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Computationally Efficient Kalman Filtering
for a Class of Nonlinear Systems

Alexandros C. Charalampidis and George P. Papavassilopoulos

Abstract—This paper deals with recursive state estimation for
the class of discrete time nonlinear systems whose nonlinearity
consists of one or more static nonlinear one-variable functions.
This class contains several important subclasses. The special
structure is exploited to permit accurate computations without an
increase in computational cost. The proposed method is compared
with standard Extended Kalman Filter, Unscented Kalman Filter
and Gauss–Hermite Kalman Filter in three illustrative examples.
The results show that it yields good results with small computa-
tional cost.

Index Terms—Covariance matrices, nonlinear filters, numer-
ical methods, recursive state estimation, state space methods,
unscented Kalman filtering.

I. INTRODUCTION

I N many applications the state of a dynamical system must
be estimated. In practice, all measurements are noisy and all

processes are affected by some kind of disturbance. For linear
equations with normally distributed disturbance and measure-
ment error stochastic processes it is well known that the Kalman
Filter [1]–[4] provides an exact solution of the problem.

For nonlinear systems, even if all disturbances are normally
distributed, the nonlinearities distort the distribution thus
leading to non-normal distributions for the state of the system.
Since it is not possible to describe an arbitrary probability den-
sity function using a finite number of parameters, the problem
is infinite-dimensional.

While for low dimensional systems it is feasible to approxi-
mate the exact state distribution by partitioning the state space,
even for medium scale systems this approach is infeasible. Other
approximate solutions [5]–[10] have been developed, which do
not suffer from the curse of dimensionality. In the Extended
Kalman Filter (EKF) [2], [4], [5] the system equations are lin-
earized and then Kalman Filter Equations are used. Although
widely used, linearization yields a good approximation only
when the nonlinearities are mild. Otherwise, the performance
may be poor, and even instability phenomena are possible [7].

Sigma Point Kalman Filters, such as the Unscented Kalman
Filter (UKF) [6]–[8] or the Gauss-Hermite Kalman Filter
(GHKF) [16], provide a promising alternative. At each time
step, they approximate the state distribution with a Gaussian
distribution, whose mean and covariance is propagated through
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the system dynamics and updated by the measurements. The
propagation is not done by using first-order Taylor expansions
of the system equations, but instead by approximating the state
distribution using a finite number of sigma-points. UKF has
been used in a lot of applications [11]–[13], and the consensus
is that it is superior to EKF in most cases. GHKF can yield even
better results [16] but its computational cost is high except for
low-dimensional systems.

Sigma Point Kalman Filters have been designed for a gen-
eral nonlinear system. Thus, if it is known that the system under
study is of special structure, this information can be exploited
in order to make the propagation or update more accurate. In
this paper a class of nonlinear discrete time systems with ad-
ditive noise is considered. Specifically, for the output equation,
each output is a nonlinear one-variable function of a linear com-
bination of the system states. For the system dynamics, except
for linear terms, only nonlinear one-variable functions of linear
combinations of the system states are allowed. Exploiting this
structure, the integration in -dimensions can be substituted by
solving a number of linear systems in -dimensions and inte-
gration in one and two dimensions. Avoiding -dimensional in-
tegration allows accurate computations to be made cost-effec-
tively. The proposed technique is applied to three illustrative
examples and shown to outperform the standard techniques.

The remainder of the paper is organized as follows. In Sec-
tion II the problem formulation for general nonlinear system
state estimation is presented, as well as some basic results from
probability theory and the standard filtering techniques to be
compared with the proposed one. In Section III the class of non-
linear systems studied is defined and the proposed approach is
presented in detail. In Section IV it is shown how the equations
of five important subclasses are formulated in the form of the
general class, while Section V presents the simulation exam-
ples used to compare the performance of the techniques under
consideration. Conclusions are drawn in Section VI.

II. BACKGROUND

A. Formulation of the Nonlinear Filtering Problem

The general nonlinear filtering problem for dynamic systems
with additive noise is to estimate the state of systems of the form

(1)

(2)

where is the state of the system and the measured output at
time . is the disturbance, also referred to as process noise,
and is the measurement noise. In this paper it is assumed
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that the random variables , and
are mutually independent and normally distributed with

known parameters. Furthermore, and have zero mean.
Measurements are available from time onwards.

Suppose that is the probability density function (pdf)
of , is the pdf of the measurement noise and
is the pdf of the process noise. It holds

and . The
subscripts of probability density functions will be omitted for
convenience. Let us define .

Then, using Bayes Rule [14], [15] the following recursive
equations hold:

(3)

(4)

where

(5)

However the above integrals cannot be evaluated analytically.
Numerical integration for a sufficiently dense mesh of at each
time step is also impractical, so (3)–(5) are mainly of theoretical
interest.

B. Standard Filtering Techniques

In this subsection the standard filtering techniques on which
the proposed technique is based are briefly reviewed for easy
reference.

1) Kalman Filter: Since both EKF and UKF are based on
Kalman Filter (KF), the equations of KF ([1]–[3]) are first pre-
sented. Suppose that a dynamical system is described by the fol-
lowing equations:

(6)

(7)

where and are normally distributed with zero mean, while
their covariance matrices are and respectively. Suppose
also that it is known that follows the normal distribution with
mean and covariance . Then, from (6) and a priori with
respect to , follows the normal distribution with mean

and covariance given by

(8)

(9)

From (7), the predicted value of is then

(10)

while its covariance is

(11)

and the cross covariance of and is equal to

(12)

The value of can be then used to refine the distribution.
The Kalman gain is given by

(13)

This Kalman gain is used to calculate the a posteriori mean and
covariance of , according to

(14)

(15)

Thus the prediction step is accomplished using (8)–(9), while
the correction step is accomplished using (14)–(15) with the
definitions of (10)–(13). If it is known that is normally dis-
tributed with mean and covariance , (8)–(15) can be ap-
plied recursively to yield the statistics of when is known.

2) Nonlinear Kalman-Based Filters: Although the state dis-
tributions for nonlinear systems are not Gaussian, the filters con-
sidered in this paper propagate only the state mean and covari-
ance and approximate the conditional distributions
and by Gaussian distributions. The correction is
made using the equations of Kalman Filter, but each filtering
technique must provide a method to approximate the expected
values and covariance matrices (which are also defined as ex-
pected values) involved. The expected values are of the form

where is a nonlinear function and is a normally
distributed random variable (see, for example, [16]).

Extended Kalman Filter: In EKF the system equations
(1)–(2) are linearized using first-order Taylor expansions. More
specifically, for the prediction step, if is the estimated mean
of after the correction step of time then (1) is linearized
around . For the correction step, (2) is linearized around

, where is the estimated mean of after the
prediction step of time . Obviously, it is assumed that the
Jacobian matrices of and are available.

Sigma Point Kalman Filters: In this category of fil-
ters the integrals associated with expectations are approxi-
mated by a finite weighted sum over a suitable set of points,
called sigma points ( -points). The approximation made is

. This approximation can be based
on the intuition that the set with weights

approximates the normal distribution of
[6], or it can be considered as a numerical integration scheme
[16] since

(16)
in the case has mean and covariance . See also [17] for
a different perspective of the same approximation. Regardless
of the physical insight behind the approximation, the choice
of the -points and their weights affects the accuracy of the
approximation.

One solution to the problem is provided by the unscented
transformation [6], [7]. Let be the dimension of the underlying
space. Then -points are calculated. In the basic form of
the algorithm [6] these are: ,

and , where
is the -th column of the matrix ( is obtained

using Cholesky decomposition and is such that ). The
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weights assigned to these points are
. For more details and criteria of

parameter choice consult [7]. The use of the unscented trans-
form leads to the UKF. In this paper, UKF will be applied with
the choice .

Another solution is provided by the Gauss-Hermite quadra-
ture [16], [18]. It uses the Hermite polynomials to determine
the -points and their weights. For the one-dimensional case the
approximation is made as follows [16]. Let , be the
tridiagonal symmetric matrix with zero diagonals and

, the -th eigenvalue of and
the square of the first component of the -th eigenvector of

. Then the approximation for the standard normal distribution
is chosen to be

(17)

and is exact for polynomials of degree up to . In the
-dimensional case points are used and the rule is

(18)
where is the -th column of as previously. The rule
is exact for functions of the form , .

It must be noted that if the system dynamics (correspond-
ingly, the output equation) is linear, then for the prediction (cor-
respondingly, for the correction) step the KF equations can be
applied directly.

III. ANALYSIS FOR THE CLASS UNDER STUDY

A. Motivation and Definition of the Class

GHKF yields better results than UKF, but this happens at a
computational cost which is exponential with respect to the state
space dimension, since points are used. In this paper it is
shown that for the specific class defined below, it is possible to
compute the expected values and covariance matrices without
the need of computing -dimensional integrals and thus without
using an exponential number of -points in order to get accurate
results.

The class considered consists of systems with dynamics of
the form

(19)

and output equation of the form

(20)

where and are nonlinear one-variable functions,
, while and are column vectors in .
In the next subsection the problem of recursive estimation

for systems of the form (19)–(20) is analyzed and the proposed

technique is presented. In Section III-C it is shown that linear
transformations of the state space do not affect the filtering
results.

B. Proposed Filtering Algorithm

The following proposition is the main tool used to reduce the
dimensionality of the integration.

Proposition 1: Suppose that is a normally distributed
random variable with values in , mean and covariance

, is a non-zero column vector in and
is a Borel-measurable function such that has fi-
nite variance. Suppose also that are

linearly independent vectors such that . Let
. Then is the unique solution of the linear

system

...
...

(21)

Proof: First of all, the vectors are lin-
early independent. This can be proved as follows. Suppose that

(22)

Transposition and post-multiplying of the last equation by
yields

(23)

But then

(24)

and since are linearly independent, it fol-
lows that . This completes the argument.
Therefore the coefficient matrix of the linear system is non-sin-
gular thus it has a unique solution.

To prove that this solution is , the fact that
and are two uncorrelated, normally distributed
and thus independent random variables is used.
Indeed, Thus

.
The equation follows from the
definition of .

Remark 1: Since is positive definite and is non-zero,
always there exist such .

Remark 2: Computing directly from its definition,
, is a problem of integration in dimensions. With

the above proposition, it has been reduced to the -dimensional
linear system (21) and two one-dimensional integration prob-
lems, namely the approximation of and ,
where is a real valued random variable.
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In this paper, both for the prediction and the correction step,
the numerical approximation of the integrals is made using
Gauss-Hermite quadrature, namely (17) and (18), although the
proposed algorithm can be combined with any quadrature tech-
nique. As it will be made clear in the rest of this section, only up
to two-dimensional quadrature is needed, because the proposed
algorithm uses Proposition 1 to reduce the dimensionality of
the integration. Thus the approximation can be accurate yet not
computationally intensive.

The reader must notice the subtle point that Proposition 1
holds for normal random variables, while the true state distri-
bution is not normal. However, even without Proposition 1, for
example in the standard GHKF, the expectations are computed
for a Gaussian distribution. Thus, if the approximation is accu-
rate, the use of the proposition does not affect the results, while
reduces the computational time.

For both steps, all calculations are first analyzed in detail, and
then the algorithm is presented in concise form.

1) Prediction Step: Assume that has mean and covari-
ance . Then from (19) it holds

(25)

Since, for each , is a real valued normally
distributed random variable with mean and variance

, is approximated using (17) with
, and . Let be the resulting

value. Then the prediction for the mean is as follows:

(26)

Remark 3: All expectations in this paragraph are conditioned
upon and , but the conditioning is omitted in order to
simplify the notation. For example, is written instead
of and instead of .

The prediction step includes also calculation of the a priori
covariance of . It holds

(27)

It is known that and .

Let us consider the second term of (27)

(28)

For , is approximated using
(17) with , and . For

, is approximated using (18)
with , and
equal to

(29)

In both cases, let us denote by the approximate value of
. Then the approximation used is

(30)
The fourth term of (27) is the transpose of the third term, so

it suffices to approximate the third term only. It holds

(31)



CHARALAMPIDIS AND PAPAVASSILOPOULOS: COMPUTATIONALLY EFFICIENT KALMAN FILTERING 487

Fig. 1. Prediction step algorithm.

is approximated using (21). The expected
values in the right-hand side of (21) are approximated using
(17); the second approximated value is , while the first is
calculated similarly but with . The vectors

depend on as well as on the time step . Let
us denote by the solution of (21). Then the approximation
obtained for the third term of (27) is

(32)
Using (30) and (32) an approximation of can be calcu-

lated to conclude the prediction step. The algorithm described
above is summarized in Fig. 1.

2) Correction Step: For the correction step , and
must be computed. This task is accomplished with

the same techniques used in the prediction step. Let us consider
. From (20) it follows that for

(33)

Remark 4: All expectations in this paragraph are conditioned
upon and , but the conditioning is omitted in order to
simplify the notation. For example, is written

instead of .

Thus can be approximated using (17) with
, and . Let be the

resulting value.
With respect to , (20) yields

(34)

Fig. 2. Correction step algorithm.

can be approximated in the same
way that is approximated in the predic-
tion step. Let us denote by the approximate value. Then the
approximation made for is

(35)

Finally, the -th column of , is
equal to

(36)

can be calculated in the same way as
in the prediction step. If the approximated

value is denoted by , the approximation for
is

(37)

After the calculation of , and , the cor-
rection step can be completed using (13)–(15) as in KF and its
nonlinear variations. The correction step algorithm is summa-
rized in Fig. 2.

C. Linear Transformation Invariance

Coordinate transformations are frequently used both in linear
[19] and nonlinear [20] system theory. The Kalman Filter
exhibits invariance under linear transformations, namely if
the system state is transformed using then it holds

for all . In this subsection it is shown that for the
class under study the modified technique proposed also exhibits
such an invariance. This fact has the important implication that
the choice of the state space realization of a transfer function
is indifferent when only the system input and output are of
interest. Section V further clarifies this concept.
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Let therefore be a non-singular matrix. Straightfor-
ward calculations show that under the coordinates defined by

the system is described by

(38)

(39)

where

(40)

(41)

(42)

(43)

while

(44)

(45)

The result of this subsection is stated in the following
proposition.

Proposition 2: Consider the system described by (19)–(20)
and the coordinates transformation . If and are
the estimates produced by the proposed filter for the initial co-
ordinates while and are those for the transformed coor-
dinates, then for every it holds

(46)

Proof: For (46) is an elementary result of probability
theory, stated also in (45). Suppose that (46) holds for the time
step . It will be proved that then it is also valid for .

For each , (42) implies that
and
. Thus the -points

for the nonlinear function are not affected by the transfor-
mation. This implies that and .

The right-hand side of (21) is thus unchanged. The coeffi-
cient matrix is post-multiplied by , because this holds for
the first row by (42), and is a valid choice for the
rest of the rows. Therefore is the solution of the
corresponding system (21).

Using the equalities , and as
well as (38), (40)–(41) and (44), it can be verified that

and .
For the update step, similarly with the prediction step, it holds

and
, therefore again

the transformation does not affect the -points for the nonlinear
functions. Thus , and . Using
these equalities together with and

it is easy to verify that the correction step algorithm
of Fig. 2 yields and .

Remark 5: Using similar arguments it is easy to prove that
neither UKF is affected by linear transformations.

IV. IMPORTANT SUBCLASSES

A. Systems With Linear Dynamics and Nonlinear Output

It is obvious that linear dynamics is of the form (19) with
. Therefore, such a system belongs to the class under

study provided that every output of the system has the form
(20). This subclass is a subset of the subclass of paragraph Sec-
tion IV-D.

B. SISO Linear Systems With Nonlinear Feedback

If a SISO linear system is described by

(47)

namely there is no measurement error, and an output feedback
of the form is applied, then the system dynamics is
of the form (19) with , , and .
The output is linear, and thus for the correction step (10)–(15)
can be used directly with in (11).

C. MIMO Linear Systems With Nonlinear Decoupled Feedback

Suppose a MIMO system is described by

(48)

where is a matrix, while is a matrix. Let
also the -th column of and the -th row of . If a
feedback of the form is applied, then as pre-
viously the system dynamics is of the form (19) with ,
and for the correction step (10)–(15) can be used directly with

in (11). The reader may note that (48) with feedback
and without disturbance is the system form

of the hypothesis of the Popov Criterion (see [20] or [21], and
[22] for the discrete time case).

D. Cascades of Linear Systems With Nonlinear Characteristics

Assume that the output of a linear system is connected to
the input of a nonlinear one-variable function whose output is
connected to the input of another linear system and so on. The
output of the total system is the output of the last nonlinear char-
acteristic. If there are linear systems, and nonlinear func-
tions, the mathematical description is as follows.

The linear systems are described by

(49)

(50)

(51)

(52)

while their interconnection by

(53)

The state of the whole system is

(54)
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Then the whole system is of the form (19) with ,

...
...

. . .
...

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

E. Arbitrary Networks of Linear Systems Interconnected With
Nonlinear Characteristics

The case of a number of linear systems interconnected in a
more complex topology than the series connection of the pre-
vious paragraph can also be treated using the method presented
in this paper.

Suppose that there are linear systems described by
(49)–(51), and interconnected through the nonlinear charac-
teristics , where the input of the characteristic

is the output , while its output is driven to the input .
It is possible that two nonlinear characteristics are driven to
the input of the same linear system, i.e., for ,
which means that the input of the linear system is the sum of all
the corresponding nonlinearities. Thus every interconnection
topology is included in the subclass. As in the previous para-
graph, the output of the total system is the output of the system
with index .

Then the whole system is of the form (19) where (55) and
(59)–(62) hold verbatim, while for the vectors
and are given by

(63)

V. EXAMPLES

A. Linear System With Sensor Nonlinearity (A)

Suppose that a linear system whose transfer function is

(64)

is driven by Gaussian white noise with zero mean and variance
equal to 1, and that the output of the linear system is measured
but the sensor suffers from nonlinearity and noise so that if

TABLE I
RMS ESTIMATION ERROR FOR THE EXAMPLE OF SECTION V-A

is the output of the linear system and is the available mea-
surement at time , it holds

(65)

where is Gaussian white noise with zero mean and standard
deviation equal to 0.3. The goal is to estimate the output of the
linear system. The following matrices provide a minimal state
space realization of the system

(66)

It must be noted that although the realization is not unique,
any other equivalent realization would yield the same results, as
shown in Section III-C.

EKF, UKF, GHKF and the accelerated GHKF (AGHKF) as
presented in this paper have been applied to this problem for
comparison purposes. 1000 runs have been made, each for time

. is supposed to follow the normal distribution
with zero mean and covariance . Table I presents the sta-
tistics of the RMS estimation error for the output of the linear
system, as well as the computation time, recorded in a 64-bit
PC running MATLAB 7.2 for Linux. GHKF and AGHKF have
been applied with two choices for the parameter of (17) and
(18). The values used are given in the parenthesis of Table I.
EKF performs poorly. In this example GHKF and AGHKF have
the same performance for equal . For GHKF is faster,
because AGHKF is subject to time overhead due to the linear
algebraic operations described in Section III-B. However, in-
creasing to 5 reduces significantly the worst-case error, and
this reduction comes at almost no cost for AGHKF, while for
GHKF the time increase is considerable. It is noted that
is selected so that the RMS value of the system output is equal
to 1.

B. Linear System With Sensor Nonlinearity (B)

Suppose now that it holds
instead of the output (65) and all

other parameters are the same with the previous example. The
results are presented in Table II. EKF again performs poorly.
The difference between the various -point filters is now
greater than in the previous case. This can be attributed to the
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TABLE II
RMS ESTIMATION ERROR FOR THE EXAMPLE OF SECTION V-B

TABLE III
RMS ESTIMATION ERROR FOR THE EXAMPLE OF SECTION V-C

fact that now the output equation has a more complex form,
and thus a finer point set for integration is more significant.
AGHKF permits a value of as high as 11 without significant
computational cost.

It may be also noticed that in this case, in which the quadra-
ture yields approximate values for the expected values in (21),
the results for GHKF (7) and AGHKF (7) are not identical.

C. Linear System With Sensor Nonlinearity and Dynamics

In this subsection, it is assumed that the sensor except for its
nonlinearity, is a dynamic system. This situation is described
mathematically as follows. The output of the linear system de-
scribed by (64) is connected to the input of a static nonlinearity
with equation . At the output of the static nonlinearity
Gaussian white noise with variance equal to 0.2 is added, and
the sum is in turn connected to the input of a linear system de-
scribed by state equations of the form (47), with matrices equal
to . The corresponding transfer
function is

(67)

The output of this transfer function is measured with the pres-
ence of additive Gaussian white noise with standard deviation
0.3. Then the problem is of the form described in Section IV-D.

is supposed to follow the normal distribution with zero
mean and covariance . The results are presented in
Table III. The difference in computation time between GHKF
and AGHKF is much greater than in the two previous cases
because the system now is four-dimensional.

VI. CONCLUSION

This paper shows that, in the case of the class considered, a
solution to the nonlinear filtering problem in dimensions can

be given by solving a number of linear systems in dimensions
and a number of integral approximation problems in one and
two dimensions. This permits more accurate calculations than
the direct approach of integral approximation in dimensions.
Three examples show that indeed the proposed technique leads
to computational time reduction, which is greater for higher
system dimension. The results also validate the known fact that
EKF performs poorly in comparison with -point filters under
the presence of strong nonlinearities such as a cubic nonlinear
characteristic.

Further research could focus on finding more general or other
system classes for which the special structure can be exploited
to design class-specific filters.
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