can be rewritten as where

is the standard normal distribution while is the distribution of
the set . is continuous on the compact interval ,
thus it is bounded on it, therefore is bounded. Furthermore,
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is -almost everywhere continuous (the only possible discontinuity
points are and ). Therefore (see the proof of Theorem 25.8 of
[22]) if is shown to converge
weakly to . Since is everywhere continuous, to that end it must
be shown that , where is the
cdf of . If the cardinal number of a set is denoted by
, then

. But
, where ,

thus it follows that as . Therefore it is
possible to choose an integer such that for every it holds

. Then, from (24) it follows
that for every . The fact
that it suffices for to be almost everywhere and bounded implies
that the convergence holds true even if has a measure-zero set of
discontinuity points. In this case the boundedness of follows from
the fact that is of exponential order.
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