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Abstract—This paper deals with recursive state estimation for ~ The remainder of this paper is organized as follows. In
nonlinear systems. A new set ofo-points for the Unscented Section Il the problem formulation and basic results from
Kalman Filter is proposed as well as a way to substitute a , opapility theory are presented. The standard filterirgite
nonlinear output with a linear one. The importance of the . .
function of the state which must be estimated is also illustted nlqugs compared with the PrOP,Ose_d ones are alsq presente_d. I
and the need for taking it into account when designing the sta SeCtIOI’l I the proposed mOdIflcatIOI’IS are deSCI‘Ibed. SBC“
estimator. All the proposed methods are compared with stanard 1V presents simulation examples used to compare the perfor-

Extended Kalman Filter, Unscented Kalman Filter and Partide mance of the techniques under consideration. Conclusiens a
Filter with Sampling Importance Resampling using simulations. drawn in Section V.

The results show that the modifications proposed in some case

lead to considerable reduction in estimation error.

I . o . II. BACKGROUND
Index Terms—Kalman filtering, Nonlinear estimation, Nonlin-

ear filters, State estimation. A. Problem Formulation
The dynamic systems considered are of the form

I. INTRODUCTION rr1 = f(zr) + wp, 1)

STIMATING the state of a dynamical system is a com- Yk = h(zi) + vk, (2)

mon task. In practice, all measurements are noisy a'_Wi!Werexk is the state of the system apg the measured output

"fl" Processes are ‘?‘ﬁeCtEd by some .k'nd of gllsturbance. al'the time systenk. wy, is the disturbance, also referred to
linear equations with normally distributed disturbanced an

measurement error stochastic processes it is well known tas process noise, ang. is the measurement noise. In this
urem ) Icp s w %per only i.i.d. noise sequences will be considered. Titialin
Kalman Filter [4] provides an exact solution of the proble

Th bl be al ved fv if the stat onditionx follows a known distribution, and measurements
fini?epro €m can be also solved exactly It the state Space,i3 4vailable from time = 1 and onwards.

In thi i di . ith additi The problem is to estimate a function of the statg,=
In this paper nonlinear discrete time systems with additly x1). The functiong can be the identity, the output function
noise are considered. For these systems, even if all dist

o . e _ , or another function, although the last case is not adddesse
bances are normally distributed, the nonlinearities didtoe d

distributi hus leadi | distributi e in this contribution. Sincey, will be a random variable, it may
IStr uftu;]n thus eaFlnglto gpn-normal Istributions téa . be desired to approximate its probability density funcijpdf)
state of the system. For low dimensional systems it Is feasih, only some statistics of it, such as the expected valueer th

to approximate the exact state distribution by partioning t ovariance. As it will be made apparent, the choicey @nd

fstate tipace. Otr;%r. apprqu;’;_\tte soluﬂon_sa V\éhl')Chtr?ogogzg f the statistics that must be estimated has heavy impact on
rom the curse of dimensionality, are provided by the Ex the whole procedure.

Kalman Filter (EKF) [1], the Unscented Kalman Filter (UKF) Suppose now thatx, (o) is the pdf ofzo, py (vr) is the

[5] and various forms of Particle Filter_s (PF_) [71. . pdf of the measurement noise apd (wy) is the pdf of the
For the UKF the selection af-points is an important issue. rocess noise. It holdsy|x (yk|zx) = pv (yx — h(zx)) and

Several aspects of this selection are treated in [5_]. An }yg(kmxk (211]21) = pw (@rsr — f(x1). The subscripts of

Ccl _ . "Brobability density functions will be omitted for conveniee.

realistic example, it outperforms the standard algoritHri8h Let us defineyi.e = {y1, 92, , yu ).

also used by [9] and most author§. . . Then, using Bayes Rule [2], the following recursive equa-
Apart from the system dynamics, nonlinearities may bg < hold:

present on the output equations. Under certain conditions,

verting the nonlinearity and assuming a linear output @quoat p(Try1lyre) = /p(xk+1|Ik)p(xk|y1;k)dxk, 3)

can help to avoid nonlinear overshoot-like phenomena. This

is illustrated with an appropriate example, and it is shown  P(Zkt1lyrkt1) = Ukt |rr)p(@rralyie) fer,  (4)

using simulations that by this way the error of the EKF cajhere

be reduced significantly. o = /p(yk+1Iwk+1)p(xk+1|y1:k)d£vk. (5)
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each time step is also impractical, so (3)—(5) are mainly of Then the mean value of a functign of the state can be

theoritical interest. estimated with the next equation.
N

B. Standard Filtering Techniques E[g(z)] ~ Zw};g(mi) 9)
=1

In EKF the system equations (1)—(2) are linearized and then
Kalman Filter (KF) Equations are used. Specificallyzif is It is reasonable to conjecture that with sufficiently many
the estimated mean af;, after the correction step of time particles the approximation will be good, although asyrtipto
andz,,, is the estimated mean of;,; after the prediction analysis of PF is a difficult problem [10].
step of timek + 1, then for the prediction step Eq. (1) is There are many different algorithms [7] for the update
linearized around:; while for the correction step Eq. (2) isof wi and zi. For the comparison purposes of this paper
linearized aroung(#,_ ). Covariance matrices and correctioronly Sampling Importance Resampling (SIR) Filtering, whic
gain are then calculated with KF Eqations. As is obvious, éonsists the first such PF and was proposed by [6], will
is assumed that the derivatives pfandh are available. be used. The resampling step is implemented with stratified

The idea behind UKF is that it is easier to approximatesampling [11]. Since this paper does not propose any tovel
a probability distribution than a nonlinear function. Thusn PF, no further details are presented here.
system equations are not simplified but the prior distritmuis
approximated by a finite sum of Dirac deltas. The procedure I1l. PROPOSEDMODIFICATIONS
which follows applies to systems with additive noise. Fox
the general case, as well as for justification and criteria fo
parameter choice consult [5].

Suppose that after time the covariance of the state 13, .
Let alson, the dimension of the state space. Than, + 1
o-points are calculatedXy , = &y, X = T + 75i,1 =
1,...,n, and Xig = Tk — 9,1 = ng + 1,...,2n,,

Inverting the Output Equation

Assume that EKF is used to estimate the state of the system
described by Egs. (21)—-(22). (22) has the form of (2) with
h(xr) = x3. Suppose that for some time instahtit holds

2, =1,P, = 1,7, = 2 andy, = 8, while the variance of

vy, is equal to 1. Then sinck/ (z) = 322, b/ (&, ) = 3 and the

where S; is the ith column of the matrixS — /P, and Kalman gain will be qual tgf’—ﬂ Since the predicted output
v = vnz + A\ X = a?(ny+k)—ng, a ands being parameters. Wa_l:%hequal to 1, EK'|: ylelld&“ h: 1+03(8 - 1) =3.1. han th
For the prediction step, the-points are transformed through € posterior value for the output Is greater than the

2r+1 = f(zy) and thus the covariance and mean before trgé’se;"edI' yet th'sl IS nort] duehto rrt;easurzmer?_t ehrror and tt:: pre
correction can be calculated. Of course, the covariance,of icted value was less than the observed. This happens Becaus

is added to the covariance of the transformegoints. The the first order approximation df obtained with its derivative

weigths used for the mean and covariance calculations are's valid only locally. Thus because of the nonlinearity o th

output function, the Filter although supposed to smooth the

w© = A ,w® = A +1-a2+5 (6) observed data, suffers from this overshoot-like phenomeno
ng + A Ng + A remedy of this problem is inverting the output equation.
w® = @ — L : @) If there was no measurement error, one would sgt =
" 0 2(ng + ) ¢/yx, where the cubic root of a negative number is defined
where 3 is also a parameter. appropriately. Now it holdse, = Jyr + vg. Since vy is
For the correction step, with the new mean and covarian@ random variable/y; + vy is also a random variable. It
2n, + 1 o-points X, .,, i = 0,...,2n, are analogously is not computationally demanding to calculate its mean and
calculated. These are transformed through, = h(xz;.1) Variance. For this purpose, a suitable $&%,Vs,---,Vy}
and thus the mean and covariance of the measurement veigotetermined and then for each step from the corresponding
can be calculated (for the covariance the covariancejof values{/yx + Vi,--- , /yx + Vi } the means; and variance
is added), as well as the cross covariance between the mlaaare extracted=xplain how{Vy, Va, .-+, Vv } is determined?

surement and the state vector. Then the Kalman gain and th&KF is then applied to the system whose dynamics is given
corrected estimates are computed according to KF EquatioB¥ (21) and its output equation is
In this paper, UKF will be applied with the choice of Sk = Tp + T, (10)
parametersy =1, =2, k = 0.
EKF and UKF are based on the assumption that the sghere the variance ofy, is equal tol;, which is obtained,
quence of state distributions can be well approximated byt@gether withs, from the inversion step.
sequence of normal distributions. Since in many cases thisThe effectiveness of the proposed technique is illustrated
assumption does not hold, and the form of the distribution Fig. 1. It shows that after the inversion of the output
is a priori unknown, there is need for a filtering techniquequation the overshoot phenomenon is no more present. The
which permits approximation of arbitrary distributions. PF idea of output inversion can be also applied to UKF and Fig.
the state pdf is approximated by a number of particles eatlshows that it is effective for UKF, too. In another realiaat
representing a Dirac delta with a corresponding weigth, i.eof the experiment, presented in Fig. 2 EKF is trapped to
N zero while UKF suffers from overshoot. Again, applicatidn o
) A i ) output inversion is effective for both EKF and UKF. Numetica
Pleklye) ;wkam’“(xk) ©) values of the prediction error for all filtering techniquested



Fig. 1. Time series of output data and various estimatiorhoti illustrating Fig. 3.  Probability density function for various in a random run
the overshoot-like phenomenon for EKF

and {v1,ve, - ,vr} is also consistent with the output se-
guence and equally probable. Marginalizing over possible
{z1,29, - ,25—1} and{vy,--- ,vp_1} asserts thap(zy) =
p(—xr). Thus the expected value af; is 0, exactly as
predicted by EKF or UKF. However, the pdf, which for
k=20, 1, 2, 5, 10, 50, 100 (0O corresponds to the prior)
in a random run is presented at Fig. 3 is evenifot 1 not at
all close to the pdf of a normal distribution. Thus, if it istno
the mean ofr; that must be estimated but another quantity,
such as the mean af?, EKF and UKF perform poorly. It is
noted that even ifty # 0, since for somé: the value ofzy,
will be close to 0, the same problem will arise.

An alternative way to estimate; follows. Setz, = 7.
Then if |z < 5 it holds

2k1 = (v — adxy +wy)? =
=22 — 200z} + a?6%aS + wi + 2(x) — adxi)wy =

= 2L — 20452',% + 04252,22 + wi + 2($k - Oé5$%)wka (11)

Fig. 2. Time series of output data and various estimatiorhot illustrating
the overshoot-like phenomenon for UKF and the possibilitye&F being \yhile in different case it holds
trapped to zero

2pp1 = o2 — 2adxd + 0?6228+ wi £ 220 — @b wy,

(12)
are presented in section IViransfer here the inversion of\yhere 2., is defined in (20). The expected value of the
subsection IV-C? unknown term isE[w? + 2(z), — adz})wy] = Q. As for its
variance, it depends oja|. It is possible to create off-line a
B. Estimating a Specific Function of the State look-up table and use it to find the variance at each time step.

Let us consider the system of (21) and (23). Suppose tth4pre details about the look-up tabl@hus an estimate of}
wy, and vy, are i.i.d. gaussian processes with variagend 1S obtained by estimating the state of the system defined by
R respectively. (23) has the form of (2) with(z) = 2. (13)—(14)
Suppose also that it is known that = 0. Thenz; = 0 Zhi1 = 2 — 20627 4+ 026220 + Q + ny, (13)
and thush/(z; ) = 0 yielding zero Kalman gain angl; = 0. -
Recursively one obtaing, = 0, whatever the output sequence Y = 2k + Uk, (14)
is. wheren,, is zero-mean but its distribution and variance depend
On the other hand, for evedythe pdf of the state is even. Inon zy.
fact, if the ouput sequence {351, y2,- - ,yx}, then for every  For numerical results and comparison of all filtering tech-
pair of sequence$xy, xo, -,z } and{vi,ve, - ,vr} con- niques tested in this paper for this problem see subsection
sistent with{y, yo,- -+ ,yx}, the pair{—z1, —zo, -+, —xz} IV-B.



. TABLE |
C. A Newo-Point Set TABLE OF RMS ESTIMATION ERROR AND COMPUTATION TIME FOR THE

1) One-Dimensional CaseThe algorithm of subsection EXAMPLE OF SUBSECTIONIV-A, CASEI
[I-B approximates the normal distribution with meal
and varianceP with three o-points, atM, M — /P and

Estim. Technique| = Est. Error | y Est. Error | Comp. Time (ms)

M +~+v/P where~ as well as the corresponding weights are EKF 0.8440 12.96 0.66
given in the same subsection. UKF 0.3939 1.3300 1.74

More points could be used to obtain a better approximation.  MUYKF 0.3937 1.3256 1.58
Let N the desired number af-points. The following algo- EKF-L 0.4272 0.7881 2.55
rithm provides a reasonable way to approximate the normal _ YKF-L 0.4266 0.7872 3.14
distribution with meanM/ and varianceP using N points. PF/SIR(50) 0.3936 | 0.8358/0.8572 0.94
Restate the last sentence®t {p; = xi7.i = 1...N}. PF/SIR(1000) 0.3814 | 0.7266/0.7497 5.18
Then calculate{y; = erf *(p;),i = 1...N}. Then the set CM(50) 03819 | 0.9123/0.9329 0.23
{yi,i=1...N} is zero-mean but not necessarily of variance__“M(1000) 0.3804 | 0.7224/0.7455 11.56

1. A set of variance 1 is obtained by

{2 = N Li=1... N} (15) r1x9 must be calculated. The standard algorithm uses five
ey, yjzy“ e points, {(0,0), (0, 1), (0, 1), (1,0), (—1,0)}. All of them are
mapped byf to 0 and thus the variance ¢fis estimated to
be 0. The proposed algorithm witN = 2 yields four points,
{oi=M++Pz;i=1...N}, @ae) {(=1,1),(1,1),(1,-1),(=1,~1)}. Two of them are mapped
. ) ) to 1 and two to—1, thus the variance is estimated to be 1,
and its mean and variance are equalifoand P’ respectively. which is the exact value. Both algorithms correctly estienat
It is noted that both for the one-dimensinal and the multihe mean to be 0.
dimensional case, the proposed point have equal weights.  Numerical results of the use of the proposegoint set in

2) Multi-Dimensional CaseLet M the vector mean anft  recyrsive state estimation are provided in the next section
the covariance matrix of a-dimensional normal distribution.

Since P is symmetric it is possible to finsh orthonormal
eigenvectorgv;,7 = 1...n} with corresponding eigenvalues ] ) ] ) )
{\,i=1...n}. Pis positive definite therefore all eigenvaI-A- One-Dimensional Example with Invertible Ouput Equation
ues are positive. Lefz;,i = 1...n} niid. random variables  Consider the system dynamics described by (18), where
following the standard normal distribution. Then the ramdo is the disturbance.
vector M + > | z;v; is normally distributed with mead/
and covariance’.

Since the standard normal distribution is approximated by The simplest discrete time approximation with time step
the set defined by (15), the following set, consisted\df s given by the following equation.
members, can be considered as an approximation ofithe 5
dimensional normal distribution with meav and covariance Tpt1 = Tp — QOT), + wi (19)
P.

The proposed-point set is then defined by

IV. SIMULATION EXAMPLES

&t=—az®+w (18)

Howeverz — adz? is not a monotonous function of, al-
- _ ) though it should be so as to yield an acceptable approximatio
{irizin = M+inj”“j =1..Nj=1...0} (A7) of the dynamics of (18). Since it has a maximum for

j=1
Its mean and covariance are inde&tand P respectively. Too = !

For largen the cardinal of the sefy™, will be much greater 3ad
than 2n + 1 even for N = 2. Apart from that, the above the following approximation captures better the contingiou
algorithm includes computation of the eigenvaluesPoivhile  time dynamics.
for the set presented in subsection II-B it is only needed
to compute the square root of a positive definite symmetric )
matrix, a task that can be accomplishediin?) time using ~ “*+1 = Flax) +wp, f(2) = § =370 r < —reo, (21)

. . . . . 2
Cholesky Factorization. However, numerical experimerita w 5%o0 T2 Too-

the four-dimensional example of subsection IV-C show that Let us consider therefore the problem of estimating thesstat

for that case the extra computational cost associated Wwéh b the system with dynamics given by (21) and output given
proposedr-point set is not prohibitive. by (22)

The following example shows that the use of all combina-
tions of 4; in Z}’Zl z;;v; can help compute the covariance
of the output much more accurately than with thepoint The system has been simulated under the following con-
set of subsection II-B. Suppose that;,z;)” is normally ditions. The parameters are set do= 0.1, 6 = 0.1. The
distributed with zero mean and covariance matrix equal ¢o tinitial condition =y is normally distributed with mean 0.1
identity matrix, and that the mean and variance 0f,, z2) = and variance 1, and independentwof and v, who are also

(20)

r—adr? 7] < Teo,

Yk = Ii + vg- (22)



TABLE Il .
TABLE OF RMS ESTIMATION ERROR ANDCompuTaTIONTiME FORTHE  TaCt that they-error for EKF-L and UKF-L is smaller than

EXAMPLE OF SUBSECTIONIV-A, CASEII that of PF(50) and CM(50) shows the strength of the proposed
_ _ _ technique. It is also interesting that although CM(50) gsel
Estim. Technique| = Est. Error | y Est. Error | Comp. Time (ms)  z-error comparable to that of PF(1000), iserror is higher

EKF 0.4538 1.2696 0.67 than that of PF(50).

UKF 0.3459 1.5119 1.71 The system has been also studied for variancejoequal
MUKF 0.3455 1.4845 1.52 to 0.1. For this case the simulated mean values:ofand y?
EKF-L 0.3864 0.4056 245 are 0.54 and 2.67 respectively, while the results are pteden
UKF-L 0.3861 0.4042 3.07 in Table II. Again, EKF performs poorly. UKF now estimates

PF/SIR(50) 0.3449 0.3888/0.3885 0.95 x well, but itsy-error is greater even than that of EKF. MUKF

PF/SIR(1000) 0.3272 0.3477/0.3508 5.37 yields only slight error decrease. Inverting the outputagon
CM(50) 0.3268 0.3492/0.3523 0.22 permits good estimation aof, but deteriorates the estimation of
CM(1000) 0.3267 0.3467/0.3498 11.23 x. Finally, it can be observed that for this case CM estimates

y better than PF.

assumed to be normal and independent of each other. TReyone-Dimensional Example with Non-Invertible Ouput
are i.i.d. and both zero-mean. The variancevpfis assumed Equation

_equal to 1, while for the first case studied, the vqriancwpf In this subsection the system with dynamics given by (21)
is equal to\/0.1. The system is simulated up to time= 10. and output given by (23) is studied

In order to compare the different estimation methods, the '
experiment has been run 100 times. The simulated mean values yr = T3+ vp (23)
of 22 andy? are 1.53 and 26.78 respectively. Table | prese

the rms values of the estimation error ferandy, as well as . S .
y receding example. The distribution af, and v is that of

the mean computation time per step in msec. All computatign . S
b b P P he first case of that example. The system is simulated up to

times in this paper have been recorded for a 32-bit PC clocke -
at 1.8GHz and running MATLAB 7.2 for Linux. time ¢t = 10 and 100 runs have been made, as for the system

the previous example.

(E i UK e andars Extnded e e mean vales of andy? ar 145 and 6.0
b Y. respectively. The results are presented in Table Ill. Ohby t

The modification implied is the use of the proposegoint S _ . :
P brop stimation error fory is given, for the reasons explained in

setwith V= 5 in the prediction step instead of the St{mda@ubsection IV-B. The values on the second and third column

set. EKF-L and UKF-L are EKF and UKF with inverted .
S . . . correspond to the methods applied to (13)—(14) (real sylstem
output equation, i.. with output equation (10) instead)( while those of the fourth and fifth column correspond to

PF/SIR stands for Particle Filter with Sampling Importancgl) and (23) (virtual system). When estimating the state of

nﬁe parameters as well as the distributioncgfare that of the

Resampling, while the number in parenthesis denotes the”’ . AT .
. . , - t}e virtual system, for simplification; is assumed normally

number of particles. Since PF provides an approximation 8

the distribution,y can be estimated using (9). The number

at the left of the slash i€[h(x)] while the number at the
right of the slash ish(IE[(x)]) and, as expected, the formerthe virtual one. MUKF leads to considerable error decrease

's smaller than the latter. in_ comparison with UKF only for the real system. The fact

Finally, the state space has been partioned using a constan L .
mesh (CM). The number in parenthesis is the number to the estimation error using EKF, UKF and MUKF for the

. , . virtual system is close to that of CM or PF for the real one
intervals used. The dynamics are then described by a Markgv . . :

) I ; ilMlustrates the efficacy of the proposed technique. It i als
matrix, and the prediction step can be accomplished as.

multiplication of a matrix by a vector. Then, for the coriiect m?erestmg that for the virtual system PF and CM perform

step, the probability of each interval is multiplied by thé)oorly. Finally, it is noted that the computation time for CM

likelihood of the observed value with respect to its centel) the case of the virtual system is high because the stdchast

and then the probabilites are normalized. The numbers at ggatnx depends on the process noise variance, and thus must

e
left and right of the slash have the same meaning as for PF, calculated at each step.

and the same comment applies to this case, too. ) ) ) o

The results show that EKF cannot provide a satisfactofy Four-Dimensional Semi-Realistic Example
estimate forz or y. This is due to the nonlinear effect In the last subsection a semi-realistic example of an arma-
described in subsection IlI-A. UKF is also affected by theea ture controlled DC motor with a sin/cos encoder is studied.
phenomenon, and the mean error fois still high, although The field current is assumed constant and magnetic nonlin-
x is estimated well. MUKF is slightly better than UKF, butearities are neglected. denotes angular position; angular
still unsatisfactory for. Inverting the output equation reducespeed and armature currente is the voltage applied to the
substantially the estimation error fgrfor both EKF and UKF, armature, used to control the motor, and for this exampléliit w
but increases the error far. PF and CM, with many particles be assumed constant. The damping coeffidiéttis supposed
and intervals respectively, perform better than UKF-L, th& to vary periodically, although the corresponding dynamss

Istributed. The computation times given are per step and in

EKF behaves well for both systems, while UKF only for



TABLE Il
TABLE OF RMS ESTIMATION ERROR AND COMPUTATION TIME FOR THE
EXAMPLE OF SUBSECTIONIV-B

TABLE IV
TABLE OF RMS ESTIMATION ERROR AND COMPUTATION TIME FOR THE
EXAMPLE OF SUBSECTIONIV-C

Estim. Techn.| (21), (23) | Comp. Time| (13)-(14) | Comp. Time Estim. Technique| 0 | w | i | wp | Comp. Time
EKF 0.6840 0.60 0.6466 1.38 EKF 0.0569 | 0.0344 | 0.0017 | 0.1562 3.53
UKF 1.7130 1.54 0.6468 2.39 UKF 0.0067 | 0.0230 | 0.0071 | 0.1318 13.60

MUKF 1.2121 1.40 0.6417 2.20 MUKF 0.0026 | 0.0172 | 0.0012 | 0.0881 20.61
PF/SIR(30) 0.6199 0.81 0.6803 1.49 EKF-L 0.0151 | 0.0260 | 0.0008 | 0.1322 2.86
PF/SIR(100) | 0.6039 2.47 0.6623 1.77 UKF-L 0.0069 | 0.0231 | 0.0072 | 0.1318 12.85

CM(30) 0.6083 0.19 0.8031 15.51 PF/SIR(100) 0.0068 | 0.0596 | 0.0128 | 0.1980 5.59

CM(100) 0.6035 2.74 0.7694 41.94 PF/SIR(1000) | 0.0067 | 0.0287 | 0.0040 | 0.1387 28.10

subject to disturbance. Then the system dynamics are giverr€t Us define the random variabje= — 7. Then

by (24)(28).

6=w (24)
Ji = —b(t)w + Ki (25)
Li=e— Kw— Ri (26)
bp = wpo + W (27)
b(t) = bg + bycos(¢p) (28)

0 = arctan(Rsing+rsing—ncosop, Rcosp+rcosp+nsing)
= arctan((R + r)sing — ncos¢, (R + r)cos¢ + nsing)

= arctan(sing + qcoso, cosd — qsind). (36)
Using the trigonometric identity
tan(a + b) = L) + tan(®) 37)

1 — tan(a)tan(b)
the reader can check that

The only quantity measured is the angular position, usin ) ,
a sin/cos encoder. It is assumed that measurements are tadkan@ ctan(sing + qcosd, cos¢ — qsing) = ¢ + arctan(q).

every § = 0.0lsec according to (29)-(30), where,; , and

vy, are i.i.d. gaussian random variables with zero mean and

varianceR,,.

(29)
(30)

Y1,k = sin(Ok) + v1 k
Yo = cos(0) + va i

In discrete time the dynamics are approximated by the

following equations.

Ot = O + 0w (31)
Wgt1 = wg + 0(—brw + K1)/ J (32)
iri1 = i+ 0(e — Kw — Ri)/L (33)
Db k+1 = P,k + dwpo + Wi (34)
br = bo + bicos(¢p k) (35)

Thus the problem is to estimate the state of the system wit

state equations (31)—(34), whebg is defined by (35), and
output equations (29)—(30).

As in subsection IlI-A, Egs. (29)—(30) can be inverted t
provide a virtual measurement 6f but in this case it is not
so straightforward. It hold9 = arctan(y; — v1,y2 — v2),
where byarctan(y,z) is denoted the angle whose sine an
cosine are equal te ~~— and——~— respectively. Let? =

22+4y2 \/z2+y2
VY3 +y3, ¢ = arctan(y1,y2) SO thaty; = Rsing andys =

(38)
Sincearctan is an odd function and the pdf afis also odd
it follows that E[arctan(q)] = 0 thusE[f] = ¢. The variance
of arctan(q) depends orR.
It must be noted that is also the maximum likelihood
estimator off. Indeed, the likelihood function is

1 1
V21R, V2rR,

Thus it is maximized when the expressiom — sing)? +
(y2 — cosg)? is minimized. But

_ (yp—cos$)?
2R,

_ (w1 —sing)?
o

e

(&

(39)

(y1 — sing)* + (y2 — cosg)® =
=yl + 5 + sin®¢ + cos’d — 2(y15ind + yacosp) =
=y +y5 + 1 — 2(y15ind + yacosep). (40)

It is left to the reader to verify thafy;sing + yacose) is
maximized for¢ = arctan(yi,y2) and thus complete the
fgument.

A final remark is that in order to avoitér jumps, at each
time step an integer multiple @ is added taurctan(ys, y2)

@stimated value of. Explain Further?
geen selected as follows (in Sl unitsk’ = 0.035, L =
b5, R =2, J =0.03, bp = 0.01, by = 0.003, wpy =

10, e = 20. The initial condition follows the normal dis-
tribution with zero mean and covariance mattiX)17,. The

The system parameters for the simulations performed have

so as to make the sum as close as possible to the previous

Rcos¢. Define the random variables= cos¢v, —singv, and  variance ofwy, vi, and vgy is equal to10~%. All noise

r = —singu, — cospuy. They are normally distributed and itsequences are normally distributed, i.i.d. and independén
can be verified through simple calculations that their vez&a each other.

is equal toR, as well as that they are uncorrelated and thus In Fig. 4 waveforms of the estimation error for the angular
independent. velocity and for all techniques applied to this problem are



set increases exponentially with the dimension, it would be
interesting to exploit sparsity patterns in the Jacobiarf af
(1) to permit its use in high-order systems.

0.1 T T

0.08

MUKF

0.06 1 PF(1000) 4

(1]
(2]
(3]

0.04

0.02

w Estimation Error

(4

-0.02

-0.04

1 B

[P S S GRS SN SR U S S N
S o3 38 4 45 5 g

(7]

Fig. 4. w Estimation Error for various methods in a random run

shown. It is clear that MUKF performs better than any othef8]
filter. The results from 100 runs are presented in Table IV.
The values of the estimation error given are rms values,ewhil
the rms values for the four variables are equal to 38.3, 18.%]
9.4 and 28.9.

For MUKF N was chosen equal to 3. Partioning the staigo]
space with a constant mesh was not a choice for this case,
because the problem now is four-dimensional. MUKF giv%l]
by far the best estimate faf, the best estimate foi and
wp, While for w it is bettered only by EKF-L. Using a
suitable virtual output as described in this subsectiometexes
considerably the error for EKF. UKF instead, which handles
better nonlinearities by its own, does not benefit from the
inversion. At this point it must be noted that for simplifiicat
the variance of in (38), which depends oR, has been treated
as constant, with value that fd¢ = 1.

The computation times given are in msec. MUKF is more
demanding than UKF, but for this case both times are of the
same order. It is interesting that PF/SIR(1000) although th
most computationally costly method does not give the best
estimate for any variable in this example.

The results of this subsection strongly encourage the use of
the proposed methods.

V. CONCLUSION

This paper shows that inverting the output equation to pro-
vide a virtual linear output can diminish nonlinear phenome
and decrease output prediction error. Using the dynamics of
a specific function of the state instead of those of the state
for estimation purposes has been also illustrated through a
example, for which it leads to better performance of EKF
and UKF. Finally, a news-point set for UKF is proposed,
and shown to outperform the standard set in a semi-realistic
example.

Further research could be studying the general case for
output equation inversion and estimating a specific fumctio
of the state. Since the cardinal of the proposegoint
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