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Abstract For the Cournot-like oligopoly games of n firms, where the Cournot
adjustment fails to converge, we propose adjustment processes originating from
the family of the Moving Averages. In markets of linear demand, where firms
have private and linear on quantities cost functions, these adaptive rules turn
the games into discrete-time linear systems with delays. With an out of the
box proof, we determine the least number of delays (m) that ensures the game
of n players converges to its equilibrium. The Simple Moving Average rule
(fixed number of delays) and the Cumulative Moving Average rule (constantly
increasing number of delays), which is also known as “fictitious play”, are the
main rules considered. Along with a hybrid rule, result of their combination,
they are all studied for their convergent properties and compared in a bench-
marking framework to indicate the di↵erent trajectories and identify their
suitability in applications.
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1 Introduction

In markets of quantity-based competition with incomplete information, such
as energy markets (Doukas et al., 2008), the simplest version of a Cournot
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oligopoly model fails to ensure convergence to the equilibrium in more com-
petitive structures than that of the duopoly case (Theocharis, 1960). The adap-
tive rule found in the reasoning of the Cournot-Nash equilibrium’s emergence
in a partial information framework (Friedman, 1983; Daughety, 2005), the so
called Cournot adjustment process, has been identified as the main reason of
instability (McManus and Quandt, 1961). This simplistic rule allows players to
estimate their rivals’ output, using the most recent values of the state; even if it
fails to serve its cause in games of more than two players, constitutes an early
introduction of dynamics and adaptation in game theory. Nevertheless, this
adequacy points out the link between the number of competitors and the con-
vergence properties in this kind of games (von Mouche and Quartieri, 2016),
indicating the crucial role the adjustment process plays. Although adaptation
is considered to be a learning process, in the case of Cournot oligopoly it relies
mostly on adaptive expectations (Okuguchi, 1970), with its rationale having
experimental grounds (Rassenti et al., 2000; Huck et al., 2002) as well. Along
with other quantity-based market models, where learning turns to be more so-
phisticated (Chrysanthopoulos and Papavassilopoulos, 2016), adaptation may
pave the way for manipulation, which allows the occurrence of alternative equi-
libria (Kordonis et al., 2018; Chrysanthopoulos and Papavassilopoulos, 2016),
or for cooperation and coalition formation (Stamtsis and Doukas, 2018). Be-
yond the sensitivity it adds, the adjustment process a↵ects, indirectly, the so-
cial surplus’s maximization and the market’s sustainability (Gabszewicz and
Vial, 1972) through the transient behavior and the convergence of the games.

Many researchers have contributed to the stability of the Cournot oligopoly
solution, some of whom have focused on the adjustment process and proposed
alternations towards an improved dynamic behavior of the game. In particular,
the speed of adjustment has been proposed as a parameter able to stabilize
games of more than two players (McManus and Quandt, 1961), a fact shown
explicitly by Fisher (1961) for both continuous and discrete adjustment pro-
cess cases, along with a su�cient condition for the speed of adjustment based
on the number of players. Given this adjustment process with speed control,
a first attempt for global stability conditions on (continuously di↵erentiable)
demand and cost functions has been made by Hahn (1962), while results for
discrete and continuous adjustments have been summarized by al Nowaihi and
Levine (1985). By introducing a feasible region of non-negative prices and out-
puts, Furth (1986), studied the stability of local and boundary equilibria. Many
other works have dealt with the convergence characteristics of Cournot games
as the number of competitors increases, either by extending those results (Puu,
2008; Puu and Sushko, 2002; Ahmed and Agiza, 1998) or by exploiting them
towards other research directions (Askar, 2018). Models of varying number
of players (Bernhard and Deschamps, 2017; Kordonis and Papavassilopoulos,
2015) o↵er far more accurate representation of real life market structures and
form an ideal environment for introducing the dynamic adjustment of players.
The idea of identifying suitable adaptive rules (Papavassilopoulos, 1986, 1988)
that are able to ensure stability is broadly used in dynamic games. Its poten-
tial, especially, in a quantity-based competition context of increasing number
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of participants, along with its high applicability in decision making under in-
complete information structures often found in energy market design (Doukas,
2013), has motivated this work .

This paper deals with a particular class of adaptive rules, originating from
statistical and estimation theory, in the context of an incomplete information,
n-firm, Cournot game. More precisely, the rules under consideration belong to
the family of Moving Averages (MA), which is widely used in applications -
ranging from economics and finance to filtering and signal processing - as it
provides smoothing properties under simplicity. In our case, by letting players
use the Simple Moving Average (SMA) and the Cumulative Moving Aver-
age (CMA) principles at the point where they need to estimate their rivals’
actions, two di↵erent rules of adaptation are formed. Based on the aforemen-
tioned rules and also by taking into account a hybrid one, three di↵erent games
are considered, in which the number of delays is considered to be the number
of previous data used in the unweighted mean. Due to the oligopoly’s assump-
tions made, the games examined result in linear discrete time systems of fixed
or evolving structure. The main objective of this work is to study the su�-
ciency of the length of those backward-looking adaptation rules as the number
of the market participants increases, with respect to the systems’ stability.
Complementary to this, we aim to provide a comparative analysis of the pro-
posed rules and highlight the trade-o↵ between stability and smooth transient
behavior, even with the lack of information about the number of rivals. The
main contributions of the paper are threefold:

(i) The proposition of adaptive rules characterized by the number of delays
and based on simple principles, broadly used in business intelligence and
technical analysis fields for supporting decision making,

(ii) The explicit identification of the least number of delays, required to ensure
convergence of the n-player Cournot game along with the extensive study
of its convergent behavior under fictitious play and

(iii) The development of a comparative analysis framework, capable to evaluate
the proposed rules on their suitability in an ideal fitting case basis.

More precisely, for the discrete time model considered, the fixed number of
delays rule, based on SMA, has been used initially to prove the condition that
guaranties stability. Through an out of the box proof, inspired by Papavas-
silopoulos (1986), we determine that more than half of each firm’s rivals delays,
guaranty the game’s convergence. Additionally, for the CMA rule, the tran-
sient behavior has been related to the initial choices of players and bounded,
while the game’s convergence has been characterized as sublinear. The CMA
rule, also known in the literature as fictitious play, under its universal adop-
tion, makes the game evolve and transit from instability to stability. Although
it converges asymptotically, independently of the number of players, the evo-
lution of the rule itself on every stage of the game compensates to some extent
the critic that the bounded rationality and the myopic best response concepts
have received. In a di↵erent way, this is also counteracted by models that im-
pose strategic behavior in the selection of the rule (Hommes et al., 2018) and
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consequently allow alternations based on e�ciency terms. The hybrid rule that
switches from variable to fixed number of delays, shows that characteristics of
both rules can be combined and forms a basis for more sophisticated mixing
strategies.

The paper is structured as follows: A general formulation of the discrete
time n-player Cournot game for linear demand and private constant marginal
production costs is provided in Section 2, along with definitions of the observ-
able game’s history. In Section 3, we introduce the adaptive rules from the MA
family and we describe the corresponding games. The condition between the
number of delays and the number of players that ensures convergence of the
SMA game is derived in Section 4, where the stability properties of the rules
are, also, studied. For the CMA game, the evolution rate of the distance from
the equilibrium is bounded and its sublinear convergence is shown. To allow
comparisons of the proposed rules, in the first part of Section 5 simulations
of an example market for di↵erent number of firms and delays are presented.
In its second part, where the increase of the competition is internalised in the
market, the main rules and a dynamic version of the hybrid one are compared
based on their adaptability. Finally, the paper concludes in Section 6, where a
discussion on the results, also, follows.

2 Game Formulation

We consider an industry of a homogeneous commodity, where n firms com-
pete over quantities. In this “a la Cournot” oligopoly context, at every stage
t 2 {1, 2, . . . , T}, firm i 2 {1, 2, . . . , n} ⌘ N selects, simultaneously with its
rivals, its output level xi,t 2 Xi ✓ R+, produced under a strictly increasing

cost function Ci (xi,t). Let xt = [x1,t, x2,t, . . . , xn,t]
T be the state vector of

the market, consisting of all firms’ outputs at stage t, and P (xt) : X
n

⇢

X1 ⇥ X2 ⇥ · · · ⇥ Xn ! P ✓ R+ be the inverse demand function, which as
a clearing mechanism determines the price pt. We assume (a) linear demand
and (b) constant marginal production costs, thus the cost function of firm i
and the inverse demand function are of the form Ci (xi,t) = c0i + cixi,t and
pt ⌘ P (xt) = a � b

P
i2N xi,t, respectively. The linear form of the functions

and the exogenous parameters a, b > 0 are common knowledge, while, in the
contrary, cost parameters c0i , ci > 0 , i 2 N are considered private (Daughety,
2005).

Let ht = {xk}
t
k=1 be the full history of the game, available at stage t, and

ht
m = {xk}

t
k=max(1,t�m) be a short version of the history, i.e. a subsequence of

ht that consists at most of the last m+ 1 state vectors. Those two sequences
coincide for m = T � 1, where the short history becomes equivalent to the
full history of the game. The sets of all possible, full and short, game histories
at time t are H

t and H
t
m, respectively. Firms select their actions by aiming

to maximize their single-period profits. In the case where the full history of
the game is available, firm i maximizes the strictly concave function ⇡i (xt) =
E
⇥
P (xt) |ht�1

m

⇤
xi,t �Ci (xi,t) by choosing xi,t 2 Xi. The first order condition
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leads to firm’s i best reply, which provides the optimal output level given its
expectations for the rivals outputs. The mappings ⇠mi,t (·) : Ht�1

m ! Xi, 8i 2
N associate an output value at time t with the observed history ht�1

m and
constitute the strategies of the players.

The discrete time game, resulting from a certain instance of the expectation
operator, corresponds to the system of equations given in (1), where AG is the
adjacency matrix of the complete directed graph G with n vertices of Fig. 1(a).

xt = �
1

2
AGE

⇥
xt|h

t�1
m

⇤
+B (1)

AG =

2

66664

0 1 · · · 1

1 0
. . .

...
...
. . .

. . . 1
1 · · · 1 0

3

77775
andB =

2

6664

a�c1
2b

a�c2
2b
...

a�cn
2b

3

7775
(2)

Considering the complete directed graph G, the spectral radius of its adja-
cency matrix AG is equal with its dominant eigenvalue �AG

max and the Perron-
Frobenius Theorem implies that any other eigenvalue is strictly smaller, in
absolute value (MacCluer, 2000). The dominant eigenvalue of any irreducible
non-negative square matrix satisfies the following inequalities (3), where aij
corresponds to the element of its i-th and j-th, row and column, respectively
(Rumchev and James, 1990). As G is a complete directed graph, the dominant
eigenvalue �AG

max of its adjacency matrix AG is equal to n� 1, a number which
also stands for the degree of the graph. Since a complete graph has the highest
degree among all the other simple graphs of the same number of vertices, e.g.
Fig. 1(b,c), its spectral radius will also be greater than those of all other simple
graphs. Therefore, the corresponding to graph G game, can be considered as
the most demanding one in terms of stability, with the results obtained being
able to cover other cases as well.

min
i

X

j

aij  �AG
max  max

i

X

j

aij (3)

3 Adaptive rules

In the case of the estimation being unbiased, e.g. the complete information
case, the expectation of firm i for its rival’s output can be replaced by the
state vector at stage t it self, i.e. E [xt] = xt. That leads directly the firms

to the equilibrium vector x⇤ =
�
I+ 1

2AG

��1
B. For any other case, this ex-

pectation should be replaced by the estimation of the rivals’ outputs, taking
under consideration the past states available. An example based on ht�1

1 is the
so called Cournot adjustment process, an adaptive rule where E

⇥
xt|h

t�1
1

⇤
is

replaced by an estimator x̂t = xt�1. This rule works well in the duopoly case,
as firms, by adopting this myopic best response strategy, manage to reach the

The final authenticated version is available online at: http://dx.doi.org/10.1007/s12351-019-00522-z

This is a post-peer-review, pre-copyedit version of an article published in Operational Research. 



6 Nikolaos Chrysanthopoulos, George P. Papavassilopoulos

(a) Complete graph (b) Unbalanced graph (c) Cycle graph

Fig. 1: Directed simple graphs representing di↵erent n-player games

equilibrium point, but it fails for n � 3 in terms of system’s convergence1. Its
consistent adoption throughout the game, has been a controversial assumption
mainly because players could have revised their adaptive rule after observing
the bias of their estimation. By considering the adoption of the adaptive rule
to be a non-strategic decision, it su�ces the underlying assumption to be
symmetric and to ensure convergence.

Every adaptive rule may arise either as the result of a learning process or
by the need for estimating unknown parameters. We focus on rules that belong
to the family of moving averages, emanating from players’ need for practical
estimation of rivals’ output. In other words, we consider that players, before
selecting their output, want to quantify their expectations using an estimator;
by assuming Method of Moments (MM) estimators, we restrict our interest
on a class of rules originating from the first raw moment estimators. Due to
the nature of the information update mechanism, players perceive the history
enrichment process through the arrival of data in an ordered datum stream
and they end up observing rivals’ output in a time series format. Under this
context, the Simple Moving Average, the Cumulative Moving Average and
the Cumulative-Simple Moving Average (CSMA) constitute useful tools for
tackling such form of data for filtering and estimating purposes, by creating
series of averages on di↵erent data sets. Thus, in the following subsections,
we consider three variations of the discrete time Cournot oligopoly, where the
adaptive rule di↵ers in accordance with the aforementioned versions of moving
averages.

3.1 Simple Moving Average (SMA) rule

Let us be at stage t, exactly before firms make their decisions and when the
full history of game is ht�1. Firms have access only to the truncated version of
the history ht�1

m . Assume that firm i estimates the action of firm j using the

1 Alternations of the adjustment process (continuous or discrete form), which are based
on the speed of adaptation concept (Fisher, 1961), are able to result convergence (Okuguchi,
1970; Szidarovszky and Okuguchi, 1988).
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Adaptive rules for Cournot games of high competition level 7

unweighted arithmetic mean of her previous m output levels, which are avail-
able in the short game history. The adoption of the Simple Moving Average
(SMA) as an estimator for all her rivals allows the replacement of her expec-
tation Ei

⇥
xj,t|ht�1

m

⇤
with (4). The way SMA process updates the estimation

value is by incorporating, scaled, the di↵erence between the new output and
the one removed from memory. This can be seen by the inductive rule in (5),
which can’t be directly used by players because of the imposed game history
structure.

x̂SMAm
j,t =

xj,t�1 + xj,t�2 + . . .+ xj,t�m

m
, 8j 2 N \ {i} (4)

x̂SMAm
t = x̂SMAm

t�1 +
1

m
(xt�1 � xt�m�1) (5)

By assuming symmetric behavior for all n firms, the game is described by the
backward looking system of m delays in (6).

xt = �
1

2
AG

1

m
(xt�1 + xt�2 + . . .+ xt�m) +B (6)

3.2 Cumulative Moving Average (CMA) rule

In the case of the Cumulative Moving Average (CMA), firms are assumed to
have access to the full history of the game. Compared with the SMA case, the
estimation of firm i is again the unweighted arithmetic mean of previous output
levels, but this time the cardinality of those data sets increases by one at every
stage. As the time passes, history ht�1 becomes richer and new information are
exploited by players to update their estimation. The expectation Ei

⇥
xj,t|ht�1

⇤

is replaced by a constantly increasing number of terms estimator (7), while the
inductive rule (8) utilizes the scaled bias to revise the estimation.

x̂CMA
j,t =

xj,t�1 + xj,t�2 + . . .+ xj,0

t
, 8j 2 N \ {i} (7)

x̂CMA
t =

t� 1

t
x̂CMA
t�1 +

1

t
xt�1 = x̂CMA

t�1 +
1

t
biasCMA

t�1 (8)

The best replies of all n firms, with the CMA estimators replacing the
expectations, form the game described by the structural evolving backward
looking system of (9), which is the Cournot game under fictitious play.

xt = �
1

2
AG

1

t
(xt�1 + xt�2 + . . .+ x0) +B (9)
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3.3 Hybrid Cumulative-Simple Moving Average (CSMA) rule

The combination of the two main rules give rise to a hybrid rule, which shares
properties of both. The CSMA rule, which we deploy here, refers to just one
alternation between the two. Due to lack of initial data, players start by adopt-
ing the CMA rule and then turn to the SMA of respective number of delays.
The number of delays dt, used in forming the expectation of rivals’ quantity,
is provided for this static version by (10). By assuming that all firms adopt
the CSMA rule in a symmetric way, the dynamics of the game are described
by (11).

dt =

(
t for t < m

m for t � m
(10)

xt = �
1

2
AG

1

dt
(xt�1 + xt�2 + . . .+ xt�dt) +B (11)

4 Convergence of adaptive rules

For the stability study of the games of fixed number of delays, a general frame-
work is initially presented to introduce the topic and initialize the analysis.
Consider that the m past outputs observed are weighted and used by firms
to quantify their expectations and that all players adopt identical constant
weighting functions, i.e. wi

` = w`, 8i 2 {1, 2, . . . , n}. The weights are used
to form an inner linear combination of the m past outputs to estimate the
expectation about the current output. As w` 2 (0, 1) and

Pm
`=1 w` = 1,

the weights can be also considered to be the probabilities that players as-
sign to the recurrence of a past state. For arbitrary weights, the game ac-
quires the form of the backward-looking system of m delays of (12), which for
w` = w̄, 8` 2 {1, 2, . . . ,m} turns to be the one presented in subsection 3.1 as
w̄ = 1/m.

xt = �
1

2
AG (w1xt�1 + w2xt�2 + . . .+ wmxt�m) +B (12)

Given the homogenous system (Mickens, 1991) and its Z-transform (Jury,
1973), for the discrete time system of (12) to be stable2, all the roots for Z of
(13) should be strictly inside the unit circle.

X(Z) = �
1

2
AG

✓
w1

X(Z)

Z
+ w2

X(Z)

Z2
+ . . .+ wm

X(Z)

Zm

◆
(13)

✓
1

w1Z�1 + w2Z�2 + . . .+ wmZ�m
I�A

◆
X(Z) = 0 (14)

2 System’s stability refers to global, uniform, asymptotic stability of the equilibrium point
x⇤, i.e. for any " > 0 there exists a �(") > 0 such that kxt0 � x⇤k < � implies kxt � x⇤k <
", 8t � t0 and lim

t!1
xt = x⇤, independently of t0 and xt0 . (Khalil, 2002)
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Adaptive rules for Cournot games of high competition level 9

The eigenvalues �i, i 2 N of the matrix of interest A = �1/2AG, which
can be identified directly by the characteristic polynomial form of (14), define
n polynomials of degree m with respect to Z. The zeros of the polynomial
of (15) should lie strictly inside the unite circle. By considering �̃i = ��1

i
to be the reciprocal of eigenvalue �i and Z̃ = Z�1 = 1

r e
�j' (j stands for

the imaginary unit) the reciprocal of Z variable, in (16) we restate those
polynomials in reciprocal terms. For stability, in their latter expression, we
require all the nm zeros to lie strictly outside the unite circle, i.e. kZ̃Rk >
1, 8R 2 {1, 2, . . . , nm} where Z̃R are the roots of (16). The Theorem that
follows relates the polynomial’s coe�cients with the position of the roots and
can be found useful in providing su�cient conditions for stability (Kakeya,
1912).

1

w1Z�1 + w2Z�2 + . . .+ wmZ�m
= �i (15)

w1Z̃
1 + w2Z̃

2 + . . .+ wmZ̃m = �̃i (16)

Theorem 1 (Kakeya) If f(Z̃) = w0 + w1Z̃ + w2Z̃2 + . . . + wmZ̃m is a
polynomial of degree m with real and positive coe�cients then all the zeros of f
lie in the annulus R  kZ̃Rk  R where R = min

1`m

w`�1

w`
and R = max

1`m

w`�1

w`
.

An alternative approach may begin without considering the topology as given.
The question that follows, is where the eigenvalues �i, i 2 N of matrix A
should be located so that the system is stable. To answer that, let us define
as Sm and SBm the subsets of C, which contain the eigenvalues �i of A in the
asymptotic and marginal stability cases3. Description of Sm is given in (17)
and of SBm in (18).

Sm =

⇢
1

w1Z�1 + w2Z�2 + . . .+ wmZ�m
: Z = rej', r < 1,' 2 [0, 2⇡)

�

(17)

SBm =

⇢
1

w1Z�1 + w2Z�2 + . . .+ wmZ�m
: Z = rej', r = 1,' 2 [0, 2⇡)

�

(18)

Proposition 1 The homogenous discrete time linear system of (13) is stable
if all the eigenvalues �i of A belong to Sm and not unstable if they all belong
in Sm [ SBm.

3 Since matrix A is a scaled instance of AG, one of its eigenvalues is dominant and all the
other are strictly smaller than that, in absolute value (Section 2). With marginal stability,
we mean the case where the system is neither asymptotically stable nor unstable, i.e. the
case where the greatest magnitude of any of the eigenvalues is one and the multiplicity of
this critical eigenvalue is one.
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10 Nikolaos Chrysanthopoulos, George P. Papavassilopoulos

By considering �̃i = ��1
i to be the reciprocal of eigenvalue �i and Z̃ = Z�1 =

1
r e

�j' the reciprocal of Z variable, we define the sets S̃m and S̃Bm with respect
to those reciprocal quantities.

S̃m =

⇢
w1Z̃

1 + w2Z̃
2 + . . . wmZ̃m : Z̃ =

1

r
e�j', r > 1,' 2 [0, 2⇡)

�
(19)

S̃Bm =

⇢
w1Z̃

1 + w2Z̃
2 + . . . wmZ̃m : Z̃ =

1

r
e�j', r = 1,' 2 [0, 2⇡)

�
(20)

Proposition 2 The homogenous discrete time linear system of (13) is stable
if none of the �̃i belong to S̃m [ S̃Bm and not unstable if none of them belong
in S̃m.

Lemma 1 The set S̃Bm bounds the set S̃m since for any C1 2 S̃m there exists
a C2 2 S̃Bm such that \C2 = \C1 and kC2k > kC1k.

Proof Indeed, let C1 =
Pm

`=1 w`(
1
r1
)`e�j`'1 , where r1 > 1 and '1 2 [0, 2⇡).

Consider the following limiting case:

lim
r!1+

mX

`=1

w`(
1

r
)`e�j`'1 =

mX

`=1

w`e
�j`'1 = C2

We observe that C2 2 S̃Bm, C2 /2 S̃m and we compare one by one the corre-
sponding m terms of the summation. Since the ratio C1,`/C2,` is greater than
one for all `, we conclude that kC2k > kC1k for any common ' 2 [0, 2⇡), i.e.
\C2 = \C1 = ', and thus @S̃m = S̃Bm.

C1,`

C2,`
=

w`e�j`'1

w`(
1
r )

`e�j`'1
= r > 1, 8` 2 {1, 2, . . . ,m}

ut

Based on Lemma 1, the set S̃Bm bounds the set S̃m and from this point onward
we will refer to it as the boundary set.

4.1 Simple Moving Average (SMA)

The weights for the SMA case, are w` = w̄ = 1/m, 8` 2 {1, 2, . . . ,m}. The
analysis that follows extends the general framework and concludes by the end
of the subsection, with Theorem 2, where the stability threshold of the memory
window as a function of the number of players is derived.

We work on the description of the boundary set to obtain an equivalent
description that will facilitate our study. Given that the complex number
w1Z̃1+w2Z̃2+. . . wmZ̃m of (20), for w̄ = 1/m, can be expressed as 1/m

Pm
`=1 Z̃

`,
we use Lemma 2 to obtain expression (21), which constitutes an intermediate
result .
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Adaptive rules for Cournot games of high competition level 11

(a) The curve h(!), along with instances of
C(r,') for kZ̃k = 1/r  1.

(b) The boundary set S̃Bm, which shrinks as
the number of delays increases (m = 4).

Fig. 2: The curve C(r,') for decreasing values of kZ̃k and the boundary set
S̃Bm, which shrinks as the number of delays increases.

Lemma 2 If Z̃ = e�j', ' 2 [0, 2⇡) then the complex number
Pm

`=1 Z̃
` =

⇢(!)e�j! where ⇢(!) =
sin( m

m+1!)
sin( 1

m+1!)
and ! 2 [0, (m+ 1)⇡).

Proof Let Z̃ 2 C and C(r,') : C ! C where C(r,') =
Pm

`=1 Z̃
` , Z̃ = 1

r e
�j'

and m is a positive integer. For any Z̃ 6= 1, the complex number C(r,'),
instances of which are given in Fig. 2(a), can be expressed as a geometric sum
and this is defined as an alternative expression Ca(r,').

C(r,') = Z̃1 + Z̃2 + . . .+ Z̃m =

⇣
1� Z̃m

⌘
Z̃

1� Z̃
, Ca(r,')

For Z̃ = e�j', ' 6= 2k⇡, k 2 Z we obtain for Ca(1,') a simplified expression.

Ca(1,') =

�
1� e�jm'

�
e�j'

1� e�j'
=

e+j m'
2 � e�j m'

2

e+j '
2 � e�j '

2

e�j m'
2

e�j '
2

e�j'

Ca(1,') =
sin

�m'
2

�

sin
�'
2

� e�j m+1
2 '

For Z̃ = e�j', ' = 2k⇡, k 2 Z, the complex number C(1, 2k⇡) =
Pm

`=1 1 = m.
For any k 2 Z, the following limit of Ca(1,') exists, as the side limits are equal,
and its value coincides with that of C(1, 2k⇡).

lim
'!2k⇡

Ca(1,') = lim
'!2k⇡

sin
�m'

2

�

sin
�'
2

� e�j m+1
2 ' = m
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12 Nikolaos Chrysanthopoulos, George P. Papavassilopoulos

Thus, C(1,') ⌘ Ca(1,') 8' 2 R. By setting ' = 2!
m+1 in the equivalent

alternative expression we obtain:

C(1,
2!

m+ 1
) =

sin
⇣

m
m+1!

⌘

sin
⇣

1
m+1!

⌘e�j!, 8! 2 R

ut

The set S̃Bm contains the complex numbers ⇢(!)e�j! for ! 2

h
0, (m+1)⇡

2

⌘
along

with their conjugates for ! 2

h
(m+1)⇡

2 , (m+ 1)⇡
⌘
.

S̃Bm =

8
<

:
1

m

sin
⇣

m
m+1!

⌘

sin
⇣

1
m+1!

⌘e�j! : ! 2 [0, (m+ 1)⇡)

9
=

; (21)

Let us consider the curve hm(!) = 1
m

sin( m
m+1!)

sin( 1
m+1!)

e�j!, ! 2

h
0, (m+1)⇡

2

⌘
and its

symmetric about x-axis, i.e. for ! 2

h
(m+1)⇡

2 , (m+ 1)⇡
⌘
.

Lemma 3 Let hm(!) = 1
m

sin( m
m+1!)

sin( 1
m+1!)

e�j! where m 2 N+. Then for ! 2 [0,⇡]

it holds that khm(!)k � khm(k⇡ + !)k for k 2 N+, k < m+1
2 .

Proof Suppose ! 2 (0,⇡] and consider the following ratio for k 2 N+, k < m+1
2 .

khm(k⇡ + !)k

khm(!)k
=

������

sin
⇣

m
m+1k⇡

⌘
cot

⇣
m

m+1!
⌘
+ cos

⇣
m

m+1k⇡
⌘

sin
⇣

1
m+1k⇡

⌘
cot

⇣
1

m+1!
⌘
+ cos

⇣
1

m+1k⇡
⌘

������

khm(k⇡ + !)k

khm(!)k
=

������

sin
⇣
k⇡ �

1
m+1k⇡

⌘
cot

⇣
m

m+1!
⌘
+ cos

⇣
k⇡ �

1
m+1k⇡

⌘

sin
⇣

1
m+1k⇡

⌘
cot

⇣
1

m+1!
⌘
+ cos

⇣
1

m+1k⇡
⌘

������

khm(k⇡ + !)k

khm(!)k
=

���sin
⇣

1
m+1k⇡

⌘
cot

⇣
! �

1
m+1!

⌘
� cos

⇣
1

m+1k⇡
⌘���

���sin
⇣

1
m+1k⇡

⌘
cot

⇣
1

m+1!
⌘
+ cos

⇣
1

m+1k⇡
⌘���

– For ! 2 (0,⇡), since kcot (✓)k is symmetric around ✓ = ⇡/2, the independent

of ! terms are positive and
���cot

⇣
! �

1
m+1!

⌘��� <
���cot

⇣
1

m+1!
⌘���. Thus, the

ratio is less than the unit and therefore khm(!)k > khm(k⇡ + !)k.

– For ! = ⇡, it holds that cot
⇣

m
m+1⇡

⌘
= cot

⇣
1

m+1⇡
⌘
and therefore khm(⇡)k =

khm((k + 1)⇡)k = 1
m since sin

⇣
m

m+1⇡
⌘
= sin

⇣
1

m+1⇡
⌘
.

– For ! = 0, khm(0)k = 1 and khm(⇡)k = 1
m therefore khm(0)k > khm(k⇡)k.

ut

The final authenticated version is available online at: http://dx.doi.org/10.1007/s12351-019-00522-z

This is a post-peer-review, pre-copyedit version of an article published in Operational Research. 



Adaptive rules for Cournot games of high competition level 13

Combining the previous results, we reach the final description of the set S̃m [

S̃Bm in (22). For the game to converge, the reciprocal eigenvalues of A should
not belong to this set.

S̃m [ S̃Bm =

8
<

:kck ej! 2 C : kck 
1

m

sin
⇣

m
m+1!

⌘

sin
⇣

1
m+1!

⌘ , ! 2 (�⇡,⇡]

9
=

; (22)

Lemma 4 The sequence of sets S̃m [ S̃Bm, m 2 N+ is strictly decreasing, i.e.
S̃m [ S̃Bm � S̃m+1 [ S̃Bm+1.

Proof The curve hm(!),! 2 (�⇡,⇡] is the boundary of S̃m[S̃Bm. The derivative
of khm(!)k with respect to m for ! 2 (�⇡,⇡) is negative as a summation of
negative terms.

d
dm

✓
1
m

sin( m
m+1!)

sin( 1
m+1!)

◆
=

=
cos( m

m+1!)m sin( 1
m+1!) 1

(m+1)2
!�sin( m

m+1!)
⇣
sin( 1

m+1!)+m cos( 1
m+1!) 1

(m+1)2
!
⌘

(m sin( 1
m+1!))

2 =

= �
sin( m

m+1!)
m2 sin( 1

m+1!)
+ m

(m+1)2
!

cos( m
m+1!) sin( 1

m+1!)�cos( 1
m+1!) sin( m

m+1!)
(m sin( 1

m+1!))
2 =

= �
sin( m

m+1!)
m2 sin( 1

m+1!)
+ m

(m+1)2
!

sin( 1
m+1!� m

m+1!)
(m sin( 1

m+1!))
2 =

= �
sin( m

m+1!)
m2 sin( 1

m+1!)
�

m
(m+1)2

!
sin(m�1

m+1!)
(m sin( 1

m+1!))
2

Therefore, the curve hm(!), ! 2 (�⇡,⇡] shrinks as m increases. This can
also be seen in Fig. 2(b) and consequently S̃m+1 [ S̃Bm+1 is a proper subset of

S̃m [ S̃Bm for any m 2 N+. ut

The set S̃m [ S̃Bm where the reciprocal eigenvalues �̃i of matrix A should
not belong is depicted in Fig. 3. The set that contains all the inverted elements
of S̃m [ S̃Bm is the set where the eigenvalues �i of matrix A should not belong.
This is C \ Sm and it is described by (23).

C \ Sm =

8
<

:kck ej! 2 C : kck � m
sin

⇣
1

m+1!
⌘

sin
⇣

m
m+1!

⌘ , ! 2 (�⇡,⇡]

9
=

; (23)

Of particular interest is the set Sm, which contains all possible eigenvalues
that ensure the stability of the system and the convergence of the SMA game
to the equilibrium.

Sm =

8
<

:kck ej! 2 C : kck < m
sin

⇣
1

m+1!
⌘

sin
⇣

m
m+1!

⌘ , ! 2 (�⇡,⇡]

9
=

; (24)
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14 Nikolaos Chrysanthopoulos, George P. Papavassilopoulos

Lemma 5 For ! 2 (�⇡,⇡], Re (1/hm(!)) has its maximum at ! = 0 and its
minimum at ! = ⇡, so �m  Re (1/hm(!))  1.

Proof Let f (!) = Re (1/hm(!)), ! 2 (�⇡,⇡]. For ! 2 (�⇡,⇡), f is di↵eren-
tiable and has an interior critical point at ! = 0.

d
d! (f(!)) = d

d!

⇣
Re

⇣
1

hm(!)

⌘⌘
= d

d!

✓
m

sin( 1
m+1!)

sin( m
m+1!)

cos (!)

◆
= . . . =

= m

✓
1

m+1 sin( 1
m+1!+ m

m+1!) cos(!)�cos(!� m
m+1!) sin( 1

m+1!)
sin2( m

m+1!)

◆
=

= m
2

✓
1

m+1 sin(2!)�sin( 1
m+1 2!)

sin2( m
m+1!)

◆
= m

2

✓
E(!)

sin2( m
m+1!)

◆

For ! 2 (�⇡, 0), f is increasing since E (!) > 0 and for ! 2 (�⇡, 0), f
is decreasing since E (!) < 0.Thus, at ! = 0 f obtains its global maximum,
which is f (0) = 1.At the end point of the domain (! = ⇡), the global minimum
of f is obtained. This is f (⇡) = �m. Therefore, �m  Re (1/hm(!))  1. ut

Theorem 2 The homogenous discrete time linear system of (13) for the SMA
case where w` = w̄ = 1/m, 8` 2 {1, 2, . . . ,m} is stable if m > n�1

2 , i.e. the
number of delays is greater than half of each firm’s rivals..

Proof Based on Proposition 1, the eigenvalues of matrix A (�n�1
2 and 1

2 )
should belong to Sm for the corresponding system to be stable and for the SMA
game to converge to its equilibrium. Consider the description for Sm obtained

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1

Re[c]

-1.5

-1

-0.5

0.5

1

1.5

Im[c]

\ S
m
S
m

B( )

-m

Fig. 3: Sets S̃m[ S̃Bm and C\Sm where �̃i and �i should not belong respectively
for stability. Example presented for m = 4.
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Adaptive rules for Cournot games of high competition level 15

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1

Re[c]

-1.5

-1

-0.5

0.5

1

1.5

Im[c]

-m

n-1

2
λmax =

1

2
λi =

Fig. 4: The set Sm where all �i should belong for the system to be stable. The
example presented here is for m = 4 delays and n = 8 players.

in (24). From the fact that for any c 2 Sm it holds that �m < Re(c) <
1 (Lemma 5) and given that the sequence of sets Sm, m 2 N+ is strictly
increasing (Lemma 4), all the eigenvalues of A belong to Sm if m > n�1

2 . ut

Fig. 4 shows the set Sm, along with the eigenvalues of matrix A for a
case where convergence is ensured. Theorem 2 relates the number of players
of the game with the number of delays required for convergence. Therefore,
every game of the form (1), where n players adopt SMA adaptive rules of m
delays (more than half the rivals), converges to the equilibrium. This result is
consistent with the su�cient condition that can be obtained using Theorem
1. The eigenvalue of interest in terms of system’s stability is the dominant
eigenvalue �A

max = �
n�1
2 . By considering the ratios of successive coe�cients

of (16) it can be observed that w`�1

w`
= 1 for 2  `  m and w0

w1
= 2m

n�1 . By
a straight forward application of Kakeya’s Theorem, a su�cient condition for
the roots of the reciprocal polynomial to lay outside of the unit circle, i.e.
kZ̃rk > 1, 8i 2 {1, 2, . . . , nm}, is m > n�1

2 .

4.2 Cumulative Moving Average (CMA)

In this case, the weights of the delays change uniformly at every stage as new
history observations are introduced in the adaptation process. The weights
depend on the stage of the game and consecuently on the number of instances
of the outcomes available in the full history of the game, i.e. wt,` = w̄t =
1/t, 8` 2 {1, 2, . . . , t}. The CMA game of (9) is a Discrete Linear Time-Varying
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1.5

Im[c]

01...1-tt1+t2+t3+t

Time

STABLE REGION UNSTABLE REGION

1

2

n-1

2
λmax = λi =

Fig. 5: Relative position of matrix A eigenvalues �i and of the strictly increas-
ing sequence of sets St, t 2 N+. After a su�cient large step the game transits
to the stable region and after that point convergence to the equilibrium is
ensured.

(DLTV) system and can be expressed also in the form of (25). Its Time-
Varying property can be seen clearly by observing matrix An(t � 1), which
has eigenvalues �n(t� 1) = 2t�1�n

2t and �c(t� 1) = 2t�1
2t of multiplicity 1 and

n� 1, respectively. Its only stationary point is the Cournot-Nash equilibrium

x⇤ =
�
I+ 1

2AG

��1
B.

xt =

✓
I�

✓
1

2
AG + I

◆
1

t

◆
xt�1 +

1

t
B (25)

An(t� 1) = I�

✓
1

2
AG + I

◆
1

t
=

2

66664

t�1
t �

1
2t · · · �

1
2t

�
1
2t

t�1
t

. . .
...

...
. . .

. . . �
1
2t

�
1
2t · · · �

1
2t

t�1
t

3

77775

n⇥n

(26)

The results obtained already for the SMA case can be found also useful in
studying the convergence of the CMA game, even if it is a DLTV system. In
this case, the set St is of interest. The sequence of sets St, t 2 N+ is strictly
increasing since St ⇢ St+1 for any t 2 N+. Following Theorem 2 there exists a
stage t0 = min

�
t 2 N+ : t > n�1

2

 
after which all the eigenvalues of matrix A

are contained in St. Exactly at t0 the CMA game is identical to a SMA game of
t0 delays and, due to the latter’s stability, (27) holds for ⌧ � t0. Consequently,
for any following stage t > t0 of the CMA game there exists a SMA game of
m = t delays and initial history h⌧�1

t the history ht�1 of the CMA game that is
stable for ⌧ � t. Considering only the first stage of all those SMA games of the
same unique equilibrium x⇤ and a per stage sequential transition we conclude
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Adaptive rules for Cournot games of high competition level 17

that (27) holds for t > t0. Since x⇤ is its fixed point, for any t > n�1
2 the CMA

game presents an asymptotically stable behavior by following, converging to
the equilibrium x⇤, trajectories.

kxt � x⇤
k  kxt�1 � x⇤

k (27)

Alternatively, a more appropriate way to study its stability is by consid-
ering the evolution of the di↵erence of the state vector from the stationary
point x⇤. By subtracting x⇤ from both sides of (25) an autonomous homoge-
nous system description, i.e. xt � x⇤ = An(t � 1) (xt�1 � x⇤), is obtained.
The application of the Euclidean norm results in expression (28) and leads
to Theorem 3 that bounds the distance from the equilibrium, with the upper
bound presented in Fig. 6 in a log-linear scale. The asymptotic stability of the
CMA game is not only consistent with our previous findings but confirms the
continuous-time literature (Thorlund-Petersen, 1988; Deschamps, 1975).

kxt � x⇤
k  kAn(t� 1)k kxt�1 � x⇤

k , 8t 2 N+ (28)

Theorem 3 For t 2
�
t 2 N+ : t > 1

4 (n+ 1)
 
, the CMA game, which is equiv-

alent to the Cournot game under fictitious play, presents a convergent behavior
with kxt � x⇤

k  kxt�1 � x⇤
k since the number of players is finite and the

CMA game is asymptotically stable.

Proof For (27) to hold, the distance from the equilibrium has to be descend-
ing over time, equivalently kAn(t� 1)k has to be less than the unit. The
spectral norm kAn(t� 1)k is equal to the greatest singular value of An(t�1),
which is the square root of the greatest eigenvalue of An(t� 1)An(t� 1), i.e.
kAn(t� 1)k = �max (An(t� 1)) =

p
�max (An(t� 1)An(t� 1)). Since both

matrices have inherited the structure of AG, the singular values of An(t� 1)
can be found explicitly as equal to the absolute value of its eigenvalues, with
the maximum one given in (29). Considering (27) along with the asymptotic
limit of (25), the convergence follows.

kAn(t� 1)k = �max (An(t� 1)) = max

⇢����
2t� 1� n

2t

���� ,
����
2t� 1

2t

����

�
(29)

ut

To gain a better insight on the dynamics of the CMA game, let us consider
the ratio of the vector norms of the di↵erence from the fixed point x⇤ of two
sequential state vectors. The Theorem that follows along with Fig. 6 serve this
cause, while the comments that conclude this section point out some important
aspects of the CMA rule.

Theorem 4 For every t 2 N+, the ratio of the vector norms of two sequential
states of the DLTV homogenous system xt�x⇤ = An(t�1) (xt�1 � x⇤), which
describes the behavior of the CMA game, is bounded by the minimum and the
maximum singular value of An(t � 1) and the game converges sublinearly to
its fixed point x⇤.
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Fig. 6: Evolution of the spectral norm of An(t � 1), which upper bounds the
speed of convergence of the CMA game (fictitious play). Cases for 2 to 25
players.

Proof By setting yt = An(t � 1)yt�1 and An(t � 1) = 2t�1
2t In �

1
2t1n1T

n ,
consider the CMA game in the form of (30), where In is the identity n ⇥ n
matrix and 1n the n ⇥ 1 vector of ones. As it can be inferred by (30), the
sequence yt 2 span {y0,1n} , 8t 2 N+. The unit vectors i1n = 1n/pn , i? such
that hi?, i1ni = 0 and span {i?, i1n} = span {y0,1n}, form a natural basis
of the corresponding subspace. Given that the angle between yt�1 and 1n is
't�1, expression (31) can be obtained.

yt =

✓
2t� 1

2t
In �

1

2t
1n1

T
n

◆
yt�1 =

2t� 1

2t
yt�1 �

n

2t

1n
p
n

⌧
1T
n

p
n
,yt�1

�
(30)

yt = kyt�1k

✓
2t� 1� n

2t
cos('t�1)i1n +

2t� 1

2t
sin('t�1)i?

◆
(31)

The ratio of the vector norms of two sequential states of the DLTV system is
given in (32). Its critical points, obtained for either ' = ⇡ or ' = ⇡+ ⇡

2 , k 2

Z, are a minimum and a maximum, which are equal to the minimum and the
maximum singular value of An(t� 1), respectively. The bounding expression
follows, while the sublinear convergent behavior is obtained by finding the
asymptotic limit of (32) equal to one.

kytk

kyt�1k
=
q

�2
n(t� 1) cos2('t�1) + �2

c(t� 1) sin2('t�1) (32)

min
��� 2t�1�n

2t

�� ,
�� 2t�1

2t

�� 
kytk

kyt�1k  max
��� 2t�1�n

2t

�� ,
�� 2t�1

2t

�� , 8t 2 N+

ut

In Fig. 7, the evolution of singular values over time is depicted for an
increasing number of players along with the evolution of the ratio for three
di↵erent initial conditions for a particular case (n = 8). Among them is one
of symmetric di↵erence, one where only one player deviates and a third one
where the initial vector lays very close to the eigenspace of �c(t� 1).
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Fig. 7: Singular values of An(t � 1) that bound the speed of convergence of
the CMA game (fictitious play) for 2 to 25 players along with three particular
cases for n=8.

Remark 1 In the cases where the initial condition y0 and one of the eigen-
vectors are linearly dependent, the ratio is equal to the absolute value of the
corresponding eigenvalue. Typical example is the symmetric case, where all
players begin having the same di↵erence from the equilibrium, yt and 1n are
all the time linearly dependent and the ratio is equal to k�n(t� 1)k. For y0

belonging to the subspace spanned by the other n�1 eigenvectors, the ratio is
equal to k�c(t� 1)k and the game does not experience an exploding behavior
at any time.

Remark 2 The ratio as time progresses lays on a strip of decreasing width (Fig.
7), close to one. This makes any adaptation to a new, shifted, equilibrium on
a later time to be more di�cult and the speed of convergence much slower.
This is also identified, from a slightly di↵erent perspective, in Section 5.2 to
be a serious drawback of the CMA adaptive rule and, generally, of fictitious
play as a learning strategy.

5 Comparative Analysis

In this section, through simulations, we validate the theoretical results ob-
tained on the convergence of the game and we examine the qualitative char-
acteristics of the adaptive rules proposed to identify their suitability. By con-
sidering an example market under two main scenarios - of fixed and increasing
competition level - we develop a benchmarking environment for studying the
role di↵erent parameters play on players’ interaction.

Let the markets consist of n identical firms, each one of them having
marginal cost ci = 40. The linear demand parameters considered in the cases
that follow are a = 100 and b = 0.1. Before we proceed further with the two
scenarios and the respective results, let us first introduce the Euclidean dis-
tance from the equilibrium in the n dimensional space which can be used as
a metric of convergence. This metric will facilitate the comparison, in terms
of convergence, of results obtained in markets of di↵erent number of players.
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It will also allow the initialization of the games in a uniform and comparable
way, by taking initial conditions from the n dimensional hyperspheres of radius
⇢n,t, centered at the corresponding equilibria points.

⇢n,t =

vuut
nX

i=1

(x⇤
i � xi,t)

2 (33)

5.1 Markets of fixed number of players

For the fixed competition level scenario, we assume that each of the markets
considered has a di↵erent but fixed number of players. The results presented
below correspond to sets of 100 games of di↵erent initial conditions. For the
games where the SMA rules have been adopted, m states are required for the
proper initialization of the game. On the contrary, for the CMA and the CSMA
rules one initial condition su�ces for the interaction to begin. By considering
that every player brings about a bias on the equilibrium quantities we take
the radius ⇢n,t of the n dimensional hypersphere increasing on the number of
players by a constant bias. Although games of more players are initialized fur-
ther away from the equilibrium, the di↵erent adaptive rules can be compared
on a common basis since an identical distance is imposed before the beginning
of interaction.

The games of the sets have been used for the formation of the region
of potential outcome, serving the need of indicating the characteristics of the
trajectories from both the time and the output perspectives. Those regions are
presented in the figures along with one of the trajectories where the output
of each player is distinguished as well. Markets of di↵erent competition levels
are presented for three di↵erent cases of delays. Games of 5, 8 and 11 players
(n) are simulated in the cases of 3, 6 and 9 delays (m) for the three adaptive
rules presented. To facilitate the discussion about those games, let us define as
GR

n,m the game of n players who adopt the adaptive rule R for the case of m
delays. For comparability reasons, the SMA and the CMA rules are presented
together in Fig. 8, while the CMA and the CSMA are presented in Fig. 9.

In Fig. 8, for the games GSMA
5,m , m 2 {3, 6, 9}, which converge for all the

delays cases presented, the belated convergence due to more initial conditions
required, can be seen clearly. Comparing the interaction from the step at which
the SMA rule is activated, the increase in delays doesn’t imply faster conver-
gence to the equilibrium but only a less volatile one. Respectively for the CMA
rule games (GCMA

5,m ), the direct entrance of the dynamics in their stable region
can be observed with the duration of the interaction in the unstable region
to be negligible. As the number of players increases, the unsuitability of the
SMA rule in the GSMA

11,3 and the GSMA
8,3 games due to its divergent behavior,

become obvious4. Longer stay in the unstable region leads to temporal deviat-

4 Firms’ output can take non-negative values and this has been imposed in simulations;
The nonlinearities that may occur (Cánovas et al., 2008) in the case of bounded action sets,
given the existence of a Nash Equilibrium are out of the scope of this paper.
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Fig. 8: Trajectories of games of 5, 8 and 11 players under the adoption of SMA
and CMA rules. SMA is presented for the 3, 6 and 9 delays cases.
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Fig. 9: Trajectories of games of 5, 8 and 11 players under the adoption of
CSMA and CMA rules. CSMA is presented for the 3, 6 and 9 delays cases.

ing trends which a↵ect the market price and the profits, resulting in negative
e↵ects. After the incorporation of richer information sets, the dynamics be-
come stable and the outcome trajectories get into convergent paths towards
the equilibrium.

The hybrid rule CSMA, originating from the combination of the two main
rules, inherits characteristics present in both the SMA and the CMA rule. As
can be seen in Fig. 9, the instability that occurred in the GSMA

11,3 and the GSMA
8,3

games is also maintained by the CSMA rule. In this figure, where the CSMA
rule is in direct comparison with the CMA rule, the divergent course of the
CMA games’ outcome, during the first stages of interaction, can be identified as
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Fig. 10: Convergence behavior comparison between SMA, CMA and CSMA
rules in set ofs games of 5, 8 and 11 players. Mean of the radius ⇢n,t and its
standard deviation.

another problematic element inherited by the CSMA rule. On the other hand,
the CSMA adaptation exploits the zero need for excessive initial conditions
and at the same time is exempted by the drawback of the CMA rule, referring
to the very late exact convergence to the equilibrium. Specifically, this measure
is captured by the radius ⇢n,t, of which the mean and the standard deviation
of the sets of 100 games is presented in Fig. 10. In this figure, the inability
of the CMA rule adaptation to reach the equilibrium in the short run due
to its “no-forget” property becomes clear. It is worth mentioning that better
performance in terms of minimization of the distance from the equilibrium is
exhibited by the CSMA adaptation. It seems that this periodic re-triggering of
oscillatory response with delaying amplitude recalibrates the outcome closer to
the equilibrium. Due to the replacement of one of the unstable moments, with
a moment closer to the equilibrium, on each recalibration round the responses
are centered at an improved level in terms of distance from it.

The statistics of the radius ⇢n,t, as presented in Fig. 10, indicate that
aside from the convergence property that a rule should ensure, the transient
behavior that results also matters. It is not possible to conclude to an overall
superior rule, since the suitability of the rule depends strongly to market’s
characteristics. The uncertainty about the number of decision makers and the
intolerance of strongly competitive outcomes where losses incur are examples
of characteristics that can make some rules to be more adequate and suitable
than others. Adoption of di↵erent rules by di↵erent players can counteract
the main disadvantages of each rule and enhance the overall e�ciency of the
outcome.
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5.2 Markets of increasing competition level

Under this scenario, where the number of firms increases, we examine how
the adoption of a CMA, a CSMA and a newly introduced Dynamic-CSMA
rule a↵ects the games outcome. In all cases the game starts as a duopoly and
ends with nf = 25 players. Firms enter the market in intervals of �t = 50
steps, having only one biased observation of the state, which they use as an
initial condition. The asymmetries occurred are mainly due to the di↵erent
history ht�1 in which firms of di↵erent entry time have access to. Even if all
the previous analysis has been made for symmetric cases, where firms start
concurrently, the concept of new entrants in the market implies asynchronous
adaptation. Therefore, the example market deployed here make use of the
results obtained for games where players on every step exploit the same history
and adopt identical adaptive rules, aiming to provide a further comparability
base.

Fig. 11 presents the output of all firms as their number increases for both
the CMA and the CSMA cases. The evolution of the marginal profit, i.e. the
di↵erence between the market price and the marginal cost, is also depicted.
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(a) Output of firms and marginal profit in an example market where players adopt CMA
rule
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(b) Output of firms and marginal profit in an example market where players adopt CSMA
rule of maximum m = 12 delays

Fig. 11: Outcome of games under CMA and CSMA rules in markets of in-
creasing competition
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It can be said that the CMA rule is found unsuitable, since the “no-forget”
principle that characterizes it causes a very slow adaptation. Its asymptotic
convergence causes an extremely belated approach of the Nash equilibrium,
a fact that in the context of a game with varying number of players can
not be neglected. This is mainly because the adoption of the adaptive rules
is based on an assumption initially made; for preventing its questioning and
consequently the emergence of divergent behaviors, the assumption should not
lead to exorbitantly ine�cient outcomes. The lack of symmetry in the length
of history obtained by players of di↵erent arrival times exists all along the
game, with the first firms abstaining more from the equilibrium due to their
inability to exempt from past equilibria. Nevertheless, their profits are higher
than those of the other firms for a long time, as the output is higher, a fact
that contradicts with the identical cost the firms have.

On the other hand, the CSMA rule of m = 12 delays is found to be ideal for
this game. In the beginning, the two firms concurrently approach the duopoly
equilibrium, while in every new entrance they adjust rapidly to the new output
level. The new entering players start with one biased observation of their rivals’
quantity and they start to increase their history along with the interaction till
they switch to the SMA part of that hybrid rule. Therefore, there are some
intervals in which the symmetry is restored, with quantities and profits to be
equally shared. With just one new entrant each time and with every other
participating firm in the SMA phase of the rule, the transient behavior is even
smoother and no “harmonics” e↵ect can be identified.

Similar to the CSMA rule with a fixed number of delays are the results
occurred with the adoption of a Dynamic-CSMA rule. The di↵erence between
those two cases is that in the latter the maximum number of delays each firm
keeps is dynamically controlled, by being based on a strategy. The strategy
should be based on the trend of the output each firm identifies and, for e�-
ciency reasons, it should enrich the history in time, spaningly. An expected
consequence is the firms to end up using slightly di↵erent adaptive rules, an
asymmetry we have not considered so far. A dynamic adjustment process is
expected to allow the number of delays to increase for maintaining conver-
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Fig. 12: Output of firms and marginal profit in an example market where
players adopt the proposed Dynamic-CMA rule
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gence as the number of players increases. At the same time it should aim to
keep the number of delays in a low level so that the speed of adjustment is
kept high enough, such that the convergence is fast. The suggested control
strategy considers the rate of change along with the volatility of the output
when available. This strategy is described by (34) where dit is the length of the
history available to player i at the time of decision making, �i

01 and �i
12 are

the standard deviations of the last two pairs of its output, �xi is the last rate
of change and ⇢0 is the initial divination from the equilibrium.

dit+1 =

(
dit + 1 if (�i

01 > �i
12) ^ (�xi > ⇢0)

dit otherwise
(34)

The firms’ output and the marginal profit, under the adoption of the
Dynamic-CSMA rule, are presented in Fig. 12. The volatility that is observed,
in both the output and the marginal profit, can be explained by the low num-
ber of delays players dynamically select. Beyond that, the outcome level is
comparable to the level of the most e�cient CSMA rule, where all players be-
haved as they knew apriori the maximum number of players. Of course, there
may exist more e↵ective and e�cient strategies for players choosing the length
of history, which can be determined.

6 Conclusion

A discrete time “a la Cournot” game has been considered and its convergence
under adaptive rules inspired by business intelligence tools has been the sub-
ject matter of this work. The game has been deployed in a dynamic framework
and the private information of firms’ costs lead players to update their best
responses using particular rules. The game formulation has been enriched with
the description of a feasible region, able to apply boundaries if the avoidance of
irrational trajectories is a prerequisite. Since the proposed backward-looking
rules exploit previous instances of the output, the history of the game is deter-
mined and two versions are identified, the full and the truncated one, namely.

The ordered datum stream of fixed window length corresponds to the trun-
cated version of the history and is used by the adaptive rule that is based on a
SMA. The least number of delays, or in other words, the smallest length of the
window that guaranties convergence, depends on the number of players and is
determined explicitly. This result is in accordance with the known property of
smoothing that the MA posses and the lower speed of adjustment required for
stability as the number of players increases. For the convergence of the CMA
rule, which as a rule -after some point- presents smoother adaptation than the
least required one, both the transient and the asymptotic behavior have been
studied extensively.

The latter forms the basis for rules inspired by the MA family, suitable for
games where the number of rivals varies or is uncertain. Even if CMA rule
ensures convergence, some of its structural characteristics, such as its “no-
forget” principle, makes it ine�cient for many cases. Somewhere in the middle
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ground lays the hybrid rule, the CSMA, which inherits the step-wise increase
of delays from the CMA while the game is in its unstable region and the fixed
length of the history window from the SMA when the game turns to a stable
region. Such a static rule has been taken into consideration and compared
with the other rules for games of constant number of players. Its dynamic
version should come with the monitoring of an extra measure to identify the
trend behind the volatility and a threshold for triggering the switch between
the basic rules. This goes beyond the scope of this paper but turning the
number of delays to a strategic parameter will result in more sophisticated
and more e�cient strategies, which can ensure convergence and counteract
the disadvantages of static rules.

To conclude, the adaptive rules proposed have been found suitable for the
game at stake, since in their su�cient they ensure convergence. A great advan-
tage of the rules, beyond their simplicity, is that they are based in techniques
already used in entrepreneurial environments. Therefore, the assumption about
their universal adoption sounds more rational. Cournot-like games have been
studied to great extents from di↵erent perspectives and all the results have
enriched oligopoly theory’s literature. Our results are found to be in line with
those already obtained for the continuous adjustment process case and their
equivalent for the discrete one. The more delays the rule implies, the less the
impact of each one of them to the adjustment and, therefore, the game tends
towards a convergent behaviour. The condition determined for the adequate
number of delays for a given level of competition along with the interesting
way it has been obtained, are novel and create a new potential for further re-
search as well. The application of those rules in the modelling of quantity-based
competition markets, where several firms participate, can be a typical exam-
ple. Additionally, the further study of the arbitrary weighting case (Weighted
Moving Average) and of other rules from the MA family (Linearly Descending
Weighted Moving Average, Exponentially Descending Weighted Moving Aver-
age, etc.) could lead to more e�cient rules and constitute potential extensions.
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