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1. Introduction 
 

Diabetes represents a major threat to public health with alarmingly rising trends of 
incidence and severity in recent years, as it appears to correlate closely with emerging 
patterns of nutrition/diet and behavior/exercise worldwide. The concentration of blood 
glucose in healthy human subjects is about 90 mg/dl and defines the state of 
normoglycemia. Significant and prolonged deviations from this level may give rise to 
numerous pathologies with serious and extensive clinical impact that is increasingly 
recognized by current medical practice. When blood glucose concentration falls under 60 
mg/dl, we have the acute and very dangerous state of hypoglycemia that may lead to brain 
damage or even death if prolonged. On the other hand, when blood glucose concentration 
rises above 120 mg/dl for prolonged periods of time, we are faced with the detrimental state 
of hyperglycemia that may cause a host of long-term health problems (e.g. neuropathies, 
kidney failure, loss of vision etc.). The severity of the latter clinical effects is increasingly 
recognized as medical science advances and diabetes is revealed as a major lurking threat to 
public health with long-term repercussions. 

Prolonged hyperglycemia is usually caused by defects in insulin production, 
insulin action (sensitivity) or both (Carson et al., 1983). Although blood glucose 
concentration depends also on the action of several other hormones (e.g. epinephrine, 
norepinephrine, glucagon, cortisol), the exact quantitative nature of this dependence 
remains poorly understood and the effects of insulin are considered the most important. So 
traditionally, the scientific community has focused on the study of this causal relationship 
(with infused insulin being the “input” and blood glucose being the “output” of a system 
representing this functional relationship), using mathematical modeling as the means of 
quantifying it. Needless to say, the employed mathematical model plays a critical role in 
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achieving (or not) the goal of effective glucose control. In addition, blood glucose 
concentration depends on many factors other than hormones, such as nutrition/diet, 
metabolism, endocrine cycles, exercise, stress, mental activity etc. The complexity of these 
effects cannot be modeled explicitly in a practical context at the present time and, thus, the 
aggregate effect of all these factors is usually represented for modeling purposes as a 
stochastic “disturbance” that is additive to the blood glucose level (or its rate of change). 

Numerous studies have been conducted over the last 40 years to examine the 
feasibility of continuous blood glucose concentration control with insulin infusions. Since 
the achievement of effective glucose control depends on the quantitative understanding of 
the relationship between infused insulin and blood glucose, much effort has been devoted 
over the last 30 years to the development of reliable mathematical and computational 
models (Bergman et al., 1981; Cobelli et al., 1982; Sorensen, 1985; Tresp et al., 1999; Hovorka 
et al., 2002; Van Herpe et al., 2006; Markakis et al., 2008a; Mitsis et al., in press). Starting with 
the visionary works of Kadish (Kadish, 1964), Pfeiffer et al. on the “artificial beta cell” 
(Pfeiffer et al., 1974), Albisser et al. on the “artificial pancreas” (Albisser et al., 1974) and 
Clemens et al. on the “biostator” (Clemens et al., 1974), the efforts for on-line glucose 
regulation through insulin infusions have ranged from the use of relatively simple linear 
control methods (Salzsieder et al., 1985; Fischer et al., 1990; Chee et al., 2003a; Hernjak & 
Doyle, 2005) to more sophisticated approaches including optimal control (Swan, 1982; Fisher 
& Teo, 1989; Ollerton, 1989), adaptive control (Fischer et al., 1987; Candas & Radziuk, 1994), 
robust control (Kienitz & Yoneyama, 1993; Parker et al., 2000), switching control (Chee et al., 
2005; Markakis et al., in press) and artificial neural networks (Prank et al., 1998; Trajanoski & 
Wach, 1998). However, the majority of recent publications have concentrated on applying 
model-based control strategies (Salzsieder et al., 1990; Parker et al., 1999; Lynch & Bequette, 
2002; Rubb & Parker, 2003; Hovorka et al., 2004; Hernjak & Doyle, 2005; Dua et al., 2006; Van 
Herpe et al., 2007; Markakis et al., 2008b) for reasons that are elaborated below.   

These studies have had the common objective of regulating blood glucose levels in 
diabetics with appropriate insulin infusions, with the ultimate goal of an automated closed-
loop glucose regulation (the holy grail of “artificial pancreas”). Due to the inevitable 
difficulties introduced by the complexity of the problem and the limitations of proper 
instrumentation or methodology, the original grand goal has often been substituted by the 
more modest goal of “diabetes management” (Harvey et al., 1986; Berger et al., 1990; 
Deutsch et al., 1990; Salzsieder et al., 1990) and the use of man-in-the-loop control strategies 
with partial subject participation such as meal announcement (Goriya et al., 1988; Fisher, 
1991; Brunetti et al., 1993; Hejlesen et al., 1997; Shimoda et al., 1997; Chee et al., 2003b).  

In spite of the immense effort and the considerable resources that have been 
dedicated to this task, the results so far have been modest, with many studies contributing 
to our better understanding of this problem but failing to produce an effective solution with 
potential clinical utility and applicability. Technological limitations have always been a 
major issue, but recent advancements in the technology of long-term glucose sensors and 
insulin micro-pumps (Laser & Santiago, 2004; Klonoff, 2005) removed some of these past 
roadblocks and presented us with new opportunities in terms of measuring, analyzing and 
controlling blood glucose concentration with on-line insulin infusions.  

It is our view that the lack of a widely accepted model of the insulin-glucose system 
(that is accurate under realistic operating conditions) represents at this time the main 
obstacle in achieving the stated goal. We note that almost all efforts to date for modeling the 
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insulin-glucose system (and consequently, for developing control strategies based on these 
models) have followed the “parametric” or “compartmental” route, which postulates a 
specific model structure (in the form of a set of differential/difference and algebraic 
equations) based on specific hypotheses regarding the underlying physiological 
mechanisms, in accordance with existing knowledge and current  scientific understanding. 
The unknown parameters of the postulated model are subsequently estimated from the 
data, usually through least-squares or Bayesian fitting (Sorenson, 1980). Although this 
approach retains physiological relevance and interpretability of the obtained model, it 
presents the major limitation of being constrained a priori and, therefore, being subject to 
possible biases that may narrow the range of its applicability. This constraint becomes even 
more critical in light of the intrinsic complexity of physiological systems that includes the 
presence of nonlinearities, nonstationarities and patient-specific dynamics.  

We propose that this modeling challenge be addressed by the so-called 
“nonparametric” approach, which employs models of the general form of Volterra 
functional expansions and their many variants (Marmarelis, 2004). The main advantage of 
this generic model form is that it remains valid for a very broad class of systems and covers 
most physiological systems under realistic operating conditions. The unknown quantities in 
these nonparametric models are the “Volterra kernels” (or their equivalent representations 
that are discussed below), which are estimated by use of the available data. Thus, there is no 
need for a priori postulation of a specific model and no problems with potential modeling 
biases. The estimated nonparametric models are “true to the data” and capable of predicting 
the system output for all possible inputs. The latter attribute of “universal predictor” makes 
them suitable for the purpose of model-based control of complex physiological systems, for 
which accurate parametric models are not available under broad operating conditions.  

This book chapter begins with a brief presentation of the nonparametric modeling 
approach and its comparative advantages to the traditional parametric modeling 
approaches, continues with the presentation of a nonparametric model of the insulin-
glucose system and concludes with the demonstration of the feasibility of incorporating 
such a model in a model-based control strategy for the regulation of blood glucose.  

 
2.   Nonparametric Modeling 
 

The modeling of many physiological systems has been pursued in the context of 
the general Volterra-Wiener approach, which is also termed nonparametric modeling. This 
approach views the system as a “black box” that is defined by its specific inputs and outputs 
and does not require any prior assumptions about the model structure. As mentioned 
before, the nonparametric approach is generally applicable to all nonlinear dynamic systems 
with finite memory and contains unknown kernel functions that are estimated in practice by 
use of the available input-output data. Although the seminal Wiener formulation of this 
problem required the use of long data-records of white-noise inputs (Marmarelis & 
Marmarelis, 1978), this requirement has been removed and nonparametric modelling is now 
feasible with arbitrary input-output data of modest length (Marmarelis, 2004). In this 
formulation, the dynamic relationship between the input i(t) and output g(t) of a causal, 
nonlinear system of order Q and memory M is described in discrete-time by the following 
general/canonical expression of the output in terms of  a hierarchical series of discrete 
multiple convolutions of the input: 
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where the qth convolution term corresponds to the effects of the qth order nonlinearities of the 
causal input-output relationship and involves the Volterra kernel kq(m1,…,mq), which 
characterizes fully the qth order nonlinear properties of the system. The linear component of 
the model/system corresponds to first convolution term and the respective first order kernel 
k1(m) corresponds to the traditional impulse response function of a linear system. The 
general model of Eq. (1) can approximate any causal and stable system with finite memory 
to a desired accuracy for appropriate values of Q (Boyd & Chua, 1984). This approach has 
been employed extensively for modeling physiological systems because of their intrinsic 
complexity (Marmarelis, 2004). 
 

 
Figure 1 : The architecture of the Laguerre-Volterra network (LVN) that yields efficient 
approximations of nonparametric Volterra models in a robust manner using short data-
records under realistic operating conditions (see text for description). 
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Among the various methods that have been developed for the estimation of the 
discrete Volterra kernels from input-output data, we select the method utilizing a Volterra-
equivalent network in the form of a Laguerre-Volterra Network (LVN), which has been 
found to be efficient for the accurate representation of high-order systems in the presence of 
noise using short input-output records (Mitsis & Marmarelis, 2002). Therefore, it is well 
suited to the present application that typically relies on relatively short input-output records 
and is characterized by considerable measurement errors and systemic noise. The LVN 
model consists of an input layer of a Laguerre filter-bank and a hidden layer of K hidden 
units with polynomial activation functions (Figure 1). At each discrete time n, the input 
signal i(n) is convolved with the Laguerre filters and the filter-bank outputs are 
subsequently transformed by the hidden units, the outputs of which form additively the 
model output. The unknown parameters of the LVN are the in-bound weights and the 
coefficients of the polynomial activation functions of the hidden units, along with the 
Laguerre parameter of the filter-bank and the output offset. These parameters are estimated 
from input-output data through an iterative procedure based on gradient descent. The filter-
bank outputs vj are the convolutions of the input i(t) with the  respective impulse response 
function bj of the j-th order discrete-time Laguerre function: 
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where the Laguerre parameter α in Eq. (2) lies between 0 and 1 and determines the rate of 
exponential decay of the Laguerre functions. As indicated in Figure 1, the weighted sums ui 
of the filter-bank outputs vj are subsequently transformed into zi by the hidden units 
through  polynomial transformations: 
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The model output g(n) is formed as the summation of the hidden-unit outputs zk and a 
constant offset value g0: 
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where L is the number of functions in the filter-bank, K is the number of hidden units, Q is 
the nonlinear order of the model and wk,j and cq,k are the in-bound weights and the 
polynomial coefficients of the hidden units respectively. The input and output time-series  
data are used to estimate the LVN model parameters (wk,j, cq,k , the offset g0 and the Laguerre 
parameter α) with an iterative gradient-descent algorithm as (Mitsis & Marmarelis, 2002): 
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where δ is the square root of the Laguerre parameter α, γβ, γw and γc are positive learning 
constants, f denotes the polynomial activation function of Eq. (4), r denotes the iteration 

index and ε(r)(n) and '( ) ( )r

k kf u  are the output error and the derivative of the polynomial 

activation function of the kth hidden unit evaluated at the rth iteration, respectively. 
 The equivalent Volterra kernels can be obtained in terms of the LVN parameters as: 
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which indicates that the Volterra kernels are implicitly expanded  in terms of the Laguerre 
basis and the LVN represents a parsimonious way of parameterizing the general 
nonparametric Volterra model (Marmarelis, 1993; Marmarelis, 1997; Mitsis & Marmarelis, 
2002; Marmarelis, 2004). 

The structural parameters of the LVN model (L,K,Q) are selected on the basis of the 
normalized mean-square error (NMSE) of the output prediction achieved by the model, 
defined as the sum of squares of the model residuals divided by the sum of squares of the 
de-meaned true output. The statistical significance of the NMSE reduction achieved for 
model structures of increased order/complexity is assessed by comparing the percentage 
NMSE reduction with the alpha-percentile value of a chi-square distribution with p degrees 
of freedom (p is the increase of the number of free parameters in the more complex model) 
at a significance level alpha, typically set at 0.05. 

The LVN representation is just one of the many possible Volterra-equivalent 
networks (Marmarelis & Zhao, 1997) and is also equivalent to a variant of the general 
Wiener-Bose model, termed the Principal Dynamic Modes (PDM) model. The PDM model 
consists of a set of parallel branches, each one of which is the cascade of a linear dynamic 
filter (PDM) followed by a static, polynomial nonlinearity (Marmarelis, 1997). This leads to 
model representations that are more parsimonious and facilitate physiological 
interpretation, since the resulting number of PDMs has been found to be small (2 or 3) in 
actual applications so far. The PDM model is formulated next for a finite memory, stable, 
discrete-time SISO system with input i and output g. The input signal i(n) is convolved with 
each of the PDMs pk and the PDM outputs uk(n) are subsequently transformed by the 
respective polynomial nonlinearities fk to produce the model-predicted blood glucose output 
as: 
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where gb is the basal value of g and the asterisk denotes convolution. Note the similarity 
between the expressions of Eq. (5) and Eq. (10), with the only difference being the basis of 
functions used for the implicit expansion of the Volterra kernels (i.e., the Laguerre basis 
versus the PDMs) that makes the PDM representation more parsimonious – if the PDMs of 
the system can be found. 
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3. A Nonparametric Model of the Insulin-to-Glucose Causal Relationship 
 

In the current section, we present and briefly analyze a PDM model of the insulin-
glucose system (Figure 2), which is a slightly modified version of a model that appeared in 
(Marmarelis, 2004). This PDM model has been obtained from analysis of infused insulin – 
blood glucose data from a Type 1 diabetic over an eight-hour period. In the subsequent 
computational study it will be treated as the putative model of the actual system, in order to 
examine the efficacy of the proposed model-predictive control strategy. It should be 
emphasized that this model is subject-specific and valid only for the specific type of fast-
acting insulin analog that was used in this particular measurement. Different types of 
insulin analogs are expected to yield different models for different subjects (Howey et al., 
1994). The PDM model employed in each case must be estimated with data obtained from 
the specific patient with the particular type of infused insulin.  Furthermore, this model is 
expected to be generally time-varying and, thus, it must be adapted over time at intervals 
consistent with the insulin infusion schedule. 

 

 
Figure 2: The putative PDM model of the insulin–glucose system used in this computational 
study (see text for description of its individual components).  
 

Firstly, let us give a succinct mathematical description of the PDM model of Figure 
2: the input i(n), which represents the concentration of infused insulin at discrete time n (not 
the rate of infusion as in many computational studies), is transformed by the upper (h1) and 
lower (h2) branches through convolution to generate the PDM outputs v1(n) and v2(n). 
Subsequently, v1(n) and v2(n) are mapped by the cubic nonlinearities f1 and f2 respectively; 
their sum, f1(v1)+f2(v2), represents the time-varying deviation of blood glucose concentration 
from its basal value g0. To sum up, the blood glucose concentration at each discrete time n is 
given by: 
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                  g(n) = g0 + f1[h1(n)*i(n)] + f2[h2(n)*i(n)] + D(n)                                     (11) 

 
where g0 = 90 mg/dl is a typical basal value of blood glucose concentration and D(n) 
represents the aforementioned “disturbance” term that incorporates all the other systemic 
and extraneous influences on blood glucose (described in detail later). 

Remarkably, the two branches of the model of Figure 2 appear to correspond to the 
two main physiological mechanisms by which insulin affects blood glucose according to the 
literature, even though no prior knowledge of this was used during its derivation. The first 
mechanism (modeled by the upper PDM branch) is termed “glucolepsis” and reduces the 
blood glucose level due to higher glucose uptake by the cells (and storage of excess glucose 
in the liver and adipose tissues) facilitated by the insulin action. The second mechanism 
(modeled by the lower PDM branch) is termed “glucogenesis” and increases the blood 
glucose level through production or release of glucose by internal organs (e.g. converting 
glycogen stored in the liver), which is triggered by the elevated plasma insulin. It is evident 
from the corresponding PDMs in Figure 2 that the latter mechanism of glucogenesis is 
somewhat slower and can be viewed as a counter-balancing mechanism of “biological 
negative feedback” to the former mechanism of glucolepsis. Since the dynamics of the two 
mechanisms and the associated nonlinearities are different, they do not cancel each other 
but partake in an intricate act of dynamic counter-balancing that provides the desired 
physiological regulation. Note also that both nonlinearities shown in the PDM model of 
Figure 2 are supralinear (i.e. their respective outputs change more than linearly relative to a 
change in their inputs) and of significant curvature (i.e. second derivative); intuitively, this 
justifies why linear control methods, based on linearizations of the system, will not suffice 
and, thus, underlines the importance of considering a nonlinear control strategy in order to 
achieve satisfactory regulation of blood glucose.  

The glucogenic branch corresponds to the combination of all factors that counter-
act to hypoglycaemia and can be triggered by the concentration of insulin: although their 
existence is an undisputed fact (even the early model of Sorensen (Sorensen, 1985) attests to 
that), to the best of our knowledge, none of the existing models in the literature exhibits a 
strong glucogenic component. This emphasizes the importance of being “true to the data” 
and the dangers from imposing a certain structure a priori. Another consequence is that 
including a significant glucogenic factor complicates the dynamics and much more care 
should be taken in the design of a controller. 

Unlike the extensive use of parametric models for the insulin-glucose system, there 
are very few cases to date where the nonparametric approach has been followed e.g. the 
Volterra model in (Florian & Parker, 2002) which is, however, distinctly different from the 
nonparametric model of Figure 2. A PDM model of the functional relation between 
spontaneous variations of blood insulin and glucose in dog was presented by Marmarelis et 
al. (Marmarelis et al., 2002) and exhibits some similarities to the model presented above. 
Driven by the fact that the Minimal Model (Bergman et al., 1981) and its many variations 
over the last 25 years is by far the most widely used model of the insulin-glucose system, the 
equivalent nonparametric model was derived computationally and analytically (i.e. the 
Volterra kernels were expressed in terms of the parameters of the Minimal Model) and was 
shown to differ significantly from the model of Figure 2 (Mitsis & Marmarelis, 2007). To 
emphasize the important point that the class of systems representable by the Minimal Model 
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and its many variations (including those with pancreatic insulin secretion) can be also 
represented accurately by an equivalent nonparametric model, although the opposite is not 
generally true, we have performed an extensive computational study comparing the 
parametric and nonparametric approaches (Mitsis et al., in press). 

 
4. Model - Based Control of Blood Glucose 
 

 In this section we formulate the problem of on-line blood glucose regulation and 
propose a model predictive control strategy, following closely the development in 
(Markakis et al., 2008b). A model-based controller of blood glucose in a nonparametric 
setting has also been proposed by Rubb & Parker (Rubb & Parker, 2003); however, both the 
model and the formulation of the problem are quite different than the ones presented here. 
 
4.1 Closed - Loop System of Blood Glucose Regulation 
 

 
Figure 3:  Schematic of the closed-loop model-based control system for on-line regulation of 
blood glucose. 
 

The block diagram of the proposed closed-loop control system for on-line 
regulation of blood glucose is shown in Figure 3. The PDM model presented in Section 3 
plays the role of the real system in our simulations and defines the deviation of blood 
glucose from its basal value, in response to a given sequence of insulin infusions i(n). The 
glucose basal value g0 and the glucose disturbance D(n) are superimposed on it to form the 
total value of blood glucose g(n). Measurements of the latter are obtained in practice 
through commercially-available continuous glucose monitors (CGMs) that generate data-
samples every 3 to 10 min (depending on the specific CGM). In the present work, the 
simulated CGM is assumed to make a glucose measurement every 5 min. Since the accuracy 
of these CGM measurements varies from 10% to 20% in mean absolute deviation by most 
accounts, we add to the simulated glucose data Gaussian “measurement noise” N(n) of 15% 

(in mean absolute deviation) in order to emulate a realistic situation. Moreover, the (short) 
time lag in the concentration of glucose between blood and interstitial fluids is modeled as a 
pure delay of 5 minutes in the measurement of g(n). A digital, model-based controller is 
used to compute the control input i(n) to the system, based on the measured error signal e(n) 
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(the difference between the targeted value of blood glucose concentration gt and the 
measured blood glucose gm(n)). The objective of the controller is to attenuate the effects of 
the disturbance signal and keep g(n) within bounds defined by the normoglycaemic region. 
Usually the targeted value of blood glucose gt is set equal (or close) to the basal value g0 and 
a conservative definition of the normoglycaemic region is from 70 to 110 mg/dl. 
 
4.2 Glucose Disturbance 
 

It is desirable to model the glucose disturbance signal D in a way that is consistent with 
the accumulated qualitative knowledge in a realistic context and similar to actual 
observations in clinical trials - e.g. see the patterns of glucose fluctuations shown in (Chee et 
al., 2003b; Hovorka et al., 2004). Thus, we have defined the glucose disturbance signal 
through a combination of deterministic and stochastic components: 

• Terms of the exponential form n3·exp(-0.19·n), which represent roughly the 
metabolic effects of Lehmann-Deutsch meals (Lehmann & Deutsch, 1992) on blood 
glucose of diabetics. The timing of each meal is fixed and its effect on glucose 
concentration has the form of a negative gamma-like curve, whose peak-time is at 
80 minutes and peak amplitude is 100 mg/dl for breakfast, 350 mg/dl for lunch 
and 250 mg/dl for dinner. 

• Terms of the exponential form n·exp(-0.15·n), which represent random effects due 
to factors such as exercise or strong emotions. The appearance of these terms is 
modeled with a Bernoulli arrival process with parameter p=0.2 and their effect on 
glucose concentration has again the form of a negative gamma-like function with 
peak-time of approximately 35 minutes and peak amplitude uniformly distributed 
in [-10 , 30] mg/dl. 

• Two sinusoidal terms of the form αi·sin(ωi·n+φi) with specified amplitudes and 
frequencies (αi and ωi) and random phase φi, uniformly distributed within the 
range [-̟/2 , ̟/2]. These terms represent circadian rhythms (Lee et al., 1992; Van 
Cauter et al., 1992) with periods 8 and 24 hours and amplitudes around 10 mg/dl. 

• A constant term B which is uniformly distributed within the range [50 , 80] and 
represents a random bias of the subject-specific basal glucose from the nominal 
value of g0 that many diabetics seem to exhibit. 

An illustrative example of the combined effect of these disturbance factors on glucose 
fluctuations can be seen in Figure 4. 
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Figure 4:  Typical effect of glucose disturbance on the levels of blood glucose over a period 
of 24 hours. 
 

The structure of the glucose disturbance signal described above is not known to the 
controller. However, in order to apply Model Predictive Control (MPC - the specific form of 
model-based control employed here) it would be desirable to predict the future values of the 
glucose disturbance term D(n) within some error bounds, so that we can obtain reasonable 
predictions of the future values of blood glucose concentration over a finite horizon. To 
achieve this, we hypothesize that the glucose disturbance signal D can be considered as the 
output of an Auto-Regressive (AR) model: 

 
                                                          D(n) = D·a + w(n)                                             (12)  

 
where   D = [D(n-1) D(n-2) … D(n-K)] ,  a = [a1 a2 ... aΚ]T  is the vector of coefficients of the AR 
model, w(n) is an unknown “innovation process” (usually viewed as a white sequence), and 
K is the order of the AR model. At each discrete-time instant n, the prediction task consists 
of estimating the coefficient vector α, which in turn allows the estimation of the future 
values of glucose disturbance: according to the Certainty Equivalence Control (Bertsekas, 
2005) we can use the estimated disturbance values as if they were actual values, in order to 
compute the glucose disturbance over the desired future horizon, using the AR model 
sequentially. The estimation of the coefficient vector can be performed with least-squares 
methods (Sorenson, 1980). Note, however, that we cannot know a priori whether the AR 
model is suitable for capturing the glucose disturbance presented above or if the least-
squares criterion is appropriate in the AR context. What is most pertinent is the lack of 
correlation among the residuals. For this reason, we also compute the autocorrelation of the 
residuals and seek to make its values for all non-zero lags statistically insignificant, a fact 
indicating that all structured or correlated information in the glucose disturbance signal has 
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been captured by the AR model. A critical part of this procedure is the determination of the 
best AR model order K at every discrete-time instant - in the present study this is achieved 
using the Akaike Information Criterion (Akaike, 1974). 
 
4.3 Model - Based Control of Blood Glucose 
 

Here we outline the concept of Model Predictive Control (MPC), which is at the 
core of the proposed control algorithm. Having knowledge of the nonlinear model and of all 
the past input-output pairs, the goal of MPC is to determine the control input value i(n) at 
every time instant n, so that the following cost function is minimized: 
 

J(n) = [g(n+p|n) - gt]T · Γy · [g(n+p|n) - gt] + ΓU · i(n)2                                (13) 
 
where g(n+p|n) is the vector of predicted output values over a future horizon of p steps 
using the model and the past input values, Γy is a diagonal matrix of weighting coefficients 
assigning greater importance to the near-future predictions and ΓU a scalar that determines 
how “expensive” is the control input. We also impose a “physiological” constraint to the 
above optimization problem in order to avoid large deviations of plasma insulin from its 
basal value and, consequently, the risk of hypoglycaemia: we limit the magnitude of i(n) to a 
maximum of 1.5 mU/L. The procedure is repeated at the next time step to compute i(n+1) 
and so on -- details on MPC and relevant control issues can be found in (Camacho & 
Bordons, 2007; Bertsekas, 2005). 

In our simulations, we considered a prediction horizon of 40 min (p = 8 samples) 
and exponential weighting Γy with a time constant of 50 min. As measures of precaution 
against hypoglycaemia, we used a target value for blood glucose that is greater than the 
reference value (gt = 105 mg/dl) and also applied asymmetric weighting to the predicted 
output vector, as in (Hernjak & Doyle, 2005), whereby we penalized 10 times more the 
deviations of the vector g(n+p|n) that are below gt . The scalar ΓU was set to 0 throughout 
our simulations. 
 
4.4 Results 
 

Throughout this section we assume that MPC has perfect knowledge of the 
nonlinear PDM model. Figure 5 presents MPC in action: the top panel shows the blood 
glucose levels without any control, apart from the basal insulin infusion (blue line), called 
also the “No-Control” case, and after MPC action (green line). The mean value (MV), 
standard deviation (SD) and the percentage of time that glucose is found outside the 
normoglycaemic region of 70-110 mg/dl (PTO) are reported between the panels for MPC 
and “No-Control”. The bottom panel shows the infused insulin profile determined by the 
MPC. Figure 6 presents the autocorrelation function of the estimated innovation process w: 
the fact that its values for all non-zero time-lags are statistically insignificant (smaller than 
the confidence bounds determined by the null hypothesis that the residuals are uncorrelated 
with zero mean) implies that the structure of the glucose disturbance signal is captured by 
the AR-Model. This result is important, considering that we have included a significant 
amount of stochasticity in the disturbance signal. In Figure 7 we show how the order of the 
AR model varies with time, as determined by the AIC, for the simulation case of Figure 5. 
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Figure 5: Model Predictive Control of blood glucose concentration: The top panel shows the 
blood glucose levels corresponding to the general stochastic disturbance signal, with basal 
insulin infusion only (blue line) and after MPC action (green line). The mean value (MV), 
standard deviation (SD) and percentage of time that the glucose is found outside the 
normoglycaemic region of 70-110 mg/dl (PTO) are reported between the panels for MPC 
and without control action. The bottom panel shows the insulin profile determined by the 
MPC. 
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Figure 6:  Estimate of the autocorrelation function of the AR model residuals for the 
simulation run of Figure 5. 
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Figure 7:  The time-variations of the AR model order (as determined by AIC) for the 
simulation run of Figure 5. 
 

Figure 8 provides further insight into how the attenuation of glucose disturbance is 
achieved by MPC: the controller determines the precise amount of insulin to be infused, 
given the various constraints, so that the time-varying sum of the outputs of glucolepsis 
(blue line) and glucogenesis (green line) cancel the stochastic disturbance (red line) in order 
to maintain normoglycaemia. A comment, however, must be made on the large values of the 
various signals of Figure 8: the PDM model presented in Section 3 aims primarily to capture 
the input-to-output dynamics of the system under consideration and not its internal 
structure (like parametric models do). So, even though the PDMs of Figure 2 seem intuitive 
and can be interpreted physiologically, we cannot expect that all the signals included there 
will make physiological sense (apart from the input and the output signals of course). 
 Finally, in order to average out the effects of stochasticity in glucose disturbance 
upon the results of closed-loop regulation of blood glucose, we report in Table 1 the average 
performance achieved by MPC over 20 independent simulation runs of 48 hours each. The 
evaluation of performance is done by comparing the standard indices (mean value, standard 
deviation, percent of time outside the normoglycaemic region) for the MPC and the “No-
Control” case. The total number of hypoglycaemic events is also reported in the last row, 
since it is critical for patient safety. The results shown in this Table and in the Figures above 
indicate that MPC can regulate blood glucose quite well (as attested by the significant 
improvement in all measured indices) and, at the same time, does not endanger the patient. 
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Figure 8: MPC preserves normoglycaemia by cancelling out the effects of glucose 
disturbance (red line), the glucoleptic branch (blue line) and the glucogenic (green line) 
branch. 
 

 

 NO 
CONTROL 

MPC 

MV 182.6 111.5 

SD 89 42 

PTO 87 25 

HYPO 0 0 
 

Table 1: Averages of 20 independent simulation runs of 48 hours each. Presented are the 
mean value (MV) and the standard deviation (SD) of glucose fluctuations, the percentage of 
time that glucose is found outside the normoglycaemic region 70-110 mg/dl (PTO) and the 
number of hypoglycaemic events, for the cases of no control action and MPC. 

 
5. Discussion 
 

This chapter is dedicated to the potential application of nonparametric modeling for model-
based control of blood glucose through automated insulin infusions and seeks to: 
 

• Briefly outline the nonparametric modeling methodology and present a data-based 
nonparametric model, in the form of Principal Dynamic Modes (PDM), of the 
dynamics between infused insulin and blood glucose concentration. This model 
form provides an accurate, parsimonious and interpretable representation of this 
causal relationship for a specific patient and was obtained using a relatively short 
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data-record. The estimation of nonparametric models (like the one presented here) 
is robust in the presence of noise and/or measurement errors and not liable to 
model misspecification errors that are possible (or even likely) in the case of 
hypothesis-based parametric or compartmental models. More information on the 
performance of nonparametric models in the context of the insulin-glucose system 
can be found in (Mitsis et al., in press). 

• Show the efficacy of utilizing PDM models in Model Predictive Control (MPC) 
strategies for on-line regulation of blood glucose. The results of our computational 
study suggest that a closed-loop, PDM - MPC strategy can regulate blood glucose 
well in the presence of stochastic and cyclical glucose disturbances, even when the 
data are corrupted by measurement errors and systemic noise, without risking 
dangerous hypoglycaemic events. 

• Suggest an effective way for predicting stochastic glucose disturbances through an 
Auto-Regressive (AR) model, whose order is determined adaptively by use of the 
Akaike Information Criterion (AIC) or other equivalent statistical criteria. It is 
shown that this AR model is able to capture the basic structure of the glucose 
disturbance signal, even when it is corrupted by noise. This simple approach offers 
an attractive alternative to more complicated techniques that have been previously 
proposed -- e.g. utilizing a Kalman filter (Lynch & Bequette, 2002). 

 
A comment is warranted regarding the procedure of insulin infusions, either 

intravenously or subcutaneously. Various studies have shown that in the case of fast acting, 
intravenously infused insulin the time-lag between the time of infusion and the onset of its 
effect on blood glucose is not significant, e.g. see (Hovorka, 2005) and references within. 
However, in the case of subcutaneously infused insulin, the considerably longer time-lag 
may compromise the efficacy of closed-loop regulation of blood glucose. Although this issue 
remains an open problem, the contribution of this study is that it demonstrates that the 
dynamic effects of infused insulin on blood glucose concentration are “controllable” under 
the stipulated conditions, which seem realistic. Nonetheless, additional methodological 
improvements are possible, if the circumstances require them, which also depend on future 
technical advancements in glucose sensing and micro-pump technology, as well as the 
synthesis of even faster-acting insulin analogs. 

There are numerous directions for future research, including improved methods for 
prediction of the glucose disturbance and the adaptability of the PDM model to the time-
varying characteristics of the insulin-to-glucose relationship. From the control point of view, 
a critical issue remains the possibility of plant-model mismatch and its effect on the 
proposed MPC strategy (since the presented MPC results rely on the assumption that the 
controller has knowledge of an accurate PDM model).  Last, but not least, it is obvious that 
the clinical validation of the proposed control strategy, based on nonparametric models, is 
the ultimate and necessary validation step in adopting this approach. 
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