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Abstract—This paper proposes some modifications to the
Auxiliary Particle Filter and the Unscented Particle Filter.
For the APF, based on some error bound considerations it is
suggested that the auxiliary weights are taken into account not
proportionally but nonlinearly. An improved way to compensate
for the auxiliary weights after the resampling is also proposed.
For the UPF, a method is introduced to compute the covariance
matrices of the particles not using the UKF equations for each
particle separately, but so as to optimize the characteristics
of the total distribution. The application of the modified
filters to an example shows that the proposed changes lead
to performance increase.

Index Terms—Particle filtering, Nonlinear filters, State es-
timation, Resampling, Numerical methods, Auxiliary Particle
Filter, Unscented Particle Filter.

I. INTRODUCTION

State estimation is a task important for a vast variety of
applications, ranging from biomedical to space technology
and from autonomous robots to chemical processes. In prac-
tice, measurements are noisy and real systems are affected
by disturbance (process noise). Such noise are in many cases
modelled as stochastic processes.

The sensors in many cases provide measurements peri-
odically, while the calculations involved are nowadays done
using digital electronics, so it is reasonable that most litera-
ture has focused on the discrete-time case, using a discretized
model of the actual system if it is a continuous-time system.

The Kalman Filter (KF) [1]–[4] provides an exact solution
to the recursive state estimation problem for linear systems
with Gaussian noise and initial condition1. In that case
the state distribution is also Gaussian and it can be fully
described by its mean and covariance matrix. It is very
important that the solution is recursive, because otherwise
each time a new measurement would be obtained, all data
should be analysed again leading to huge computational cost.
The problem can be also solved exactly if the state space is
finite.

As explained in the next section, Bayes Rule provides
a recursive solution for nonlinear systems, but in the form
of some integrals which can be numerically evaluated only
for low-dimensional systems. Some techniques, including
the Extended Kalman Filter (EKF, [6]) and the Unscented
Kalman Filter (UKF, [7], [8]), use a Gaussian to approximate
the state distribution. Although these techniques have been
widely studied and used in applications [9]–[15], there exist
cases, for example when the state probability density function

1The linear Gaussian case is one of the few that can be also solved in the
continuous time [5].

(pdf) is multimodal, in which this approximation cannot be
made and more computationally intensive techniques [16]–
[20] have to be used.

The most prominent of these techniques is Particle Filter-
ing [17], [19], [20]. In this technique, the state distribution
is approximated using a weighted sum of Dirac functions
(called particles). It is a stochastic simulation technique, in
the sense that the location of each particle is propagated
according to the system equation and setting the disturbance
value equal to a random sample of the process noise distribu-
tion. The weights are then adapted according to the likelihood
of the measurement.

The crucial step, first introduced in [17], is that of re-
sampling, namely after the update new particles with equal
weights are randomly drawn from the estimated a posteriori
distribution. This is necessary to avoid the phenomenon
of “weight degeneracy”, in which after a number of steps
all particles, except of one, have negligible weight. Using
resampling, more particles are likely to be generated in the
regions of the state space where the probability density is
higher, as desired, while after resampling the particles have
equal weights since they have been selected randomly from
the same distribution.

Obviously the approximation is more accurate for a large
number of particles, but then the algorithm is computationally
intensive, so there is a need of improved versions of the
algorithm, exploiting better the computational power. Thus,
the algorithm has to provide a good approximation without
too many particles, while the computations for the renewal of
the particles have to be not too complicated. Indeed, several
variants have appeared in the bibliography [19], [20]. This
paper provides improved versions of two commonly used
variants.

More specifically, in Section III some modifications to the
Auxiliary Particle Filter (APF, [19]–[21]) are proposed. The
APF has been designed to tackle the fact that from some
particles created by the prediction step, possibly many will
get a very small weight from the correction step (because
the likelihood of the new measurement will be very small).
To that end, an estimation of these weights is made and
more particles are created from those particles for which it
is estimated that they will lead to greater weights. This is
something taken into account by the filter in the calculation
of the weights after resampling. The proposed modifications
concern firstly how much more the particles with greater
estimated weight should be preferred, and secondly how
should it be compensated the fact that some of the particles

52nd IEEE Conference on Decision and Control
December 10-13, 2013. Florence, Italy

978-1-4673-5716-6/13/$31.00 ©2013 IEEE 7040



derived from the previous step have been taken more into
account (apart from the greater likelihood to which they may
lead).

Section IV concerns the Unscented Particle Filter (UPF,
[22]). This filter has features both of a particle filter and
of a Gaussian sum filter. To each particle corresponds a
Gaussian distribution, whose mean and covariance matrix
are computed using the equations of the Unscented Kalman
Filter. However, from the distribution obtained from the
correction step, a sample is drawn randomly, and the particle
weight is computed as in Particle Filters. In this paper a
correction is proposed with respect to the covariance matrix,
so as to take into account the fact that the particles are not
independent, each one constituting a part of the whole filter,
thus the equations of the Unscented Kalman Filter are not
the most suitable.

In the last section an example of a nonlinear system is
studied. This system has been examined extensively in the
literature. The modified techniques are compared with the
standard ones both in terms of performance as well as of
computational cost. It turns out that the proposed changes
improve the performance of the filters, with limited or no
increase in computational cost.

The following section provides the formulation of the
problem, introduces the notation used in the rest of the paper,
and presents some basic results in the area.

II. BACKGROUND

Let us consider a system described by

xk+1 = f(xk) + wk, k = 0, 1, 2, . . . (1)
yk = h(xk) + vk, k = 1, 2, . . . (2)

where xk is the state of the system and yk the measured
output at time k. wk is the disturbance, also referred to as
process noise, and vk is the measurement noise.

In this paper it is assumed that the random variables
x0, wk, k = 0, 1, 2, . . . and vk, k = 1, 2, . . . are mutually
independent and normally distributed with known parameters.
Furthermore, wk and vk have zero mean. Measurements are
available from time k = 1 onwards.

Suppose that pX0(x0) is the probability density function
(pdf) of x0, pV (vk) is the pdf of the measurement noise
and pW (wk) is the pdf of the process noise. It holds
pY |X(yk|xk) = pV (yk − h(xk)) and pXk+1|Xk

(xk+1|xk) =
pW (xk+1 − f(xk)). The subscripts of probability density
functions will be omitted for convenience. Let us define
y1:k = {y1, y2, · · · , yk}.

Then, according to Bayes Rule ([23], see also [24] and
[25]) the following recursive equations hold:

p(xk+1|y1:k) =
∫
p(xk+1|xk)p(xk|y1:k)dxk, (3)

p(xk+1|y1:k+1) = p(yk+1|xk+1)p(xk+1|y1:k)/ck, (4)

where

ck =
∫
p(yk+1|xk+1)p(xk+1|y1:k)dxk+1. (5)

However the above integrals cannot be evaluated analytically.
Numerical integration for a sufficiently dense mesh of xk at
each time step is also impractical except for the case of low-
dimensional xk, so (3)–(5) are mainly of theoretical interest.

As stated in the introduction, the problem can be solved
exactly when the system is linear. This is done as follows:
Suppose that a dynamical system is described by xk+1 =
Akxk + Bk + wk, yk = Ckxk + Dk + vk where wk and
vk are normally distributed with zero mean, while their
covariance matrices are Q and R respectively. Suppose also
that it is known that xk follows the normal distribution with
mean x̂k and covariance Pxk

. Then, a priori with respect
to yk+1, xk+1 follows the normal distribution with mean
x̂−k+1 and covariance P−xk+1

given by x̂−k+1 = Akx̂k +
Bk, P

−
xk+1

= AkPxk
ATk + Q. The predicted value of yk+1

is then ŷ−k+1 = Ck+1x̂
−
k+1 + Dk while its covariance is

P−yk+1
= Ck+1P

−
xk+1

CTk+1 + R, and the cross covariance of
xk+1 and yk+1 is equal to P−xk+1yk+1

= P−xk+1
CTk+1. The

value of yk+1 can be then used to refine the distribution,
according to the following equations:

Kk+1 = P−xk+1yk+1
P−1
yk+1

,

x̂k+1 = x̂−k+1 +Kk+1

(
yk+1 − ŷ−k+1

)
,

Pxk+1 = P−xk+1
−Kk+1P

−
yk+1

KT
k+1. (6)

Remark 1: If the Gaussian assumption is removed, KF
gives the linear minimum covariance estimate of the state
[1], [3].

For nonlinear systems, even if the noise is Gaussian,
the state distribution is not Gaussian. As stated in the
introduction, some techniques have been developed which
approximate the state distribution using a Gaussian, and in
each step they renew its parameters. Since this paper deals
with Particle Filtering, no more details are provided here.

Remark 2: One more reason that approximate techniques
try to estimate the mean value of the state is that it is the
least square error estimator. Specifically, if x is a r.v., E [x]
is its expected value and x̂ an estimate of x, it holds that
E
[
(x− x̂)(x− x̂)T

]
= V [x] + (E [x]− x̂)(E [x]− x̂)T .

Few techniques that do not make the Gaussian approximation
the state distribution were introduced few years after the
appearance of KF. In [26], the pdf of the state is approximated
by the pdf of a Gaussian multiplied by a polynomial. The
prediction and correction steps adapt also the polynomial co-
efficients. The one-dimensional case is studied, yet complex
formulae arise. Additionally, the functions obtained may not
be probability density functions (pdf), as it is not guaranteed
that they are non-negative.

[16] proposes the approximation of the pdf by the sum of
the pdf of Gaussians. The pdf obtained are now guaranteed
to have the attributes that a function must have so that it is
a pdf. Several variants are presented in [16] and the case of
linear systems with non-Gaussian noise is studied in detail.
In all variants the filter is functioning deterministically.

In the ‘90s, the Particle Filter (PF) appeared. Today the
respective literature is very extensive (see, e.g., the reviews
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[19], [20]). Many variants exist, often called with other
names, such as “Condensation Filter”, “Sequential Monte
Carlo Filter”, “Sequential Imputations” as well as others.

In the PF, the pdf of the state is approximated by a set of
particles, each of them representing a Dirac function with a
corresponding weight, namely the approximation is

p(xk|y1:k) ≈
N∑
i=1

W i
kδxi

k
(xk). (7)

Then, the mean value of a function g of the state can be
estimated using the following equation.

E[g(xk)] ≈
N∑
i=1

W i
kg(xik) (8)

It is reasonable to conjecture that with a sufficiently large
number of particles, the approximation will be satisfactory,
however the asymptotic analysis of the PF is a difficult
problem [27], [28].

There exist many different algorithms (see, e.g., [19],
[20], [22]) for the renewal of W i

k and xik. The simplest
such algorithm, and probably the first which appeared in the
literature [17] is as follows:

Initially, N random samples are drawn according to the
initial state distribution. This set is used as an approximation
of the initial state distribution. Then, as in the aforementioned
filters, a prediction and a correction step are done separately.

For the prediction step, let xik, i = 1, . . . , N be the set
that approximates the distribution of xk (the weights at this
point will be always equal, as they are also for k = 0). For
each particle, a disturbance sample wik is drawn according
to the disturbance distribution, and the new particle xi,−k+1

is computed. The set of the new particles constitutes the
approximation of the a priori with respect to the measurement
yk+1 distribution of xk+1.

For the correction step, the likelihood lik = p(yk+1|xi,−k+1)
of each particle is initially computed. Normalizing so that
the sum of all weights is equal to 1 yields

W i
k+1 =

p(yk+1|xi,−k+1)∑N
n=1 p(yk+1|xn,−k+1)

. (9)

The set of particles xi,−k+1 with weights W i
k+1 constitutes an

approximation of the a posteriori distribution of xk+1. The
correction step is completed with the resampling process,
which serves to avoid the “weight degeneracy” phenomenon
[29], [30]. Indeed, if the above renewal procedure were
repeated perpetually, and the weights were repeatedly multi-
plied, then after many steps all particles except for one would
have almost zero weight (more detailed explanation of this
phenomenon may be found in the related literature [29]).

The resampling procedure consists of draw-
ing N random samples from the distribution∑N
i=1W

i
k+1δxi

k+1
(xk+1), namely for all particles

xjk+1, j = 1, . . . , N it holds that P (xjk+1 = xi,−k+1) = W i
k+1.

This way, it is more probable that more new particles will

be created from the particles which had high likelihood, thus
more emphasis is given to regions of the state space where
it is more probable that the state of the system lies in. The
new particles, since have been chosen randomly, have equal
weights.

III. MODIFIED AUXILIARY PARTICLE FILTER

In this section, the Auxiliary Particle Filter is first pre-
sented in more detail and then the proposed modifications
follow. It is assumed that the system whose state is to be
estimated is described by (1)-(2).

Let xik−1,W
i
k−1, i = 1 . . . Np the particles and weights

derived from step k − 1, and yk the output value for time
step k. In the simplest variants of the Particle Filter, at this
point, from each particle a new particle would be derived
according to the (stochastic) dynamics of the system, and this
procedure would constitute the prediction step. However, the
Auxiliary Particle Filter algorithm at this point estimates how
important will be the contribution of the particles which will
arise. The particle that will arise from xik−1 is a r.v. equal to
f(xik−1)+wik−1 (wik−1 is not to be confused with W i

k−1). As
a representative value of this r.v. can be considered its mean
value, its mode (they coincide for a Gaussian distribution) or
a random realization.

Let µik this representative value. Then it is reasonable
to consider, especially if the variance of the disturbance is
relatively small, that the i-th particle will have a likelihood
about p(yk|µik). To this purpose, the weight W i

k−1p(yk|µik) is
assigned to the i-th particle (W i

k−1 from the previous step and
p(yk|µik) from this auxiliary procedure). According to these
weights, xik−1, i = 1 . . . Np are resampled and the particles
with indices ji, , i = 1 . . . Np are derived. The indices of
particles with large weights are expected to appear more
times, while the indices of particles with small weights have
a significant probability to not appear at all.

From the particles derived by the resampling, xj
i

k−1, new
particles xik = f(xj

i

k−1)+wik−1, i = 1 . . . Np are derived. The
measurement yk has a likelihood of p(yk|xik). But, because
it has to be taken into account that the particle xj

i

k−1, from
which xik was derived, had p(yk|µik) as a factor in its weight,
the weight of the i-th particle in step k is W i

k = p(yk|xi
k)

p(yk|µji

k
)
.

The algorithm is presented in diagram form in [19], [20].
The first proposed change concerns this last point, namely

the weight assigned to xik. The above algorithm compen-
sates the factor p(yk|µj

i

k ) due to the estimated weighted by
dividing with this factor. This, however, has the disadvantage
that the number of particles actually derived from xj

i

k−1

is not taken into account. Thus, if from this particle sj
i

new particles arise through resampling, each one will have
a weight (before the correction step) equal to 1

p(yk|µji

k
)
,

therefore their total weight will be sj
i · 1

p(yk|µji

k
)
. This weight

is a r.v. with respect to the resampling, since the number sj
i

is
not predetermined. This feature, although the expected value
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of this total weight is proportional to

W ji

k−1p(yk|µ
ji

k )
1

p(yk|µj
i

k )
= W ji

k−1 (10)

(the expected value of sj
i

is proportional to W ji

k−1p(yk|µ
ji

k )
since this was the weight of xj

i

k−1 in the resampling) is not
desirable, because the variance of the r.v. sj

i

introduces noise
(even though it may be a small quantity) into the filter.

Remark 3: The above weights are not normalized. What
is important, however, is that for two different particles, xj

i1

k−1

and xj
i2

k−1, the expected values of the weights of the particles
derived from these two pre-resampling particles, have a ratio
equal to W ji1

k−1/W
ji2

k−1. In any case, after the procedure
under study, weight normalization follows. Similarly for the
following case.

The proposed modification is to set the weight of xik after

resampling to be
W

ji
k−1

sji
. Then the total weight of the particles

derived from xj
i

k−1 will be certainly sj
i W

ji
k−1

sji
= W ji

k−1. It
is possible to assign the aforementioned value because the
values are set after resampling, therefore the value of sji
has been determined. It is only required that the resampling
algorithm counts the number of copies derived from each
initial particle, something that does not incur significant cost.

The expediency of the proposed modification can be
highlighted with the following example. Assume that two
different particles, xi1k−1 and xi2k−1, have equal weights before
resampling (for simplification it is also assumed that they
have equal weights from the previous step), and these weights
are such that according to the total number of particles, 1.5
particles correspond to each of these two particles, namely
W i1
k−1 = W i2

k−1,W
i1
k−1p(yk|µ

i1
k ) = W i2

k−1p(yk|µ
i2
k ) =

1.5
Np

∑Np

i=1W
i
k−1p(yk|µik). It is possible that from the first

particle one new particle is derived, while from the second
two, i.e. si1 = 1, si2 = 2. The algorithm which is mostly used
in the literature will assign to the three new particles equal
weights, consequently xi2k−1 will indirectly receive a weight
double than that of xi1k−1. On the contrary, the proposed
algorithm will give to the particles derived from xi2k−1 half
weight, thus the total weights will be equal.

The second proposed modification concerns how much the
resampling is influenced by the auxiliary weights p(yk|µik).
The existing algorithms create a number of particles pro-
portional to the auxiliary weight p(yk|µik). However, this is
not necessarily optimal. Assume that from the previous step,
there have been derived particles in two different regions of
the state space, and that with the new measurement their
auxiliary weights are different. In any case, it is reasonable
to create more particles in the region where the weight is
greater. To find how many more should be created in the
region with the greater weight, it is necessary to know how
good the approximation of the distribution in a region is, as
a function of the number of particles in it.

In the literature, it is often considered that the deviation
is inversely proportional to the number of particles. This

is done because under suitable assumptions [27], there are
bounds of the mean square error of the estimation of the
mean of a function, which are inversely proportional to the
number of particles. Therefore, the rms value of the deviation
is inversely proportional to the square root of the number of
particles.

Thus, if there exists a region with probability p1 and
another region with probability p2, and if n1 particles exist
in the first and n2 in the second, it is possible to consider that
the deviation will be proportional to p1

n1
+ p2
n2

or p1√
n1

+ p2√
n2

.
If n is the total number of particles to be devoted for the
approximation in these two regions, then for the first case
p1
n1

+ p2
n−n1

has to be minimized. Differentiating this yields

d

dn

(
p1

n1
+

p2

n− n1

)
= − p1

n2
1

+
p2

(n− n1)2
= − p1

n2
1

+
p2

n2
2

,

(11)
showing that we have a minimum for n1/n2 =

√
p1/p2.

Thus it may be concluded that it is reasonable to use auxiliary
weights proportional to

√
p(yk|µik).

Remark 4: In the above minimization problem, it is pos-
sible that the value obtained through the differentiation
procedure does not correspond to integer n1, n2. Then the
minimum will be for one of the integer values aside the non-
integer minimum. But, since the algorithm actually deter-
mines weights for the resampling, which need not be integer,
there is no problem in using weights equal to

√
p(yk|µik).

Similarly for the following case.
If p1√

n1
+ p2√

n2
is to be minimized, differentiating yields

d

dn

(
p1√
n1

+
p2√
n− n1

)
=

1
2

(
− p1

n1
3/2

+
p2

(n− n1)3/2

)
=

1
2

(
− p1

n
3/2
1

+
p2

n
3/2
2

)
. (12)

This viewpoint, consequently, suggests using auxiliary
weights proportional to 3

√
p(yk|µik)2.

Remark 5: Taking into account that it is more reasonable
to consider as independent the deviations in different regions,
and then the mean square values are added and not the rms
values, the last viewpoint may not seem equally natural to
that with the mean square values. In any case, however,
these bounds only serve to find a reasonable function through
which the likelihoods are taken into account, it is thus of
purpose to examine this approach, too.

The modifications proposed in this section are applied in
a numerical example in Section V.

IV. MODIFIED UNSCENTED PARTICLE FILTER

The Unscented Particle Filter [22] is a technique having
some common features with the Gaussian sum techniques. To
each particle corresponds a Gaussian distribution. For the pre-
diction step, its parameters are updated as in the Unscented
Kalman Filter, separately for each particle. The correction
step starts again with the correction step of the Unscented
Kalman Filter for each particle separately. However, after
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this procedure, from each distribution that arises, a sample
is drawn randomly, which constitutes the new particle, while
its weight is calculated as in the Particle Filters.

Namely, if the i-th particle for time step k − 1 was
xi−1
k , and the new distribution has mean x̂ik and covariance

matrix P ik, x̃ik ∼ N (x̂ik, P
i
k) will be drawn randomly and its

corresponding weight is

W i
k =

p(yk|x̃ik)p(x̃ik|x
i−1
k )

p(x̃ik|x̂ik, P ik)
, (13)

where p(x̃ik|x̂ik, P ik) is the value of the p.d.f. N (x̂ik, P
i
k)

evaluated at x̃ik.

The approximation of the a posteriori distribution for the
time step k is provided by x̃ik,W

i
k. Before the repetition of

the procedure for the time k+1, a resampling is done, through
which xik = x̃jik arise. To xik, the algorithm of the Unscented
Particle Filter assigns the covariance matrix P j

i

k , which will
be used in the equations of the Unscented Kalman Filter at
the next step.

The rationale of the above algorithm is that the Gaussian
distributions N (x̂ik, P

i
k), i = 1, . . . , Np consist a relatively

good approximation of the a posteriori distribution, it is
therefore good to sample the particles from them, since it
is optimal to be sampled from the a posteriori distribution.
Obviously, the a posteriori distribution can be approximated
by the sum

Np∑
i=1

1
Np
N (x̂ik, P

i
k) (14)

and not by each distribution separately. However, the Un-
scented Kalman Filter equations have been used for each
particle separately, therefore the covariance matrices corre-
sponding to the particles are closer to the covariance matrix
of the total distribution, and not to the covariance matrix that
each particle should have so that the sum (14) constitutes a
good approximation of the a posteriori distribution.

The following viewpoint provides a way to choose the
covariance matrices so that the total distribution approximates
the a posteriori distribution. Assume that the particle loca-
tions are independent and follow the a posteriori distribution,
which has mean x̄ and covariance matrix P . This is the
desired, although in practice it does not fully hold. If a r.v. vi
with mean xi and covariance Pi corresponds to each particle,
then the approximation of the a posteriori distribution is the
r.v. v =

∑Np

i=1 Iivi, where each ofIi, i = 1, . . . , Np is equal to
1 with probability 1

Np
, otherwise it is equal to 0, while always

exactly one of them is equal to 1, namely they constitute the
indicator functions of the events [v = vi].

Then, for given xi, i = 1, . . . , Np, the covariance matrix

of the total distribution is

V [v] = V

 Np∑
i=1

Iivi

 =

= E


 Np∑
i=1

Iivi −
1
Np

Np∑
i=1

xi

 Np∑
i=1

Iivi −
1
Np

Np∑
i=1

xi

T


= E


 Np∑
i=1

(
Iivi −

xi
Np

) Np∑
i=1

(
Iivi −

xi
Np

)T
 =

=
Np∑
i=1

Np∑
j=1

E

[(
Iivi −

xi
Np

)(
Ijvj −

xj
Np

)T]
(15)

For i = j it holds that

E

[(
Iivi −

xi
Np

)(
Iivi −

xi
Np

)T]
=

= E
[
I2
i viv

T
i − Ii

1
Np

vix
T
i − Ii

1
Np

xiv
T
i +

1
N2
p

xix
T
i

]
=

=
E
[
viv

T
i

]
Np

− 1
N2
p

xix
T
i =

Pi + xix
T
i

Np
− 1
N2
p

xix
T
i , (16)

while for i 6= j

E

[(
Iivi −

xi
Np

)(
Ijvj −

xj
Np

)T]
=

= E
[
IiIjviv

T
j − Ii

1
Np

vix
T
j − Ij

1
Np

xiv
T
j +

1
N2
p

xix
T
j

]
=

= − 1
N2
p

xix
T
j (17)

Therefore V [v] depends on the values of xi. It holds
that E

[
xix

T
i

]
= P + x̄x̄T , while for i 6= j it holds that

E
[
xix

T
j

]
= x̄x̄T . Thus it follows that

V [v] =
∑Np

i=1 Pi
Np

+Np(
1
Np
− 1
N2
p

)(P + x̄x̄T )−

−
N2
p −Np
N2
p

x̄x̄T =
∑Np

i=1 Pi
Np

+ (1− 1
Np

)P. (18)

It is, therefore, concluded that V [v] = P ⇔
∑Np

i=1 Pi =
P . Furthermore, for the case where Pi, i = 1, . . . , Np, are
equal, the condition is Pi = 1

Np
P .

The above analysis shows that having each one of the
matrices Pi approximately equal to P is not optimal, on the
contrary they have to be equal to about 1

Np
P . Given that

the Unscented Kalman Filter equations seek to approximate
this value, it is reasonable, after the resampling, to multiply
the matrices P ik by α

Np
. The factor α is introduced because

the convergence is not done in one step, therefore beginning
from a matrix of the order of P

Np
, after the next step the

matrix will be of the order of 1
αP . The value of α can be
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Table I
TABLE OF THE RMS VALUES OF THE ESTIMATION ERROR FOR SEVERAL PARTICLE FILTER VARIANTS

Filter Mean Value Standard Deviation Maximum Value Comp. Time 2 (ms)

PF-SIR 5.41541 1.34547 11.63975 0.18850 (3.56)
APF 5.37662 1.18517 9.68630 0.24240
APF-√ 5.31901 1.13784 9.32619 0.24800
APF- 3

√ 2 5.33066 1.13710 9.33985 0.31380
APF-MR 5.33339 1.16558 9.42745 0.28180
APF-MR-√ 5.18590 1.11002 9.24750 0.28530
APF-MR- 3

√ 2 5.19944 1.13456 9.58607 0.35500
UPF 5.90033 1.78609 13.34652 20.90770
UPF - α = 0.1 5.08705 1.37431 13.44550 20.91310
UPF - α = 0.2 5.03754 1.27727 12.69427 20.90010
UPF - α = 1 5.12051 1.27182 12.59017 20.90210
UPF - α = 0 5.02658 1.20974 12.95750 12.98660

determined experimentally. In any case, the choice α = 1 is
also expected to give good enough results, especially if the
convergence is fast enough.

It is also possible to set the matrices P ik equal to 0, which
is equivalent to α = 0. This choice has the advantage that in
this case, the prediction step of the Unscented Kalman Filter
is done with no computational cost, with the a priori mean
equal to f(xik−1) and the a priori covariance matrix equal to
the covariance matrix of the disturbance. The computational
cost reduction gives the possibility to deploy a greater number
of particles, in which case the term P

Np
will be even closer

to 0.
The proposed modifications are tested in a numerical

example in the following section.

V. NUMERICAL EXAMPLE AND COMMENTS

The system to which the different variants of the Particle
Filter will be applied for comparison purposes is described
by

xk+1 =
xk
2

+ 25
xk

1 + x2
k

+ 8 cos(1.2k) + wk, (19)

yk =
x2
k

20
+ vk (20)

and appeared for the first time in [31]. Since, it has been
extensively studied in the literature [17]–[20]. x0, wk and
vk are independent r.v. following the Gaussian distribution
with zero mean. x0 has a covariance equal to 0.001 while,
as in [17], [19], [20], for the covariances of wk and vk it is
assumed that V [wk] = 10, V [vk] = 1. The system is run up
to k = 100.

1000 repetitions have been performed and the results are
presented in Table I. PF-SIR is the Sampling Importance
Resampling Filter of the literature [19]. APF is the Auxiliary
Particle Filter, for all whose variants the auxiliary weights are
computed for a random realization of the r.v. f(xik−1)+wik−1,
as in [19]. √ and 3

√ 2 denote the proposed in Section III
modifications in the way that the auxiliary weight is taken
into account, while MR (Modified Reweighting) denotes the

2See the penultimate paragraph of this section.

proposed modification in the redetermination of the weights
after resampling. UPF is the Unscented Particle Filter, and
α is the parameter referred in Section IV. The resampling
is performed using the algorithm proposed in [18], while
as in the software [32], a very small value is added to the
likelihoods so as to exclude the event that they are all 0 due
to rounding. In all variants 50 particles have been used.

It is concluded that the proposed modifications to the APF
improve its performance, both if applied separately as well
as if applied in combination, in which latter case the best
results are obtained. Concerning the proposed modification
to the UPF, among the various values of α tested, the best
results were for α = 0, choice which, as already mentioned,
has also a computational advantage. An interesting fact is
that while UPF can, with proper adjustment, yield a small
error in the mean case, in the worst case its error is greater
even than that of PF-SIR.

The computational costs of the various proposed tech-
niques are different, but for PF and the variants of APF
the differences are not big, as the differences among the
variants of UPF. However the MATLAB implementation
which has been made leads to high cost for UPF, because the
computations in this case are not made “vectorized”. This has
been made because using MATLAB it is easy to compute,
for example, all the particle weights simultaneously, or to
create all new particles using one function call, while the
Unscented Kalman Filter equations were applied separately
to each particle in the implementation made. If the particle
computations for PF-SIR are also made non-vectorized, the
cost is that appearing in parenthesis in Table I.

The conclusion from the numerical results is that the
proposed modification can reduce the estimation error, and
the choice of the variant that will be used can be made taking
into account the performance of the various variants in the
problem under study as well as the technical details of the
implementation that will be made.
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[29] Cappé, Olivier: An Introduction to Sequential Monte Carlo for Fil-
tering and Smoothing. http://www-irma.u-strasbg.fr/∼guillou/meeting/
cappe.pdf.

[30] Orhan, Emin: Particle Filtering. http://www.bcs.rochester.edu/people/
eorhan/notes/particle-filtering.pdf.

[31] Netto, M., L. Gimeno, and M. Mendes: On the optimal and suboptimal
nonlinear filtering problem for discrete-time systems. Automatic Con-
trol, IEEE Transactions on, 23(6):1062–1067, Dec. 1978, ISSN 0018-
9286.

[32] de Freitas, N. and R. van der Merwe:
http://www.cs.ubc.ca/∼nando/software/upf demos.tar.gz, Aug. 2000.
MATLAB Code.

7046


