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Comparison of Standard and Modified Recursive
State Estimation Techniques For Nonlinear Systems

Alexandros C. Charalampidis and George P. Papavassilopoulos

Abstract—This paper deals with recursive state estimation for
nonlinear systems. A new set ofσ-points for the Unscented
Kalman Filter is proposed as well as a way to substitute a
nonlinear output with a linear one. The importance of the
function of the state which must be estimated is also illustrated
and the need for taking it into account when designing the state
estimator. All the proposed methods are compared with standard
Extended Kalman Filter, Unscented Kalman Filter and Particle
Filter with Sampling Importance Resampling using simulations.
The results show that the modifications proposed in some cases
lead to considerable reduction in estimation error.

Index Terms—Kalman filtering, Nonlinear estimation, Nonlin-
ear filters, State estimation.

I. I NTRODUCTION

ESTIMATING the state of a dynamical system is a com-
mon task. In practice, all measurements are noisy and

all processes are affected by some kind of disturbance. For
linear equations with normally distributed disturbance and
measurement error stochastic processes it is well known that
Kalman Filter [4] provides an exact solution of the problem.
The problem can be also solved exactly if the state space is
finite.

In this paper nonlinear discrete time systems with additive
noise are considered. For these systems, even if all distur-
bances are normally distributed, the nonlinearities distort the
distribution thus leading to non-normal distributions forthe
state of the system. For low dimensional systems it is feasible
to approximate the exact state distribution by partioning the
state space. Other approximate solutions, which do not suffer
from the curse of dimensionality, are provided by the Extended
Kalman Filter (EKF) [1], the Unscented Kalman Filter (UKF)
[5] and various forms of Particle Filters (PF) [7].

For the UKF the selection ofσ-points is an important issue.
Several aspects of this selection are treated in [5]. A new
selection algorithm is presented in this paper, and in a semi-
realistic example, it outperforms the standard algorithm of [8],
also used by [9] and most authors.

Apart from the system dynamics, nonlinearities may be
present on the output equations. Under certain conditions,in-
verting the nonlinearity and assuming a linear output equation
can help to avoid nonlinear overshoot-like phenomena. This
is illustrated with an appropriate example, and it is shown
using simulations that by this way the error of the EKF can
be reduced significantly.
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The remainder of this paper is organized as follows. In
Section II the problem formulation and basic results from
probability theory are presented. The standard filtering tech-
niques compared with the proposed ones are also presented. In
Section III the proposed modifications are described. Section
IV presents simulation examples used to compare the perfor-
mance of the techniques under consideration. Conclusions are
drawn in Section V.

II. BACKGROUND

A. Problem Formulation

The dynamic systems considered are of the form

xk+1 = f(xk) + wk, (1)

yk = h(xk) + vk, (2)

wherexk is the state of the system andyk the measured output
at the time systemk. wk is the disturbance, also referred to
as process noise, andvk is the measurement noise. In this
paper only i.i.d. noise sequences will be considered. The initial
conditionx0 follows a known distribution, and measurements
are available from timet = 1 and onwards.

The problem is to estimate a function of the state,zk =
g(xk). The functiong can be the identity, the output function
h, or another function, although the last case is not addressed
in this contribution. Sincezk will be a random variable, it may
be desired to approximate its probability density function(pdf)
or only some statistics of it, such as the expected value or the
covariance. As it will be made apparent, the choice ofg and
of the statistics that must be estimated has heavy impact on
the whole procedure.

Suppose now thatpX0(x0) is the pdf ofx0, pV (vk) is the
pdf of the measurement noise andpW (wk) is the pdf of the
process noise. It holdspY |X(yk|xk) = pV (yk − h(xk)) and
pXk+1|Xk

(xk+1|xk) = pW (xk+1 − f(xk). The subscripts of
probability density functions will be omitted for convenience.
Let us definey1:k = {y1, y2, · · · , yk}.

Then, using Bayes Rule [2], the following recursive equa-
tions hold:

p(xk+1|y1:k) =

∫

p(xk+1|xk)p(xk|y1:k)dxk, (3)

p(xk+1|y1:k+1) = p(yk+1|xk+1)p(xk+1|y1:k)/ck, (4)

where
ck =

∫

p(yk+1|xk+1)p(xk+1|y1:k)dxk. (5)

However the above integrals cannot be evaluated analytically.
Numerical integration for a sufficiently dense mesh ofxk at
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each time step is also impractical, so (3)–(5) are mainly of
theoritical interest.

B. Standard Filtering Techniques

In EKF the system equations (1)–(2) are linearized and then
Kalman Filter (KF) Equations are used. Specifically, ifx̂k is
the estimated mean ofxk after the correction step of timek
and x̂−

k+1 is the estimated mean ofxk+1 after the prediction
step of timek + 1, then for the prediction step Eq. (1) is
linearized around̂xk while for the correction step Eq. (2) is
linearized aroundy(x̂−

k+1). Covariance matrices and correction
gain are then calculated with KF Eqations. As is obvious, it
is assumed that the derivatives off andh are available.

The idea behind UKF is that it is easier to approximate
a probability distribution than a nonlinear function. Thus
system equations are not simplified but the prior distribution is
approximated by a finite sum of Dirac deltas. The procedure
which follows applies to systems with additive noise. For
the general case, as well as for justification and criteria for
parameter choice consult [5].

Suppose that after timek the covariance of the state isPxk
.

Let alsonx the dimension of the state space. Then2nx + 1
σ-points are calculated:X0,k = x̂k, Xi,k = x̂k + γSi, i =
1, . . . , nx and Xi,k = x̂k − γSi, i = nx + 1, . . . , 2nx,
where Si is the ith column of the matrixS =

√
Pk and

γ =
√

nx + λ, λ = α2(nx+κ)−nx, α andκ being parameters.
For the prediction step, theσ-points are transformed through

xk+1 = f(xk) and thus the covariance and mean before the
correction can be calculated. Of course, the covariance ofwk

is added to the covariance of the transformedσ-points. The
weigths used for the mean and covariance calculations are

w(0)
m =

λ

nx + λ
, w(0)

c =
λ

nx + λ
+ 1 − α2 + β (6)

w(i)
m = w(i)

c =
1

2(nx + λ)
, (7)

whereβ is also a parameter.
For the correction step, with the new mean and covariance,

2nx + 1 σ-points X−
i,k+1, i = 0, . . . , 2nx are analogously

calculated. These are transformed throughyk+1 = h(xk+1)
and thus the mean and covariance of the measurement vector
can be calculated (for the covariance the covariance ofvk

is added), as well as the cross covariance between the mea-
surement and the state vector. Then the Kalman gain and the
corrected estimates are computed according to KF Equations.

In this paper, UKF will be applied with the choice of
parametersα = 1, β = 2, κ = 0.

EKF and UKF are based on the assumption that the se-
quence of state distributions can be well approximated by a
sequence of normal distributions. Since in many cases this
assumption does not hold, and the form of the distribution
is a priori unknown, there is need for a filtering technique
which permits approximation of arbitrary distributions. In PF
the state pdf is approximated by a number of particles each
representing a Dirac delta with a corresponding weigth, i.e.

p(xk|y1:k) ≈
N

∑

i=1

wi
kδxi

k
(xk). (8)

Then the mean value of a functiong of the state can be
estimated with the next equation.

E[g(xk)] ≈
N

∑

i=1

wi
kg(xi

k) (9)

It is reasonable to conjecture that with sufficiently many
particles the approximation will be good, although asymptotic
analysis of PF is a difficult problem [10].

There are many different algorithms [7] for the update
of wi

k and xi
t. For the comparison purposes of this paper

only Sampling Importance Resampling (SIR) Filtering, which
consists the first such PF and was proposed by [6], will
be used. The resampling step is implemented with stratified
resampling [11]. Since this paper does not propose any novelty
on PF, no further details are presented here.

III. PROPOSEDMODIFICATIONS

A. Inverting the Output Equation

Assume that EKF is used to estimate the state of the system
described by Eqs. (21)–(22). (22) has the form of (2) with
h(x) = x3. Suppose that for some time instantk it holds
x̂−

k = 1, P−
xk

= 1, xk = 2 andyk = 8, while the variance of
vk is equal to 1. Then sinceh′(x) = 3x2, h′(x̂−

k ) = 3 and the
Kalman gain will be equal to 3

32+1 . Since the predicted output
was equal to 1, EKF yieldŝxk = 1 + 0.3(8 − 1) = 3.1.

The posterior value for the output is greater than the
observed, yet this is not due to measurement error and the pre-
dicted value was less than the observed. This happens because
the first order approximation ofh obtained with its derivative
is valid only locally. Thus because of the nonlinearity of the
output function, the Filter although supposed to smooth the
observed data, suffers from this overshoot-like phenomenon.

A remedy of this problem is inverting the output equation.
If there was no measurement error, one would setxk =
3
√

yk, where the cubic root of a negative number is defined
appropriately. Now it holdsxk = 3

√
yk + vk. Since vk is

a random variable,3
√

yk + vk is also a random variable. It
is not computationally demanding to calculate its mean and
variance. For this purpose, a suitable set{V1, V2, · · · , VN}
is determined and then for each step from the corresponding
values{ 3

√
yk + V1, · · · , 3

√
yk + VN} the meansk and variance

lk are extracted.Explain how{V1, V2, · · · , VN} is determined?
EKF is then applied to the system whose dynamics is given

by (21) and its output equation is

sk = xk + rk, (10)

where the variance ofrk is equal tolk, which is obtained,
together withsk, from the inversion step.

The effectiveness of the proposed technique is illustrated
in Fig. 1. It shows that after the inversion of the output
equation the overshoot phenomenon is no more present. The
idea of output inversion can be also applied to UKF and Fig.
1 shows that it is effective for UKF, too. In another realization
of the experiment, presented in Fig. 2 EKF is trapped to
zero while UKF suffers from overshoot. Again, application of
output inversion is effective for both EKF and UKF. Numerical
values of the prediction error for all filtering techniques tested
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Fig. 1. Time series of output data and various estimation methods illustrating
the overshoot-like phenomenon for EKF
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Fig. 2. Time series of output data and various estimation methods illustrating
the overshoot-like phenomenon for UKF and the possibility of EKF being
trapped to zero

are presented in section IV.Transfer here the inversion of
subsection IV-C?

B. Estimating a Specific Function of the State

Let us consider the system of (21) and (23). Suppose that
wk and vk are i.i.d. gaussian processes with varianceQ and
R respectively. (23) has the form of (2) withh(x) = x2.
Suppose also that it is known thatx0 = 0. Then x̂−

1 = 0
and thush′(x̂−

1 ) = 0 yielding zero Kalman gain and̂x1 = 0.
Recursively one obtainŝxk = 0, whatever the output sequence
is.

On the other hand, for everyk the pdf of the state is even. In
fact, if the ouput sequence is{y1, y2, · · · , yk}, then for every
pair of sequences{x1, x2, · · · , xk} and{v1, v2, · · · , vk} con-
sistent with{y1, y2, · · · , yk}, the pair{−x1,−x2, · · · ,−xk}
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Fig. 3. Probability density function for variousk in a random run

and {v1, v2, · · · , vk} is also consistent with the output se-
quence and equally probable. Marginalizing over possible
{x1, x2, · · · , xk−1} and{v1, · · · , vk−1} asserts thatp(xk) =
p(−xk). Thus the expected value ofxk is 0, exactly as
predicted by EKF or UKF. However, the pdf, which for
k = 0, 1, 2, 5, 10, 50, 100 (0 corresponds to the prior)
in a random run is presented at Fig. 3 is even fork = 1 not at
all close to the pdf of a normal distribution. Thus, if it is not
the mean ofxk that must be estimated but another quantity,
such as the mean ofx2

k, EKF and UKF perform poorly. It is
noted that even ifx0 6= 0, since for somek the value ofxk

will be close to 0, the same problem will arise.
An alternative way to estimatex2

k follows. Setzk = x2
k.

Then if |zk| < 1
3αδ

it holds

zk+1 = (xk − αδx3
k + wk)2 =

= x2
k − 2αδx4

k + α2δ2x6
k + w2

k + 2(xk − αδx3
k)wk =

= zk − 2αδz2
k + α2δ2z3

k + w2
k + 2(xk − αδx3

k)wk, (11)

while in different case it holds

zk+1 = x2
∞ − 2αδx4

∞ + α2δ2x6
∞ + w2

k ± 2(x∞ − αδx3
∞)wk,

(12)
where x∞ is defined in (20). The expected value of the
unknown term isE[w2

k + 2(xk − αδx3
k)wk] = Q. As for its

variance, it depends on|xk|. It is possible to create off-line a
look-up table and use it to find the variance at each time step.
More details about the look-up table?Thus an estimate ofx2

k

is obtained by estimating the state of the system defined by
(13)–(14)

zk+1 = zk − 2αδz2
k + α2δ2z3

k + Q + nk (13)

yk = zk + vk, (14)

wherenk is zero-mean but its distribution and variance depend
on zk.

For numerical results and comparison of all filtering tech-
niques tested in this paper for this problem see subsection
IV-B.



4

C. A Newσ-Point Set

1) One-Dimensional Case:The algorithm of subsection
II-B approximates the normal distribution with meanM
and varianceP with three σ-points, atM , M − γ

√
P and

M + γ
√

P whereγ as well as the corresponding weights are
given in the same subsection.

More points could be used to obtain a better approximation.
Let N the desired number ofσ-points. The following algo-
rithm provides a reasonable way to approximate the normal
distribution with meanM and varianceP using N points.
Restate the last sentence?Let {pi = i

N+1 , i = 1 . . .N}.
Then calculate{yi = erf−1(pi), i = 1 . . .N}. Then the set
{yi, i = 1 . . .N} is zero-mean but not necessarily of variance
1. A set of variance 1 is obtained by

{xi =

√

N
∑N

i=j y2
j

yi, i = 1 . . .N}. (15)

The proposedσ-point set is then defined by

{σi = M +
√

Pxi, i = 1 . . .N}, (16)

and its mean and variance are equal toM andP respectively.
It is noted that both for the one-dimensinal and the multi-
dimensional case, the proposed point have equal weights.

2) Multi-Dimensional Case:Let M the vector mean andP
the covariance matrix of an-dimensional normal distribution.
Since P is symmetric it is possible to findn orthonormal
eigenvectors{vi, i = 1 . . . n} with corresponding eigenvalues
{λi, i = 1 . . . n}. P is positive definite therefore all eigenval-
ues are positive. Let{zi, i = 1 . . . n} n i.i.d. random variables
following the standard normal distribution. Then the random
vectorM +

∑n
i=1 zivi is normally distributed with meanM

and covarianceP .
Since the standard normal distribution is approximated by

the set defined by (15), the following set, consisted ofNn

members, can be considered as an approximation of then-
dimensional normal distribution with meanM and covariance
P .

{σi1,i2,...,in
= M +

n
∑

j=1

xij
vi, ij = 1 . . .N, j = 1 . . . n} (17)

Its mean and covariance are indeedM andP respectively.
For largen the cardinal of the set,Nn, will be much greater

than 2n + 1 even for N = 2. Apart from that, the above
algorithm includes computation of the eigenvalues ofP while
for the set presented in subsection II-B it is only needed
to compute the square root of a positive definite symmetric
matrix, a task that can be accomplished inO(n3) time using
Cholesky Factorization. However, numerical experiments with
the four-dimensional example of subsection IV-C show that
for that case the extra computational cost associated with the
proposedσ-point set is not prohibitive.

The following example shows that the use of all combina-
tions of ij in

∑n

j=1 xij
vi can help compute the covariance

of the output much more accurately than with theσ-point
set of subsection II-B. Suppose that(x1, x2)

T is normally
distributed with zero mean and covariance matrix equal to the
identity matrix, and that the mean and variance off(x1, x2) =

TABLE I
TABLE OF RMS ESTIMATION ERROR AND COMPUTATION TIME FOR THE

EXAMPLE OF SUBSECTIONIV-A, CASE I

Estim. Technique x Est. Error y Est. Error Comp. Time (ms)

EKF 0.8440 12.96 0.66

UKF 0.3939 1.3300 1.74

MUKF 0.3937 1.3256 1.58

EKF-L 0.4272 0.7881 2.55

UKF-L 0.4266 0.7872 3.14

PF/SIR(50) 0.3936 0.8358/0.8572 0.94

PF/SIR(1000) 0.3814 0.7266/0.7497 5.18

CM(50) 0.3819 0.9123/0.9329 0.23

CM(1000) 0.3804 0.7224/0.7455 11.56

x1x2 must be calculated. The standard algorithm uses five
points,{(0, 0), (0, 1), (0,−1), (1, 0), (−1, 0)}. All of them are
mapped byf to 0 and thus the variance off is estimated to
be 0. The proposed algorithm withN = 2 yields four points,
{(−1, 1), (1, 1), (1,−1), (−1,−1)}. Two of them are mapped
to 1 and two to−1, thus the variance is estimated to be 1,
which is the exact value. Both algorithms correctly estimate
the mean to be 0.

Numerical results of the use of the proposedσ-point set in
recursive state estimation are provided in the next section.

IV. SIMULATION EXAMPLES

A. One-Dimensional Example with Invertible Ouput Equation

Consider the system dynamics described by (18), wherew
is the disturbance.

ẋ = −αx3 + w (18)

The simplest discrete time approximation with time stepδ
is given by the following equation.

xk+1 = xk − αδx3
k + wk (19)

Howeverx − αδx3 is not a monotonous function ofx, al-
though it should be so as to yield an acceptable approximation
of the dynamics of (18). Since it has a maximum for

x∞ =
1√
3αδ

(20)

the following approximation captures better the continuous
time dynamics.

xk+1 = f(xk) + wk, f(x) =











x − αδx3 |x| < x∞,

− 2
3x∞ x ≤ −x∞,

2
3x∞ x ≥ x∞.

(21)

Let us consider therefore the problem of estimating the state
of the system with dynamics given by (21) and output given
by (22)

yk = x3
k + vk. (22)

The system has been simulated under the following con-
ditions. The parameters are set toα = 0.1, δ = 0.1. The
initial condition x0 is normally distributed with mean 0.1
and variance 1, and independent ofwk andvk, who are also
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TABLE II
TABLE OF RMS ESTIMATION ERROR AND COMPUTATION TIME FOR THE

EXAMPLE OF SUBSECTIONIV-A, CASE II

Estim. Technique x Est. Error y Est. Error Comp. Time (ms)

EKF 0.4538 1.2696 0.67

UKF 0.3459 1.5119 1.71

MUKF 0.3455 1.4845 1.52

EKF-L 0.3864 0.4056 2.45

UKF-L 0.3861 0.4042 3.07

PF/SIR(50) 0.3449 0.3888/0.3885 0.95

PF/SIR(1000) 0.3272 0.3477/0.3508 5.37

CM(50) 0.3268 0.3492/0.3523 0.22

CM(1000) 0.3267 0.3467/0.3498 11.23

assumed to be normal and independent of each other. They
are i.i.d. and both zero-mean. The variance ofvk is assumed
equal to 1, while for the first case studied, the variance ofwk

is equal to
√

0.1. The system is simulated up to timet = 10.
In order to compare the different estimation methods, the

experiment has been run 100 times. The simulated mean values
of x2 andy2 are 1.53 and 26.78 respectively. Table I presents
the rms values of the estimation error forx andy, as well as
the mean computation time per step in msec. All computation
times in this paper have been recorded for a 32-bit PC clocked
at 1.8GHz and running MATLAB 7.2 for Linux.

EKF and UKF are standard Extended and Unscented
Kalman Filter respectively. MUKF stands for Modified UKF.
The modification implied is the use of the proposedσ-point
set withN = 5 in the prediction step instead of the standard
set. EKF-L and UKF-L are EKF and UKF with inverted
output equation, i.e. with output equation (10) instead of (22).
PF/SIR stands for Particle Filter with Sampling Importance
Resampling, while the number in parenthesis denotes the
number of particles. Since PF provides an approximation of
the distribution,y can be estimated using (9). The number
at the left of the slash isE[h(xk)] while the number at the
right of the slash ish(E[(xk)]) and, as expected, the former
is smaller than the latter.

Finally, the state space has been partioned using a constant
mesh (CM). The number in parenthesis is the number of
intervals used. The dynamics are then described by a Markov
matrix, and the prediction step can be accomplished as a
multiplication of a matrix by a vector. Then, for the correction
step, the probability of each interval is multiplied by the
likelihood of the observed value with respect to its center,
and then the probabilites are normalized. The numbers at the
left and right of the slash have the same meaning as for PF,
and the same comment applies to this case, too.

The results show that EKF cannot provide a satisfactory
estimate forx or y. This is due to the nonlinear effect
described in subsection III-A. UKF is also affected by the same
phenomenon, and the mean error fory is still high, although
x is estimated well. MUKF is slightly better than UKF, but
still unsatisfactory fory. Inverting the output equation reduces
substantially the estimation error fory for both EKF and UKF,
but increases the error forx. PF and CM, with many particles
and intervals respectively, perform better than UKF-L, butthe

fact that they-error for EKF-L and UKF-L is smaller than
that of PF(50) and CM(50) shows the strength of the proposed
technique. It is also interesting that although CM(50) yields
x-error comparable to that of PF(1000), itsy-error is higher
than that of PF(50).

The system has been also studied for variance ofwk equal
to 0.1. For this case the simulated mean values ofx2 andy2

are 0.54 and 2.67 respectively, while the results are presented
in Table II. Again, EKF performs poorly. UKF now estimates
x well, but itsy-error is greater even than that of EKF. MUKF
yields only slight error decrease. Inverting the output equation
permits good estimation ofy, but deteriorates the estimation of
x. Finally, it can be observed that for this case CM estimates
y better than PF.

B. One-Dimensional Example with Non-Invertible Ouput
Equation

In this subsection the system with dynamics given by (21)
and output given by (23) is studied.

yk = x2
k + vk (23)

The parameters as well as the distribution ofx0 are that of the
preceding example. The distribution ofwk and vk is that of
the first case of that example. The system is simulated up to
time t = 10 and 100 runs have been made, as for the system
of the previous example.

The simulated mean values ofx2 andy2 are 1.46 and 6.00
respectively. The results are presented in Table III. Only the
estimation error fory is given, for the reasons explained in
Subsection IV-B. The values on the second and third column
correspond to the methods applied to (13)–(14) (real system),
while those of the fourth and fifth column correspond to
(21) and (23) (virtual system). When estimating the state of
the virtual system, for simplificationnk is assumed normally
distributed. The computation times given are per step and in
msec.

EKF behaves well for both systems, while UKF only for
the virtual one. MUKF leads to considerable error decrease
in comparison with UKF only for the real system. The fact
that the estimation error using EKF, UKF and MUKF for the
virtual system is close to that of CM or PF for the real one
illustrates the efficacy of the proposed technique. It is also
interesting that for the virtual system PF and CM perform
poorly. Finally, it is noted that the computation time for CM
in the case of the virtual system is high because the stochastic
matrix depends on the process noise variance, and thus must
be calculated at each step.

C. Four-Dimensional Semi-Realistic Example

In the last subsection a semi-realistic example of an arma-
ture controlled DC motor with a sin/cos encoder is studied.
The field current is assumed constant and magnetic nonlin-
earities are neglected.θ denotes angular position,ω angular
speed andi armature current.e is the voltage applied to the
armature, used to control the motor, and for this example it will
be assumed constant. The damping coefficientb(t) is supposed
to vary periodically, although the corresponding dynamicsis
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TABLE III
TABLE OF RMS ESTIMATION ERROR AND COMPUTATION TIME FOR THE

EXAMPLE OF SUBSECTIONIV-B

Estim. Techn. (21), (23) Comp. Time (13)–(14) Comp. Time

EKF 0.6840 0.60 0.6466 1.38

UKF 1.7130 1.54 0.6468 2.39

MUKF 1.2121 1.40 0.6417 2.20

PF/SIR(30) 0.6199 0.81 0.6803 1.49

PF/SIR(100) 0.6039 2.47 0.6623 1.77

CM(30) 0.6083 0.19 0.8031 15.51

CM(100) 0.6035 2.74 0.7694 41.94

subject to disturbance. Then the system dynamics are given
by (24)–(28).

θ̇ = ω (24)

Jω̇ = −b(t)ω + Ki (25)

Li̇ = e − Kω − Ri (26)

φ̇b = ωb0 + w (27)

b(t) = b0 + b1cos(φb) (28)

The only quantity measured is the angular position, using
a sin/cos encoder. It is assumed that measurements are taken
every δ = 0.01sec according to (29)–(30), wherev1,k and
v2,k are i.i.d. gaussian random variables with zero mean and
varianceRv.

y1,k = sin(θk) + v1,k (29)

y2,k = cos(θk) + v2,k (30)

In discrete time the dynamics are approximated by the
following equations.

θk+1 = θk + δω (31)

ωk+1 = ωk + δ(−bkω + Ki)/J (32)

ik+1 = ik + δ(e − Kω − Ri)/L (33)

φb,k+1 = φb,k + δωb0 + wk (34)

bk = b0 + b1cos(φb,k) (35)

Thus the problem is to estimate the state of the system with
state equations (31)–(34), wherebk is defined by (35), and
output equations (29)–(30).

As in subsection III-A, Eqs. (29)–(30) can be inverted to
provide a virtual measurement ofθ, but in this case it is not
so straightforward. It holdsθ = arctan(y1 − v1, y2 − v2),
where byarctan(y, x) is denoted the angle whose sine and
cosine are equal to y√

x2+y2
and y√

x2+y2
respectively. LetR =

√

y2
1 + y2

2 , φ = arctan(y1, y2) so thaty1 = Rsinφ andy2 =
Rcosφ. Define the random variablesn = cosφv1−sinφv2 and
r = −sinφv1 − cosφv2. They are normally distributed and it
can be verified through simple calculations that their variance
is equal toRv as well as that they are uncorrelated and thus
independent.

TABLE IV
TABLE OF RMS ESTIMATION ERROR AND COMPUTATION TIME FOR THE

EXAMPLE OF SUBSECTIONIV-C

Estim. Technique θ ω i ωb Comp. Time

EKF 0.0569 0.0344 0.0017 0.1562 3.53

UKF 0.0067 0.0230 0.0071 0.1318 13.60

MUKF 0.0026 0.0172 0.0012 0.0881 20.61

EKF-L 0.0151 0.0260 0.0008 0.1322 2.86

UKF-L 0.0069 0.0231 0.0072 0.1318 12.85

PF/SIR(100) 0.0068 0.0596 0.0128 0.1980 5.59

PF/SIR(1000) 0.0067 0.0287 0.0040 0.1387 28.10

Let us define the random variableq = − n
r+R

. Then

θ = arctan(Rsinφ+rsinφ−ncosφ, Rcosφ+rcosφ+nsinφ)

= arctan
(

(R + r)sinφ − ncosφ, (R + r)cosφ + nsinφ
)

= arctan(sinφ + qcosφ, cosφ − qsinφ). (36)

Using the trigonometric identity

tan(a + b) =
tan(a) + tan(b)

1 − tan(a)tan(b)
(37)

the reader can check that

θ = arctan(sinφ + qcosφ, cosφ − qsinφ) = φ + arctan(q).
(38)

Sincearctan is an odd function and the pdf ofn is also odd
it follows that E[arctan(q)] = 0 thusE[θ] = φ. The variance
of arctan(q) depends onR.

It must be noted thatφ is also the maximum likelihood
estimator ofθ. Indeed, the likelihood function is

1√
2πRv

e−
(y1−sinφ)2

2Rv

1√
2πRv

e−
(y2−cosφ)2

2Rv . (39)

Thus it is maximized when the expression(y1 − sinφ)2 +
(y2 − cosφ)2 is minimized. But

(y1 − sinφ)2 + (y2 − cosφ)2 =

= y2
1 + y2

2 + sin2φ + cos2φ − 2(y1sinφ + y2cosφ) =

= y2
1 + y2

2 + 1 − 2(y1sinφ + y2cosφ). (40)

It is left to the reader to verify that(y1sinφ + y2cosφ) is
maximized for φ = arctan(y1, y2) and thus complete the
argument.

A final remark is that in order to avoid2π jumps, at each
time step an integer multiple of2π is added toarctan(y1, y2)
so as to make the sum as close as possible to the previous
estimated value ofθ. Explain Further?

The system parameters for the simulations performed have
been selected as follows (in SI units).K = 0.035, L =
0.5, R = 2, J = 0.03, b0 = 0.01, b1 = 0.003, ωb0 =
10, e = 20. The initial condition follows the normal dis-
tribution with zero mean and covariance matrix0.01I4. The
variance ofwk, v1,k and v2,k is equal to10−4. All noise
sequences are normally distributed, i.i.d. and independent of
each other.

In Fig. 4 waveforms of the estimation error for the angular
velocity and for all techniques applied to this problem are
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Fig. 4. ω Estimation Error for various methods in a random run

shown. It is clear that MUKF performs better than any other
filter. The results from 100 runs are presented in Table IV.
The values of the estimation error given are rms values, while
the rms values for the four variables are equal to 38.3, 18.2,
9.4 and 28.9.

For MUKF N was chosen equal to 3. Partioning the state
space with a constant mesh was not a choice for this case,
because the problem now is four-dimensional. MUKF gives
by far the best estimate forθ, the best estimate fori and
ωb, while for ω it is bettered only by EKF-L. Using a
suitable virtual output as described in this subsection decreases
considerably the error for EKF. UKF instead, which handles
better nonlinearities by its own, does not benefit from the
inversion. At this point it must be noted that for simplification
the variance ofq in (38), which depends onR, has been treated
as constant, with value that forR = 1.

The computation times given are in msec. MUKF is more
demanding than UKF, but for this case both times are of the
same order. It is interesting that PF/SIR(1000) although the
most computationally costly method does not give the best
estimate for any variable in this example.

The results of this subsection strongly encourage the use of
the proposed methods.

V. CONCLUSION

This paper shows that inverting the output equation to pro-
vide a virtual linear output can diminish nonlinear phenomena
and decrease output prediction error. Using the dynamics of
a specific function of the state instead of those of the state
for estimation purposes has been also illustrated through an
example, for which it leads to better performance of EKF
and UKF. Finally, a newσ-point set for UKF is proposed,
and shown to outperform the standard set in a semi-realistic
example.

Further research could be studying the general case for
output equation inversion and estimating a specific function
of the state. Since the cardinal of the proposedσ-point

set increases exponentially with the dimension, it would be
interesting to exploit sparsity patterns in the Jacobian off in
(1) to permit its use in high-order systems.
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