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Abstract: This study deals with recursive state estimation for non-linear systems. A new set of s-points for the unscented Kalman
filter is proposed as well as a way to substitute a non-linear output with a linear one. The importance of the function of the state
which must be estimated is also illustrated and also the need for taking it into account when designing the state estimator. Mode-
based estimators are proposed. All the suggested methods are compared with standard extended Kalman filter, unscented Kalman
filter and particle filter with sampling importance resampling using simulations. The results show that the modifications proposed
in some cases lead to considerable reduction in the estimation error.
1 Introduction

Estimating the state of a dynamical system is a common task.
In practice, all measurements are noisy and all processes are
affected by some kind of disturbance. For linear equations
with normally distributed disturbance and measurement
error stochastic processes, it is well known that the Kalman
filter (KF) [1] provides an exact solution of the problem.
The problem can be also solved exactly if the state space is
finite.

In this paper non-linear discrete time systems with additive
noise are considered. For these systems, even if all
disturbances are normally distributed, the non-linearities
distort the distribution, thus leading to non-normal
distributions for the state of the system. For low-dimensional
systems, it is feasible to approximate the exact state
distribution by partitioning the state space. Other
approximate solutions, which do not suffer from the curse of
dimensionality, are provided by the extended Kalman filter
(EKF) [2], the unscented Kalman filter (UKF) (see [3]) and
various forms of particle filters (PFs) (see [4, 5]). These
filters are discussed briefly in the next section. Reference [6]
provides a comparison of different variants of KF-based non-
linear filters.

For the UKF, the selection of s-points is an important
issue. Several aspects of this selection are treated in [3].
A new selection algorithm is presented in this paper, and
in some cases it outperforms significantly the standard
algorithm of [7].

Apart from the system dynamics, non-linearities may be
present in the output equations. Under certain conditions,
inverting the non-linearity and assuming a linear output
equation can help to avoid non-linear overshoot-like
phenomena. This is illustrated with an appropriate example,
and it is shown using simulations that by this way the
error of the EKF can be reduced significantly. The use of
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mode-based filters can also reduce the estimation error
under the presence of strong non-linearities in the output
equations.

The quantity that must be estimated is also shown to be
very important for the correct selection of the filtering
algorithm. Except for the fact that different standard filters
may estimate better different system states or different
system state functions, it is possible, in some cases, to
design filters specifically for the estimation of some
function of the state. This is presented through a suitable
example in Section 3.2.

The remainder of this paper is organised as follows. In
Section 2 the problem formulation and some basic results are
presented. The standard filtering techniques to be compared
with the proposed ones are also presented. In Section 3 the
proposed modifications are described. Section 4 presents
simulation examples used to compare the performance of the
techniques under consideration. Conclusions are drawn in
Section 5.

2 Background

2.1 Problem formulation

The dynamical systems considered are described by equations
of the form

xk+1 = f (xk ) + wk (1)

yk = h(xk ) + vk (2)

where xk [ Rn is the state of the system and yk [ Rm is the
measured output at time k. wk is the disturbance, also
referred to as process noise, and vk is the measurement
noise. In this paper only i.i.d. noise sequences will be
considered. The initial condition is x0 is independent of
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the noise sequences and follows a known distribution.
Measurements are available from time k ¼ 1 onwards.

The problem is to estimate a function of the state,
zk ¼ g(xk). The function g can be the identity, the output
function h or another function. Since zk will be a random
variable, it may be desired to approximate its probability
density function (pdf) or only some statistics of it, such as
the expected value or the covariance. As will be made
apparent, the choice of g and of the statistics that must be
estimated has a heavy impact on the whole procedure.

Suppose now that pX0(x0) is the pdf of x0, pV(vk) is the
pdf of the measurement noise and pW(wk) is the pdf of

the process noise. It holds pY|X( yk|xk) ¼ pV( yk 2 h(xk)) and

pXk+1|Xk
(xk+1|xk) = pW (xk+1 − f (xk ). The subscripts of pdfs

will be omitted for convenience. Let us define y1:k ¼ {y1,

y2, . . ., yk}.
Then, using Bayes rule [8, 9], the following recursive

equations (see, e.g. [4, 9]) hold

p(xk+1|y1:k) =
∫

p(xk+1|xk )p(xk |y1:k) dxk (3)

p(xk+1|y1:k+1) = p(yk+1|xk+1)p(xk+1|y1:k )/ck (4)

where

ck =
∫

p(yk+1|xk+1)p(xk+1|y1:k) dxk+1 (5)

However, except for some special cases, the above integrals
cannot be evaluated analytically. Numerical integration for
a sufficiently dense mesh of xk at each time step is also
impractical, so (3)–(5) are mainly of theoretical interest.

2.2 Standard filtering techniques

In EKF the system (1) and (2) are linearised and then KF
equations are used. Specifically, if x̂k is the estimated mean
of xk after the correction step of time k and x̂−k+1 is the
estimated mean of xk+1 after the prediction step of time
k + 1, then for the prediction step the function f in (1) is
linearised around x̂k , while for the correction step the
function h in (2) is linearised around x̂−k+1. The covariance
matrices and the correction gain are then calculated using KF
equations. As is obvious, it is assumed that the derivatives of
f and h are available.

The intuition behind UKF is that ‘it is easier to approximate
a probability distribution than it is to approximate a non-linear
function or transformation’ [7]. Thus, the system equations
are not simplified but the prior distribution is approximated
by a finite sum of Dirac deltas. The procedure which
follows applies to systems with additive noise. For the general
case as well as for justification and criteria for parameter
choice, refer to [3, 7]. In this paper, the UKF will be applied
with the choice of parameters (see below) a ¼ 1, b ¼ 2,
k ¼ 3 2 nx, where nx is the dimension of the state space.

Suppose that after time k the estimated covariance of the

state is Pxk
. Then 2nx + 1 s-points are calculated:

X0,k = x̂k , Xi,k = x̂k + gSi, i = 1, . . . , nx and Xi,k =
x̂k − gSi, i = nx + 1, . . . , 2nx, where Si is the ith column
of the matrix S provided by the Cholesky decomposition
of Pk (namely S is such that Pk ¼ SST) while
g =

��������
nx + l

√
, l = a2(nx + k) − nx, a and k being

parameters.
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For the prediction step, the s-points are transformed
through xk+1 ¼ f (xk) and thus the covariance and mean
before the correction can be calculated. Of course, the
covariance of wk is added to the covariance of the
transformed s-points to yield the prediction covariance. The
weights used for the mean and covariance calculations are

W (0)
m = l

nx + l
, W (0)

c = l

nx + l
+ 1 − a2 + b (6)

W (i)
m = W (i)

c = 1

2(nx + l)
(7)

where b is also a parameter.
For the correction step, with the new mean and covariance,

2nx + 1 s-points Xi,k+1
2 , i ¼ 0, . . ., 2nx are analogously

calculated. These are transformed through yk+1 ¼ h(xk+1)
and thus the mean and covariance of the measurement
vector can be calculated (to obtain the covariance of yk, the
covariance of vk is added to the calculated covariance of the
transformed s-points), as well as the cross-covariance
between the measurement and the state vector. Then the
Kalman gain and the corrected estimates are computed
according to the KF equations.

EKF and UKF are based on the assumption that for each
time step, the state distribution can be well approximated by
a normal distribution. Since in many cases this assumption
does not hold, and the form of the distribution is a priori
unknown, there is need for a filtering technique which
permits approximation of arbitrary distributions. In PF the
state pdf is approximated by a number of particles, each
representing a Dirac delta with a corresponding weight, that is

p(xk |y1:k) ≃
∑N

i=1

W i
kdxi

k
(xk) (8)

Then the mean value of a function g of the state can be
estimated with the next equation.

E[g(xk)] ≃
∑N

i=1

W i
kg(xi

k) (9)

It is reasonable to conjecture that with sufficiently many
particles the approximation will be good, although the
asymptotic analysis of PF is a difficult problem [10, 11].

There are many different algorithms [4, 12] for the update
of Wk

i and xk
i . For the comparison purposes of this paper only

sampling importance resampling (SIR) filtering, which
consists the first such PF and was proposed by [13] will be
used. The resampling step is implemented with stratified
resampling [14]. Since the present paper does not propose
any novelty on PF, no further details about PFs are
presented here.

3 Proposed modifications

3.1 Inverting the output equation

Let us assume that EKF is used in the following motivating
example. Suppose that the system dynamics are described
by (10), where h is the disturbance.

ẋ = −ax3 + h (10)
IET Control Theory Appl., 2011, Vol. 5, Iss. 10, pp. 1155–1166
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The simplest discrete time approximation with time step d is
given by the following equation, in which wk is the effect of
the disturbance.

xk+1 = xk − adx3
k + wk (11)

However, x 2 adx3 is not a monotonous function of x,
although it should be so as to yield an acceptable
approximation of the dynamics of (10). Since it has a
maximum for

x1 = 1�����
3ad

√ (12)

the following approximation captures better the dynamics of
the continuous time.

xk+1 = f (xk) + wk , f (x) =

x − adx3, |x| , x1

− 2

3
x1, x ≤ −x1

2

3
x1, x ≥ x1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(13)

Suppose, also, that the output equation is (14).

yk = x3
k + vk (14)

Therefore the EKF is applied to the system described by (13)
and (14). Equation (14) has the form of (2) with h(x) ¼ x3.
Suppose that for some time instant k it holds
x̂−k = 1, P−

xk
= 1, xk = 2 and yk ¼ 8, while the variance of

vk is equal to 1. Then since h′(x) ¼ 3x2, h′(x̂−k ) = 3 and the
Kalman gain will be equal to 3/(32 + 1). Since the predicted
output was equal to 1, EKF yields x̂k = 1 + 0.3(8 − 1) = 3.1.

The posterior value for the output is then greater than the
observed; however, this is not due to measurement error
and the predicted value was less than the observed. This
happens because the first-order approximation of h obtained
with its derivative is valid only locally. Thus because of the
non-linearity of the output function, the filter although
supposed to smooth the observed data, suffers from this
overshoot-like phenomenon.

A remedy to this problem is to invert the output equation. If
there were no measurement error, one would set xk = ���

yk
3
√

,
where the cubic root of a negative number is defined
appropriately. Now it holds xk = ��������

yk + vk
3
√

. Since vk is a
random variable,

��������
yk + vk

3
√

is also a random variable. It is
not computationally demanding to calculate its mean and
variance.

For this purpose, a suitable set {V1,V2, . . . , VN} whose
distribution approximates the distribution of vk is
determined. Specifically, if F(x) is the cumulative
distribution function of vk, then the set X ¼ {Xn ¼ F21

(1/(2N ) + (n 2 1)/N ), n ¼ 1, . . . , N} is calculated, and
then it is normalised to give the set V ={
Vn =

�������������
(R/SN

l=1X 2
l )

√
Xn, n = 1, . . . , N

}
, where R is the

variance of vk. Then, for each step, the mean sk and
variance lk of the set {

���������
yk + V1

3
√

, . . . ,
���������
yk + VN

3
√

} are
calculated.

The proposed technique is to apply EKF to the system
whose dynamics is given by (13) and its output equation is

sk = xk + rk (15)
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where the variance of rk is equal to lk, which is obtained,
together with sk, from the inversion step.

Output inversion can also be applied to UKF. Its
effectiveness is illustrated in Fig. 1, where the suffix-L
implies that output inversion has been applied. Fig. 1
shows that output inversion extinguishes the overshoot
phenomenon for EKF and that it is effective for UKF, too.
The black curve corresponds to the expected value obtained
by partitioning the state space using a constant mesh (CM)
(see Section 4). In another realisation of the experiment,
presented in Fig. 2, EKF is trapped to zero while UKF
suffers from overshoot. Again, output inversion is effective
for both EKF and UKF. Numerical values of the prediction
error for all the filtering techniques tested are presented in
Section 4.

3.2 Estimating a specific function of the state

Let us consider the system with system (13) and the following
output equation

yk = x2
k + vk (16)

Fig. 1 Time series of output data and various estimation methods
illustrating the overshoot-like phenomenon for EKF

Fig. 2 Time series of output data and various estimation methods
illustrating the overshoot-like phenomenon for UKF and the
possibility of EKF being trapped to zero
1157
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Suppose that wk and vk are i.i.d. Gaussian processes
with variance Q and R, respectively. Equation (16) has the
form of (2) with h(x) ¼ x2. Suppose, also, it is known that
x0 ¼ 0. Then x̂−1 = 0 and thus h′(x̂−1 ) = 0, yielding zero
Kalman gain and x̂1 = 0. Recursively one obtains x̂k = 0,
whatever the output sequence is.

On the other hand, for every k the pdf of the state is even. In
fact, if the output sequence is {y1, y2, . . . , yk}, then for every pair
of sequences {x1, x2, . . . , xk} and {v1, v2, . . . , vk} consistent with
{y1, y2, . . . , yk}, the pair {2x1, 2x2, . . . , 2xk} and {v1, v2, . . . ,
vk} is also consistent with the output sequence and equally
probable. Marginalising over the possible {x1, x2, . . . , xk21}
and {v1, . . . , vk21} asserts that p(xk) ¼ p(2xk). Thus, the
expected value of xk is 0, exactly as predicted by EKF or
UKF. However, the pdf for k ¼ 0, 1, 2, 5, 10, 50, 100 (0
corresponds to the prior) in a random run presented in Fig. 3
is not at all close to the pdf of a normal distribution even for
k ¼ 1. Thus, if it is not the mean of xk that must be estimated
but another quantity, such as the mean of xk

2, EKF and UKF
perform poorly. It is noted that even if x0 = 0, since for some
k the value of xk will be close to 0, the same problem will arise.

An alternative way to estimate xk
2 is as follows. Set zk ¼ xk

2.
Then if |zk| , (1/3ad), it holds

zk+1 = (xk − adx3
k + wk )2

= x2
k − 2adx4

k + a2d2x6
k + w2

k + 2(xk − adx3
k )wk

= zk − 2adz2
k + a2d2z3

k + w2
k + 2(xk − adx3

k )wk

(17)

whereas in different case, it holds

zk+1 = x2
1 − 2adx4

1 + a2d2x6
1 + w2

k + 2(x1 − adx3
1)wk

(18)

where x1 is defined in (12). The expected value of the
unknown term is E[w2

k + 2(xk − adx3
k )wk] = Q. As for its

variance, it depends on |xk|. It is possible to create offline a
look-up table containing the variance of the unknown term
for many values of xk and use it to find the variance at each
time step. Thus, an estimate of xk

2 is obtained by estimating

Fig. 3 Probability density function for various k in a random run
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the state of the system defined by (19) and (20)

zk+1 = zk − 2adz2
k + a2d2z3

k + Q + nk (19)

yk = zk + vk (20)

where nk is zero-mean but its distribution and variance depend
on zk.

For numerical results and comparison of all the filtering
techniques tested in this paper for this problem, see Section 4.2.

3.3 New s-point set

3.3.1 One-dimensional case: The UKF algorithm of
Section 2.2 approximates the normal distribution with mean
M and variance P with three s-points at M ,M − g

��
P

√
and

M + g
��
P

√
, where g as well as the corresponding weights

are given in the same subsection.
More points could be used to obtain a better approximation.

Let N be the desired number of s-points. The following
algorithm provides a reasonable way to approximate the
normal distribution with mean M and variance P using
N points. Let {pi1/(2N) + (i 2 1)/N , i ¼ 1, . . . , N}. Then if

F(x) = (1/
����
2p

√
)
x

−1
e−u2/2du is the cumulative distribution

function of the standard normal distribution, calculate
{yi ¼ F21(pi), i ¼ 1, . . . , N}. Then the set {yi, i ¼ 1, . . . ,
N} is zero-mean but not necessarily of variance 1. A set of
variance 1 is obtained by

xi =
���������

N∑N
i=j y2

j

√
yi, i = 1, . . . , N

{ }
(21)

The proposed s-point set is then defined by

{si = M +
��
P

√
xi, i = 1, . . . , N} (22)

and its mean and variance are equal to M and P, respectively.
It is noted that both for the one-dimensional and the multi-
dimensional case, the proposed points have equal weights.

3.3.2 Multi-dimensional case: Let M be the vector mean
and P the covariance matrix of n-dimensional normal
distribution. Since P is symmetric it is possible to find n
orthonormal eigenvectors {vi, i ¼ 1, . . . , n} with
corresponding eigenvalues {li, i ¼ 1, . . . , n}. P is positive-
definite, therefore all eigenvalues are positive. Let
{zi, i ¼ 1, . . . , n} be i.i.d. random variables following the
standard normal distribution. Then the random vector
M + Si¼1

n
���
li

√
zivi is normally distributed with mean M and

covariance P.
Since the standard normal distribution is approximated by

the set defined in (21), the following set, consisting of N n

members, can be considered as an approximation of the
n-dimensional normal distribution with mean M and
covariance P.

sj1,j2,...,jn
= M +

∑n

i=1

xji

���
li

√
vi, ji = 1, . . . , N , i = 1, . . . , n

{ }

(23)

Its mean and covariance are indeed M and P, respectively.
For large n the cardinal of the set, N n, will be much greater

than 2n + 1 even for N ¼ 2. Apart from that, the above
IET Control Theory Appl., 2011, Vol. 5, Iss. 10, pp. 1155–1166
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algorithm includes computation of the eigenvalues of P while
for the set presented in Section 2.2 it is only needed to
compute the square root of a positive-definite symmetric
matrix, a task that can be accomplished in O(n3) time using
Cholesky factorisation. However, numerical experiments
with the four-dimensional example of Section 4.4 show that
for that case the extra computational cost associated with
the proposed s-point set is not prohibitive.

The following example shows that the use of all
combinations of ji in S

n
i=1xji

���
li

√
vi can help compute the

covariance of the output much more accurately than with
the s-point set of Section 2.2. Suppose that (x1, x2)T is
normally distributed with zero-mean and covariance matrix
equal to the identity matrix, and that the mean and variance
of f (x1, x2) ¼ x1x2 must be calculated. The standard
algorithm uses five points, {(0,0), (0,1), (0, 21), (1, 0),
(21, 0)}. f maps all of then to 0, and thus the variance of f
is estimated to be 0. The proposed algorithm with N ¼ 2
yields four points: {(21, 1), (1, 1), (1, 21), (21, 21)}. Two
of them are mapped to 1 and two to 21, thus the variance
is estimated to be 1, which is the exact value. Both
algorithms correctly estimate the mean to be 0.

Numerical results of the use of the proposed s-point set in
recursive state estimation are provided in the next section.

3.4 Using the mode as an approximation
of the mean

KF-based non-linear filters try to approximate the mean by
propagating and correcting means and covariance matrices.
Except from the fact that these quantities cannot be
computed exactly, the correction with the Kalman gain is
not optimal for non-linear systems. On the other hand, it is
possible to approximate the mode, namely the maximum of
the a posteriori pdf. Although the pdf is not Gaussian,
therefore the mode does not necessarily coincide with
the mean, it may provide a good approximation. The
calculations are made as follows.

Suppose that after the prediction step of time step k, the
mean and the covariance are x̂−k+1 = M and P−

xk+1
= P,

respectively. If the value of the output for time equal to
k + 1 is yk+1 ¼ y and the error covariance matrix is R then
the pdf of xk+1 is equal to

1

I

1

(2p)n/2|P|1/2
e−(1/2)(x−M )TP−1(x−M )

× 1

(2p)n/2|R|1/2
e−(1/2)(y−h(x))TR−1(y−h(x)) (24)

where

I =
∫

1

(2p)n/2|P|1/2
e−(1/2)(x−M )TP−1(x−M )

× 1

(2p)n/2|R|1/2
e−(1/2)(y−h(x))TR−1(y−h(x)) dx (25)

Thus, it is maximised for the value of x which minimises

1

2
[(x − M )TP−1(x − M ) + (y − h(x))TR−1(y − h(x))] (26)
IET Control Theory Appl., 2011, Vol. 5, Iss. 10, pp. 1155–1166
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The gradient of the above expression is equal to

P−1(x − M ) + ∂h(x)

∂x

( )T

R−1(h(x) − y) (27)

Although the maximisation procedure described above can be
used to yield an estimation of the state mean, it does not
provide any estimation of the state covariance. Thus, the
computed value of the covariance computed by a KF-based
filter must be used for the next step. Experimentation
showed that the best results are obtained by using also the
computed value of the mean obtained by the KF-based
filter for the next step. Thus, the values of both the mean
and covariance computed by the KF-based filters are
propagated between time steps, while the above procedure
is performed at each time step separately to yield the mode.

4 Simulation examples

In this section the proposed filtering techniques are applied
to four examples. First two one-dimensional examples are
presented, then one two-dimensional example and finally
one four-dimensional example of a DC motor is presented.
Several variants of the KF are applied to each example, as
explained in more detail in each subsection. Particle
filtering with SIR is also applied for comparison purposes.

For the one-dimensional examples, the state space is
partitioned with a CM and the system is approximated by a
finite space Markov chain. Using this approximation, at
each time step the probability that the state belongs to any
mesh interval is known. The dynamics are described by a
Markov matrix, which is constant and thus does not need to
be calculated at each time step or at each run. The
prediction step can therefore be accomplished as a
multiplication of a matrix by a vector. For the correction
step, the probability of each interval is multiplied by the
likelihood of the observed value with respect to its centre,
and then the probabilities are normalised. If the number of
intervals is large enough, it is possible to obtain a good
approximation not only of the state mean but also of the
output mean. It must also be noted that the mesh is chosen
finer near zero and coarser away from zero. On the other
hand, even for the two-dimensional example, this approach
would be very computationally intensive, and it has not
been pursued.

It is useful to compare the results of the filters tested with
the Cramer–Rao lower bound (CRLB) [15, 16]. Because
the quantity (i.e. the state system) estimated is also a
random variable, the Van Trees variant of the CRLB [17],
also known as posterior CRLB, must be used. In [18] an
efficient way to compute the posterior CLRB for the
problem of discrete-time non-linear filtering is derived.
More specifically, the problem described by (1) and (2)
with Gaussian process and measurement noise with zero-
mean and covariance matrices equal to Q and R,
respectively, is treated and it is proved that it holds

E[(x̂k − xk)(x̂k − xk)T ] ≥ J−1
k (28)

where Jk is given by the following recursive scheme

J0 = P−1
0 (29)

Jk+1 = D22
k − D21

k (Jk + D11
k )−1D12

k (30)
1159
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D11
k = E{[∇xk

f T(xk )]Q−1[∇xk
f T(xk)]T} (31)

D12
k = −E{[∇xk

f T(xk)]Q−1}, D21
k = [D12

k ]T (32)

D22
k = Q−1 + E{[∇xk+1

hT(xk+1)]R−1[∇xk+1
hT(xk+1)]T} (33)

where P0 is the a priori covariance matrix of the initial state.
The above formulae are valid for non-singular Q and R. For
the case of singular Q or R, see the aforementioned paper.

The expected values in (31)–(33) can be approximated by
computing the corresponding expressions for a large number
of random runs and calculating the mean value. For the
examples of this paper, 10 000 runs are made for the
approximation.

It must be noted that for linear systems the bound is tight,
whereas for non-linear systems the divergence between the
bound and the optimal value may or may not be significant,
as it will be made apparent in the following examples.

4.1 One-dimensional example with invertible
output equation

In this subsection the results for the problem of estimating the
state of the system with dynamics given by (13) and output
given by (14) are presented. The system has been simulated
under the following conditions.

† The parameters are set to a ¼ 0.1, d ¼ 0.1. The initial
condition x0 is normally distributed with mean 0.1 and
variance 1, and independent of wk and vk, which are also
assumed to be normal and independent of each other. They
are i.i.d. and both zero-mean.
† The variance of vk is assumed equal to 1, while for the first
case studied, the variance of wk is equal to d
† The system is simulated up to time t ¼ 10 (k ¼ 100).

To compare the different estimation methods, the
experiment has been run 1000 times. The simulated mean
values of x2 and y2 are 1.47 and 23.32, respectively.
Table 1 presents the mean and the maximum (of the 1000)
RMS values of the estimation error for x and y, as well as
the mean computation time per step in milliseconds. All
computation times in this paper have been recorded at a
64-bit PC clocked at 2.9 GHz and running MATLAB 7.2
for Linux. MATLAB is a registered trademark of The
MathWorks, Inc. It must be emphasised that in this section,
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by the term ‘y estimation’ estimation of h(x) is meant, and
similarly for the term ‘y error’. It must also be made clear
that the estimated value of h(x) is h(x̂) except when it is
explicitly stated that this is not the case.

EKF and UKF are the standard extended and unscented
Kalman filter, respectively. MUKF stands for modified
UKF. The modification implied is the use of the proposed
s-point set with N ¼ 9. In the case of MUKF(P) the
proposed s-point set was used in the prediction step only.
For the next three filters, the suffix ‘Mode’ denotes that the
state estimate was determined by the maximisation
procedure described in Section 3.4. Equation (26) is
minimised by evaluating its value on a grid with step equal
to 0.3, selecting the point which yields the smallest value,
and then repeating using a local grid with step 0.001. This
is done because experimentation showed that this is faster
than iterative methods. MUKF(15) is MUKF with N ¼ 15.
EKF-L and UKF-L are EKF and UKF with inverted output
equation, that is, with output (15) instead of (14). PF/SIR
stands for particle filter with SIR, while the number in
parenthesis denotes the number of particles. Since PF
provides an approximation of the distribution, y can be
estimated using (9). The number at the left of the slash is
E[h(xk)], whereas the number at the right of the slash is
h(E[(xk)]) and, as expected, the former is smaller than the
latter. Finally, the state space has been partitioned using a
CM, as described in the beginning of this section. The
number in parenthesis is the number of intervals used,
while the numbers at the left and right of the slash have the
same meaning as for PF, and the same comment applies to
this case, too.

The results show that EKF cannot provide a satisfactory
estimate for x or y. This is due to the non-linear effect
described in Section 3.1. UKF is also affected by the same
phenomenon, and the mean error for y is still high,
although x is estimated well. MUKF and MUKF(P) are
slightly better than UKF, but still unsatisfactory for y,
especially MUKF which gives worse results than UKF. The
mode can help in the computation of a very robust estimate
of y, as is made apparent by the very low mean y-error and
even better maximum y-errors, comparable only to those of
CM(1000). Inverting the output equation reduces
substantially the estimation error for y for both EKF and
UKF, but increases the error for x. PF and CM, with many
particles and intervals, respectively, perform better than
UKF-L, but the fact that the y-error for EKF-L and UKF-L
is smaller than that of PF(50) and CM(50) shows the
Table 1 RMS estimation error and computation time for the example of Section 4.1, case I

Estim. technique Mean x error Mean y error Max. x error Max. y error Comp. time, ms

EKF 0.8345 18.53 3.2019 4148 0.15

UKF 0.3891 1.2593 0.6110 40.58 0.35

MUKF(P) 0.3890 1.2455 0.6050 39.22 0.60

MUKF 0.3868 1.4356 0.6577 52.40 0.75

UKF-mode 0.4117 0.7430 0.6807 1.055 0.54

MUKF-mode 0.4117 0.7449 0.6744 1.061 0.94

MUKF(15)-mode 0.4110 0.7437 0.6762 1.060 1.25

EKF-L 0.4227 0.7785 0.7237 1.263 0.71

UKF-L 0.4219 0.7775 0.7218 1.263 0.84

PF/SIR(50) 0.3872 0.8251/0.8464 0.6499 3.524/3.521 0.24

PF/SIR(1000) 0.3759 0.7212/0.7459 0.5876 1.351/1.349 1.68

CM(50) 0.3764 0.8561/0.8784 0.5882 4.434/4.438 0.07

CM(1000) 0.3753 0.7156/0.7404 0.5882 1.023/1.058 2.39
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strength of the proposed technique. It is also interesting that
although CM(50) yields x-error comparable to that of
PF(1000), its y-error is higher than that of PF(50).

Fig. 4 presents the RMS error in the estimation of x for each
time step, as well as the corresponding CRLB. The curves for
‘Mode’ and ‘CM’ are those for ‘MUKF(15)-Mode’ and
‘CM(1000)’ of Table 1. Except for the EKF, all other
methods converge quickly to their steady state. It is also
remarkable that the CRLB is much lower than the error of
‘CM(1000)’ (its RMS value is 0.1391). This happens
because the non-linearities are severe, thus the bound is not
tight.

Fig. 5 presents the distribution of the RMS error in the
estimation of x for the same 1000 runs and for the same
filters as Fig. 4. The curves for ‘Mode’ and ‘CM’ are those
for ‘MUKF(15)-Mode’ and ‘CM(1000)’ of Table 1. The
ineffectiveness of EKF is obvious.

The system has been also studied for variance of wk equal
to 0.1d. For this case the simulated mean values of x2 and y2

are 0.58 and 2.51, respectively, while the results are presented
in Table 2. Again, EKF performs poorly and UKF estimates x
well, but its y-error is not satisfactory. The mode again results
in an excellent y estimate, while it is also a good x estimate.

Fig. 4 Transient response of several filters and CRLB for the
example of Section 4.1, case I

Fig. 5 RMS error distribution for the example of Section 4.1,
case I
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Inverting the output equation permits good estimation of
y, but deteriorates the estimation of x. Finally, it can be
observed that for this case CM estimates y better than PF.
The RMS value of the CRLB for this case is equal to 0.1852.

4.2 One-dimensional example with non-invertible
output equation

In this subsection the system with dynamics given by (13) and
output given by (16) is studied. For the first case studied, the
parameters as well as the distribution of x0 are that of the
preceding example. The distribution of wk and vk is that of
the first case of that example. The system is simulated up to
time t ¼ 10 and 1000 runs have been made, as for the
system of the previous example.

The simulated mean values of x2 and y2 are 1.46 and 5.82,
respectively. The results are presented in Table 3. Only the
estimation error for y is given, for the reasons explained in
Section 4.2. The values on the second up to the fourth
column correspond to the methods applied to (19) and (20)
(real system), whereas those of the fifth up to the seventh
column correspond to (13) and (16) (virtual system). When
estimating the state of the virtual system, for simplification,
nk is assumed normally distributed. The computation times
given are per step and in milliseconds.

Since the virtual system has linear output equation, output
inversion is not applicable. The linearity of the output
equation also implies that the mean and the mode coincide,
since the distribution of the state after the prediction step is
approximated by a Gaussian distribution. Thus, only the
rest of the filtering techniques have been applied to this
system. It must also be noted that for MUKF the modified
s-point set is applied only to the prediction step, since the
output equation of the virtual system is linear and thus the
update step can be accomplished using standard Kalman
filtering equations.

EKF behaves well for both systems, while UKF only for
the virtual one. MUKF leads to considerable error decrease
in comparison with UKF only for the real system. The fact
that the estimation error using EKF, UKF and MUKF for
the virtual system is relatively close to that of CM or PF for
the real one illustrates the efficacy of the proposed
technique. Furthermore, the fact that CM(100) for the
virtual system yields results comparable to those of
CM(100) for the real system implies that the simplification
made, that is nk is normally distributed, does not introduce
large error. This fact, in addition to the efficiency of EKF,
UKF and MUKF for systems with slight non-linearities
such as the virtual system, results in good performance of
the aforementioned filters applied to the virtual system.

It must be noted that the computation time for CM in the
case of virtual system is high because the stochastic matrix
depends on the process noise variance, and thus must be
calculated at each step. This is also the reason that
CM(1000) has not been tested for this system.

The second case studied differs from the first one in the
mean of the initial state distribution, which is 0 instead of
0.1. The simulated mean values of x2 and y2 for this case
are 1.46 and 5.83, respectively, while the results are
presented in Table 4. The results are similar to those for the
first case, except for the performance of EKF, UKF and
MUKF for the real system. As explained in Section 4.2, all
these three filters estimate the state to be 0 when their initial
estimate is 0. However, numerical errors in the computation
of the s-points for MUKF result in divergence from 0. In
any case, the strong dependence on the initial conditions of
1161
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the results of these filters for the real system shows that it is
better to apply them to the virtual system.

4.3 Two-dimensional bilinear system

The system studied in this subsection is described by the
following equations

xk+1 =
0.5 0

0 0.5

[ ]
xk + x1,kx2,k

0.25

0

[ ]
+ wk

yk = 1 0
[ ]

xk + vk

In the above equations, wk and vk are i.i.d. sequences of
normal random variables, independent from each other and
from the initial state which is also a normal random variable.

Since the output equation is linear, output inversion is not
applicable, and the mode estimate described in Section 3.4
is identical to the estimated mean. Furthermore, the
performance of PF/SIR was very bad even for 10 000
particles for which its computation time was very large.
Thus, only the results for EKF, UKF and MUKF are
presented. For MUKF, N was chosen to be equal to
2. Obviously, these three techniques differ only in the
prediction step for this example, since the correction is
accomplished using standard Kalman filtering equations.
This, too, is possible because the output equation is linear.

For the first case studied, wk is zero-mean and its
covariance matrix is equal to 10I2, while vk is zero-mean
and its variance is 100. x0 is also zero-mean with
covariance matrix equal to 100I2. The system is simulated
up to k ¼ 1000. 1000 runs have been made. The RMS
values of x1 and x2 are 40427 and 3.6578, respectively. The

Table 2 RMS estimation error and computation time for the example of Section 4.1, case II

Estim. technique Mean x error Mean y error Max. x error Max. y error Comp. time (ms)

EKF 0.4899 1.4082 1.3000 116 0.15

UKF 0.3357 0.7314 0.7976 73.88 0.36

MUKF(P) 0.3357 0.7178 0.7950 71.50 0.61

MUKF 0.3336 0.8337 0.8042 92.05 0.77

UKF-mode 0.3379 0.3806 0.8273 0.864 0.55

MUKF-mode 0.3371 0.3868 0.8365 0.825 0.96

MUKF(15)-mode 0.3367 0.3843 0.8306 0.792 1.28

EKF-L 0.3916 0.4219 0.7965 0.865 0.72

UKF-L 0.3907 0.4199 0.7936 0.864 0.85

PF/SIR(50) 0.3413 0.3928/0.3969 0.8401 2.341/2.344 0.25

PF/SIR(1000) 0.3276 0.3594/0.3656 0.8037 1.273/1.272 1.80

CM(50) 0.3272 0.3607/0.3672 0.8112 1.007/1.017 0.08

CM(1000) 0.3271 0.3576/0.3641 0.8112 0.799/0.849 3.62

Table 3 RMS estimation error and computation time for the example of Section 4.2, case I

Estim. technique (13), (16) (19)–(20)

Mean error Max error Comp. time Mean error Max error Comp. time

EKF 0.6879 2.1890 0.15 0.6524 0.9558 0.29

UKF 1.6435 3.8932 0.36 0.6525 0.9577 0.52

MUKF 1.1867 2.9310 0.29 0.6475 0.9655 0.46

PF/SIR(100) 0.6237 1.0864 0.28 0.6665 1.4922 0.42

PF/SIR(1000) 0.6136 0.9033 1.34 0.6566 1.2394 1.48

CM(30) 0.6331 1.4777 0.05 0.6370 0.9280 4.27

CM(100) 0.6137 0.9222 0.06 0.6368 0.9284 11.70

Table 4 RMS estimation error and computation time for the example of Section 4.2, case II

Estim. technique (13), (16) (19)–(20)

Mean error Max error Comp. time Mean error Max error Comp. time

EKF 2.0468 4.8162 0.15 0.6518 0.9227 0.29

UKF 2.0468 4.8162 0.36 0.6519 0.9255 0.51

MUKF 1.9572 3.8193 0.29 0.6470 0.9321 0.45

PF/SIR(100) 0.6239 0.9027 0.28 0.6640 1.0056 0.42

PF/SIR(1000) 0.6150 0.8753 1.34 0.6550 0.9417 1.49

CM(30) 0.6324 1.2925 0.05 0.6365 0.8894 4.29

CM(100) 0.6147 0.8994 0.07 0.6363 0.8889 11.80
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results of the filtering techniques are presented in Table 5,
while the corresponding values of the CRLB are 3.1966
and 3.1624. MUKF behaves clearly better than UKF, which
is better than EKF. The difference is bigger for the
maximum RMS error.

The second case differs in the variance of vk which is now
equal to 1000. 1000 runs are also made for this case, and for
these runs, the RMS values for x1 and x2 are 10311 and
3.6518, respectively. Table 6 presents the corresponding
filtering results. This time the difference between MUKF
and UKF is much greater, especially in the worst-case
performance. The CRLB values are now 3.3661 and 3.1624.

The results of this subsection show that under certain
conditions, the proposed s-point set can be used to get
significantly better performance without an increase in
computational cost.

4.4 Four-dimensional semi-realistic example

In the last subsection, a semi-realistic example of an armature
controlled DC motor with a sin/cos encoder is studied. The
field current is assumed constant and the magnetic non-
linearities are neglected. u denotes angular position, v
angular speed and i armature current. e is the voltage
applied to the armature, used to control the motor, and for
this example it will be assumed constant. The damping
coefficient b(t) is supposed to vary periodically. The system
dynamics are given by (34)–(38).

u̇ = v (34)

J v̇ = −b(t)v+ Ki (35)

Li̇ = e − Kv− Ri (36)

ḟb = vb0 (37)

b(t) = b0 + b1 cos (fb) (38)

The only quantity measured is the angular position, using a
sin/cos encoder. It is assumed that measurements are taken
every d ¼ 0.01 s according to (39) and (40), where v1,k and
v2,k are i.i.d. Gaussian random variables with zero-mean
IET Control Theory Appl., 2011, Vol. 5, Iss. 10, pp. 1155–1166
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and variance Rv.

y1,k = sin(uk) + v1,k (39)

y2,k = cos(uk) + v2,k (40)

In discrete time with time step equal to d, and taking also into
account that the system is subject to disturbance, the
dynamics are approximated by the following equations

uk+1 = uk + dvk + w1,k (41)

vk+1 = vk + d( − bkvk + Kik )/J + w2,k (42)

ik+1 = ik + d(e − Kvk − Rik )/L + w3,k (43)

fb,k+1 = fb,k + dvb0 + w4,k (44)

bk = b0 + b1 cos(fb,k) (45)

Thus, the problem is to estimate the state of the system with
state (41)–(44), where bk is defined by (45), and output
(39) and (40).

As in Section 3.1, (39) and (40) can be inverted to provide a
virtual measurement of u, but in this case it is not so
straightforward. It holds u ¼ arctan(y1 2 v1, y2 2 v2),
where arctan(y, x) is the angle whose sine and cosine are equal

to
(
y/

��������
x2 + y2

√ )
and

(
x/

��������
x2 + y2

√ )
, respectively. Let R =��������

y2
1 + y2

2

√
, f = arctan (y1, y2) so that y1 ¼ R sin f and y2 ¼

R cos f. Define the random variables n ¼ cosfv1 2 sinfv2

and r ¼ 2sinfv1 2 cosfv2. They are jointly normally
distributed and it can be verified through simple calculations
that their variance is equal to Rv as well as that they are
uncorrelated and thus independent.

Let us define the random variable

q = − n

r + R
(46)
Table 5 RMS estimation error and computation time for the example of Section 4.3, case I

Estim. technique Mean Max Comp. time

x1 x2 x1 x2

EKF 7.9181 3.5974 10.3128 3.9498 0.11

UKF 7.5795 3.5907 10.3435 3.9177 0.25

MUKF 6.6326 3.5734 7.9090 3.8778 0.29

Table 6 RMS estimation error and computation time for the example of Section 4.3, case II

Estim. technique Mean Max Comp. time

x1 x2 x1 x2

EKF 33.2416 3.7100 69.4051 4.4110 0.11

UKF 29.0547 3.6893 73.0664 4.4738 0.25

MUKF 15.1896 3.6279 21.3721 3.9544 0.29
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Then

u = arctan(R sin f+ r sin f− n cos f, R cos f

+ r cosf+ n sin f)

= arctan((R + r) sin f− n cos f, (R + r) cos f+ n sin f)

= arctan( sin f+ q cos f, cos f− q sin f) (47)

Using the trigonometric identity

tan(a + b) = tan(a) + tan(b)

1 − tan(a) tan(b)
(48)

the reader can check that

u = arctan( sin f+ q cos f, cos f− q sin f)

= f+ arctan(q) (49)

Since arctan is an odd function and the pdf of n is also odd, it
follows that E[ arctan(q)] = 0 thus E[u] = f. The variance of
arctan(q) depends on R.

It must be noted that f is also the maximum likelihood
estimator of u. Indeed, the likelihood function is

1������
2pRv

√ e−((y1−sin f)2/2Rv) 1������
2pRv

√ e−((y2−cosf)2/2Rv) (50)

Thus it is maximised when the expression ( y1 2 sin f)2 +
( y2 2 cos f)2 is minimised. But

(y1 − sin f)2 + (y2 − cos f)2

= y2
1 + y2

2 + sin2 f+ cos2 f− 2(y1 sin f+ y2 cos f)

= y2
1 + y2

2 + 1 − 2(y1 sin f+ y2 cos f) (51)

It is easy to verify that ( y1 sin f+ y2 cos f) is maximised for
f ¼ arctan( y1, y2) and thus complete the argument.

A final remark is that the inversion gives u mod 2p. Thus to
avoid 2p jumps at each time step, an integer multiple of 2p is
added to arctan( y1, y2) so as to make the sum as close as
possible to the previous estimated value of u.

The system parameters for the simulations performed have
been selected as follows (in SI units). K ¼ 0.035, L ¼ 0.5,
R ¼ 2, J ¼ 0.03, b0 ¼ 0.01, b1 ¼ 0.003, vb0 ¼ 10 and
e ¼ 20. The system is simulated up to time t ¼ 20.

For the first case studied, the variance of wk is equal to
1024I4, whereas the variances of v1,k and v2,k are equal to
1024. All noise sequences are normally distributed, i.i.d.
and independent of each other and the initial condition
1164
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which follows the normal distribution with zero-mean and
covariance matrix 0.01I4.

The results from 1000 runs are presented in Table 7. The
values of the estimation error given are RMS values, while
the RMS values for the four variables are equal to 298.6,
29.1, 9.4 and 115.5. The corresponding RMS values of the
CRLB are 0.0079, 0.0909, 0.0364 and 0.1283.

For MUKF, N was chosen equal to 2. The results obtained
using the mode were almost identical to those using the
estimated mean; thus they are not included in the table. It
must also be noted that for simplification the variance of q
in (46), which depends on R, has been treated as constant,
with value that for R ¼ 1.

Except for PF, which cannot estimate v and fb as
accurately as the other methods, no differences between the
filtering techniques can be observed. This happens because
the filtering performance is close to the CRLB, so there is
no room for improvement. This is verified by Figs. 6 and 7.
In Fig. 6 the waveforms of the RMS value of the estimation
error for the angular velocity as well as the corresponding
Cramer–Rao bound are presented. The performance of KF-
based methods is indeed very close to the CRLB. Fig. 7
presents the corresponding waveforms for the motor current
and it can be observed that the values of the RMS error and
the CRLB practically coincide. The reader can also observe
that the RMS values follow the lower bound even during
the transient. The RMS values for the estimates of u also
follow the lower bound, although the corresponding
diagram is not presented for the sake of room. It must also
be mentioned that the estimates of fb are not close to the
CRLB (see also Fig. 8).

Fig. 6 Transient response of v estimation error for various
methods and CRLB, case I
Table 7 RMS estimation error and computation time for the example of Section 4.4, case I

Estim. technique Mean Max Comp. time

u v i fb u v i fb

EKF 0.0079 0.0968 0.0363 0.1942 0.0083 0.1384 0.0485 0.4230 0.16

UKF 0.0079 0.0967 0.0363 0.1942 0.0083 0.1384 0.0485 0.4235 0.57

MUKF 0.0079 0.0967 0.0363 0.1942 0.0083 0.1384 0.0485 0.4233 1.14

EKF-L 0.0079 0.0968 0.0363 0.1942 0.0084 0.1384 0.0485 0.4228 0.13

UKF-L 0.0079 0.0967 0.0363 0.1942 0.0084 0.1384 0.0485 0.4233 0.57

PF/SIR(1000) 0.0079 0.1077 0.0368 0.2492 0.0084 0.1793 0.0484 0.7624 1.59
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Fig. 8 Transient response of fb estimation error for various
methods and CRLB, case II

Fig. 7 Transient response of i estimation error for various
methods and CRLB, case I
IET Control Theory Appl., 2011, Vol. 5, Iss. 10, pp. 1155–1166
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The above system has been also studied with different
noise and initial state covariances. Specifically, for the
second case studied, the initial state covariance as well as
the process noise is equal to 1021I4, whereas the variances
of v1,k and v2,k are equal to 1022. The results from 1000
runs under these conditions are presented in Table 8. The
RMS values for the four variables are equal to 300.8, 29.4,
9.5 and 115.6. This time there exist more significant
differences between the performances of the various
filtering algorithms. For example, while PF(1000) gives the
best estimation for u, it does not estimate v very well.
Output inversion also decreases the estimation error for u as
well as the error in the estimation of v for EKF. UKF
instead, which handles better non-linearities by its own,
does not benefit from the inversion with respect to the
estimation of v.

As in the previous case, the CRLB practically coincides
with the error of the best technique for i and u, while it
is close for v. The diagrams are not presented for brevity.
The diagram for fb, for which the divergence between
CRLB and the values of estimation error is large, is
presented in Fig. 8. The RMS values of the CRLB for
the four state variables are equal to 0.0957, 2.6901,
1.1248 and 2.2860.

The computation times given are in milliseconds.
MUKF is more demanding than UKF, but for this case
both times are of the same order. This shows that MUKF
can be used even for four-dimensional systems, at least with
N ¼ 2.

Under the noise characteristics of the second case, the
mode estimate does not fully coincide with the mean
estimate. Because the maximisation procedure, a
subspace trust region method based on the interior-
reflective Newton method described in [19, 20] and
provided by the function ‘fminunc’ of MATLAB, is
lengthy, only 100 runs have been made. The results are
presented in Table 9. The reader may notice that the
mode provides a better estimation of u, on which the
output depends. This is in accordance with the results of
the previous examples.
Table 8 RMS estimation error and computation time for the example of Section 4.4, case II

Estim. technique Mean Max Comp. time

u v i fb u v i fb

EKF 0.1027 2.8636 1.1186 11.174 0.1084 4.2943 1.4269 39.3164 0.16

UKF 0.1017 2.7161 1.1184 9.2123 0.1066 4.1888 1.4208 32.3189 0.56

MUKF 0.1021 2.7176 1.1183 9.2943 0.1076 4.1978 1.4206 33.3555 1.12

EKF-L 0.1004 2.8578 1.1185 11.136 0.1050 4.2194 1.4279 48.5524 0.13

UKF-L 0.1004 2.7161 1.1184 9.2126 0.1050 4.1877 1.4207 32.3655 0.57

PF/SIR(1000) 0.0965 3.1289 1.1603 12.020 0.1012 4.9182 1.4557 47.6644 1.35

Table 9 Comparative results of mean and mode estimates for the example of Section 4.4, case II

Estim. technique Mean Max Comp. time

u v i fb u v i fb

MUKF 0.1021 2.7131 1.1261 9.3882 0.1060 3.5359 1.3459 24.1602 1.14

MUKF-mode 0.0960 2.7130 1.1261 9.3882 0.0991 3.5342 1.3459 24.1601 9.44
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5 Conclusions

This paper shows that inverting the output equation to provide
a virtual linear output can diminish non-linear phenomena
and decrease the output estimation error. The output is also
shown to be estimated very well using mode-based
techniques in some cases. Using the dynamics of a specific
function of the state instead of those of the state for
estimation purposes has been also illustrated through an
example, for which it leads to better performance of EKF
and UKF. Finally, a new s-point set for UKF is proposed
and seems to significantly outperform the standard set in
one example.

It was shown that the CRLB in some cases can be used to
show that there is no room for improvement, whereas in some
cases its value may be much lower than the lowest achievable
value. Also, each of the proposed modifications helps in
reducing the estimation error under certain conditions. To
some extent, whether this will be the case or not can be
expected according to the nature of the underlying problem.
Some aspects of this subject have been reported in this paper.

Further research could address the general case for
output equation inversion and estimating a specific function
of the state. Since the cardinality of the proposed s-point
set increases exponentially with the dimension, it would
be interesting to exploit sparsity patterns in the Jacobian of
f in (1) or h in (2) to permit its application in high-order
systems.
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