Alexandros C. Charalampidis George P. Papavassilopoulos

National Technical University of Athens

SFHMMY 3.0, April 2009, Thessaloniki, Greece

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

Anaiysis

Examples

The Filtering Problem

General Case

$$x_{k+1} = f(x_k, w_k)$$
$$y_k = h(x_k, v_k)$$

- ▶ Known: $(y_k)_k$, the distribution of x_0 , w_k , v_k .
- ▶ Unknown: $(w_k)_k$, $(v_k)_k$, $(x_k)_k$.

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

Allalysis

Examples

Conclusion

General Case

$$x_{k+1} = f(x_k, w_k)$$
$$y_k = h(x_k, v_k)$$

- ▶ Known: $(y_k)_k$, the distribution of x_0 , w_k , v_k .
- ► Unknown: $(w_k)_k$, $(v_k)_k$, $(x_k)_k$.
- ► Additive Noise

$$x_{k+1} = f(x_k) + w_k$$
$$y_k = h(x_k) + v_k$$

xamples

- ▶ Problem: Find the distribution of x_{k+1} given y_{k+1} and the distribution of x_k .
- It can be solved exactly for finite state space or for a linear system with Gaussian noise.
- ► Bayes rule:

$$p(x_{k+1}|y_{1:k}) = \int p(x_{k+1}|x_k)p(x_k|y_{1:k})dx_k$$

$$p(x_{k+1}|y_{1:k+1}) = p(y_{k+1}|x_{k+1})p(x_{k+1}|y_{1:k})/c_k,$$

$$c_k = \int p(y_{k+1}|x_{k+1})p(x_{k+1}|y_{1:k})dx_k$$

Kalman Filter (Prediction Step)

System:

$$x_{k+1} = A_k x_k + B_k + w_k$$
$$y_k = C_k x_k + D_k + v_k$$

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

inalysis

Examples

$$x_{k+1} = A_k x_k + B_k + w_k$$
$$y_k = C_k x_k + D_k + v_k$$

▶ Prediction Step:

$$\hat{x}_{k+1}^{-} = A_k \hat{x}_k + B_k$$
 $P_{x_{k+1}}^{-} = A_k P_{x_k} A_k^T + Q$

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

inalysis

Examples

Kalman Filter (Correction Step)

System:

$$x_{k+1} = A_k x_k + B_k + w_k$$
$$y_k = C_k x_k + D_k + v_k$$

► Mean and Covariance Matrices:

$$\hat{y}_{k+1}^{-} = C_{k+1}\hat{x}_{k+1}^{-} + D_k$$

$$P_{y_{k+1}} = C_{k+1}P_{x_{k+1}}^{-}C_{k+1}^{T} + R$$

$$P_{x_{k+1}y_{k+1}} = P_{x_{k+1}}^{-}C_{k+1}^{T}$$

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

Analysis

Examples

$$x_{k+1} = A_k x_k + B_k + w_k$$
$$y_k = C_k x_k + D_k + v_k$$

Mean and Covariance Matrices:

$$\hat{y}_{k+1}^{-} = C_{k+1}\hat{x}_{k+1}^{-} + D_k$$

$$P_{y_{k+1}} = C_{k+1}P_{x_{k+1}}^{-}C_{k+1}^{T} + R$$

$$P_{x_{k+1}y_{k+1}} = P_{x_{k+1}}^{-}C_{k+1}^{T}$$

Correction Step:

$$\begin{split} &K_{k+1} = P_{x_{k+1}y_{k+1}} P_{y_{k+1}}^{-1} \\ &\hat{x}_{k+1} = \hat{x}_{k+1}^{-} + K_{k+1} \big(y_{k+1} - \hat{y}_{k+1}^{-} \big) \\ &P_{x_{k+1}} = P_{x_{k+1}}^{-} - K_{k+1} P_{y_{k+1}} K_{k+1}^{T} \end{split}$$

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

Analysis

Examples

Filtering for Nonlinear Systems

Extended Kalman Filter (EKF): Linearize, then apply KF. Satisfactory only for small noise covariance or slight nonlinearities. Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

Analysis

Examples

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

Analysis

Examples

onclusion

 Extended Kalman Filter (EKF): Linearize, then apply KF.
 Satisfactory only for small noise covariance or slight nonlinearities.

Unscented Kalman Filter (UKF):

"It is easier to approximate a probability distribution than it is to approximate a nonlinear function or transformation".

But accurate approximation in high dimensional spaces leads to computational burden.

Background

Analysis

Examples

onclusion

 Extended Kalman Filter (EKF): Linearize, then apply KF.
 Satisfactory only for small noise covariance or slight nonlinearities.

Unscented Kalman Filter (UKF):

"It is easier to approximate a probability distribution than it is to approximate a nonlinear function or transformation".

But accurate approximation in high dimensional spaces leads to computational burden.

▶ The curse of dimensionality

The Class Under Study

$$x_{k+1} = Ax_k + \sum_{i=1}^{N_c} B_i g_i (D_i^T x_k) + w_k$$
$$y_{k,i} = h_i (C_i^T x_k) + v_{k,i}, i = 1, \dots, N_o$$

 g_i and h_i are nonlinear one-variable functions, $N_c, N_o \in \mathbb{N}$, while C_i and D_i are column vectors in \mathbb{R}^{n_x} .

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

sackground

Allalysis

Examples

Important Subclasses

- Systems with linear dynamics and nonlinear output.
- SISO linear systems with nonlinear feedback.
- ▶ MIMO linear systems with nonlinear decoupled feedback.
- ▶ Cascades of linear systems with nonlinear characteristics.

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

sackground

_ .

Examples

Important Subclasses

- ▶ Systems with linear dynamics and nonlinear output.
- SISO linear systems with nonlinear feedback.
- MIMO linear systems with nonlinear decoupled feedback.
- Cascades of linear systems with nonlinear characteristics.
- Arbitrary networks of linear systems interconnected with nonlinear characteristics.

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

sackground

_ .

Examples

▶ Mean: $\mathbb{E}[x_{k+1}] = A\hat{x}_k + \sum_{i=1}^{N_c} B_i \mathbb{E}[g_i(D_i^T x_k)]$

Covariance:

$$P_{x_{k+1}}^- = V[Ax_k] + V[\sum_{i=1}^{N_c} B_i g_i(D_i^T x_k)] +$$

$$Cov(Ax_k, \sum_{i=1}^{N_c} B_i g_i(D_i^T x_k)) + Cov(\sum_{i=1}^{N_c} B_i g_i(D_i^T x_k), Ax_k) + V[w_k]$$

Maiysis

Examples

- ▶ Mean: $\mathbb{E}[x_{k+1}] = A\hat{x}_k + \sum_{i=1}^{N_c} B_i \mathbb{E}[g_i(D_i^T x_k)]$
- ► Covariance:

$$P_{x_{k+1}}^{-} = V[Ax_k] + V[\sum_{i=1}^{N_c} B_i g_i(D_i^T x_k)] + N_c$$

$$Cov(Ax_k, \sum_{i=1}^{N_c} B_i g_i(D_i^T x_k)) + Cov(\sum_{i=1}^{N_c} B_i g_i(D_i^T x_k), Ax_k) + V[w_k]$$

- ► Terms of the following form appear:
 - $ightharpoonup \mathbb{E}[g_i(D_i^T x_k)]$
 - $\triangleright \mathbb{E}[g_i(D_i^T x_k)g_j(D_j^T x_k)]$
 - $\qquad \mathbb{E}[x_k g_i(D_i^T x_k)]$

- ▶ Mean: $\mathbb{E}[x_{k+1}] = A\hat{x}_k + \sum_{i=1}^{N_c} B_i \mathbb{E}[g_i(D_i^T x_k)]$
- Covariance:

$$P_{x_{k+1}}^{-} = V[Ax_k] + V[\sum_{i=1}^{N_c} B_i g_i(D_i^T x_k)] + N_c$$

$$Cov(Ax_k, \sum_{i=1}^{N_c} B_i g_i(D_i^T x_k)) + Cov(\sum_{i=1}^{N_c} B_i g_i(D_i^T x_k), Ax_k) + V[w_k]$$

- ► Terms of the following form appear:
 - $\triangleright \mathbb{E}[g_i(D_i^T x_k)]$
 - $\blacktriangleright \mathbb{E}[g_i(D_i^T x_k)g_j(D_j^T x_k)]$
 - $\qquad \mathbb{E}[x_k g_i(D_i^T x_k)]$
- ▶ But the real valued $D_i^T x_k \sim N(D_i^T \hat{x}_k, D_i^T P_{x_k} D_i)!$

Correction Step

▶ Terms of the same forms are needed in order to calculate \hat{y}_{k+1}^- , $P_{y_{k+1}}$, $P_{x_{k+1},y_{k+1}}$. Then Kalman Filter Eqs. are used, as in standard UKF.

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

Analysis

Examples

Analysis

Examples

- ▶ Terms of the same forms are needed in order to calculate \hat{y}_{k+1}^- , $P_{y_{k+1}}$, $P_{x_{k+1},y_{k+1}}$. Then Kalman Filter Eqs. are used, as in standard UKF.
- ▶ When x is a normally distributed random variable, $\mathbb{E}[g_1(D_1^Tx)]$ and $\mathbb{E}[g_1(D_1^Tx)g_2(D_2^Tx)]$ are integrals in \mathbb{R} and \mathbb{R}^2 respectively, thus not very demanding to compute.

Examples

- ▶ Terms of the same forms are needed in order to calculate \hat{y}_{k+1}^- , $P_{y_{k+1}}$, $P_{x_{k+1},y_{k+1}}$. Then Kalman Filter Eqs. are used, as in standard UKF.
- ▶ When x is a normally distributed random variable, $\mathbb{E}[g_1(D_1^Tx)]$ and $\mathbb{E}[g_1(D_1^Tx)g_2(D_2^Tx)]$ are integrals in \mathbb{R} and \mathbb{R}^2 respectively, thus not very demanding to compute.
- ▶ Thus it remains to show how $S = \mathbb{E}[xg(C^Tx)]$ can be computed effectively, when $x \sim N(M, P)$.

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

.....

Examples

- ▶ It is easy to find n-1 linearly independent vectors $\{v_i, i=1,\ldots,n-1\}$ such that $v_i^T PC = 0$.
- ▶ Using the fact that P > 0, it can be proved that $\{v_1, \ldots, v_{n-1}, c\}$ are linearly independent, too.
- ▶ Then $Cov(C^Tx, v_i^Tx) = C^TPv_i = 0$.
- ► Thus $v_i^T S = \mathbb{E}[v_i^T x g(C^T x)] = \mathbb{E}[v_i^T x] \mathbb{E}[g(C^T x)] = v_i^T M \mathbb{E}[g(C^T x)].$

. .

Conclusion

Thus *S* is the solution of

$$\begin{bmatrix} C^T \\ v_1^T \\ \vdots \\ v_{n-1}^T \end{bmatrix} S = \begin{bmatrix} \mathbb{E}[C^T \times g(C^T \times)] \\ v_1^T M \mathbb{E}[g(C^T \times)] \\ \vdots \\ v_{n-1}^T M \mathbb{E}[g(C^T \times)] \end{bmatrix}$$

The coefficient matrix is non-singular, while the right hand side terms need only one-dimensional integration to be computed.

Examples

Conclusion

A linear system with matrices equal to

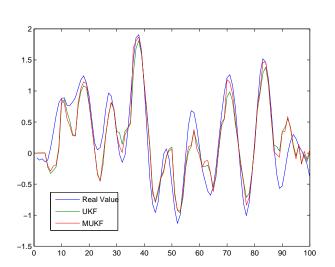
$$A = \begin{bmatrix} 0.9 & 1 & 0 \\ 0 & 0.7794 & 1 \\ 0 & -0.2025 & 0.7794 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ 0.25 \end{bmatrix},$$
$$c = \begin{bmatrix} 0.3730 & 0 & 0 \end{bmatrix}$$

and whose transfer function is

$$G_{sys}(z) = \frac{0.093258}{(z - 0.9)(z^2 - 1.559z + 0.81)}$$

is driven by GWN following N(0,1). The sensor suffers from nonlinearity and noise so that $y(k) = s(k)^3 + v(k)$, where v is GWN following N(0,0.09). The goal is to estimate the output of the linear system.

Example 1 (Results) One typical run



Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

Analysis

Examples

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

Analysis

Examples

Estim. Techn.	Mean Value	Standard Deviation	Worst Case
EKF	0.9301	0.1735	1.3363
UKF	0.2992	0.0390	0.3970
MUKF	0.2844	0.0371	0.3643

Example 2

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

Examples

onclusion

onclusion.

Suppose now that $y(k) = s(k)^3 (1 + 0.25 \cos(20s(k))) + v(k)$. The RMS error statistics from 100 runs are:

Estim. Techn.	Mean Value	Standard Deviation	Worst Case
EKF	0.9790	0.1794	1.5363
UKF	0.3265	0.0677	0.7334
MUKF	0.2896	0.0331	0.3757

Conclusion

Improved Unscented Kalman Filtering For a Class of Nonlinear Systems

Alexandros C. Charalampidis, George P. Papavassilopoulos

Background

Examples

- ▶ Reducing the integration in the *n*-dimensions to a number of *n*-dimensional linear systems and integration problems in one and two dimensions permits more accurate computations.
- Future research:
 - Exploiting the special structure of other classes.
 - Accounting for non-gaussianity.

Analysis

Examples

- R. E. Kalman, "A new approach to linear filtering and prediction problem," in *ASME Journal of Basic Engineering*, Vol. 82, Issue 1, pp. 35-45, Mar. 1960.
- B. D. O. Anderson and J. B. Moore, *Optimal Filtering*. Englewood Cliffs, NJ: Prentice-Hall, 1979.
- S. Julier and J.K. Uhlmann, "Unscented filtering and nonlinear estimation," in *Proceedings of the IEEE*, Vol. 92, Issue 3, pp. 401-422, Mar. 2004.
- S. Julier, J. Uhlmann and H.F. Durrant-Whyte, "A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators," in *IEEE Transactions on Automatic Control*, Vol. 45, Issue 3, pp. 477-482, Mar. 2000.