
  

  

Abstract — This computational study demonstrates the 

efficacy of regulating blood glucose in Type 1 diabetics with a 

Model Predictive Control strategy, utilizing a nonparametric / 

Principal Dynamic Modes model. For this purpose, a stochastic 

glucose disturbance signal is introduced and a simple 

methodology for predicting its future values is developed. The 

results of our simulations confirm that the proposed algorithm 

achieves very good performance, is computationally efficient 

and avoids hypoglycaemic events. 

 

I. INTRODUCTION 
 

Several papers have demonstrated the feasibility of 

regulating blood glucose in Type 1 diabetics via Model 

Predictive Control (MPC) [1]-[5]. The vast majority of them 

adopt a parametric approach to modeling the insulin – 

glucose dynamics: the available input - output data sets are 

fitted in a pre-determined model structure. Very few studies 

till now have used the alternative nonparametric / Volterra 

modeling approach (e.g. [3]), where the structure of the 

model is actually driven by the data. However, even there, 

the nonparametric model utilized is usually constrained in 

some sense (e.g. it includes only the diagonal terms of the 

higher order Volterra kernels).  

The present computational study attempts to go one step 

further: we derive a discrete-time, nonparametric model of 

the insulin – glucose dynamics in Type 1 diabetes, but in the 

much more intuitive and parsimonious form of the Principal 

Dynamic Modes (PDM) [6]. We also introduce a stochastic 

glucose disturbance signal and briefly present the MPC 

algorithm. The results of our simulations are followed by a 

discussion and possible future directions of research. 
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II. METHODS 
 

A. PDM model of Glucose Metabolism in Type 1 Diabetes 

 In [7], a new minimal model structure for the metabolism 

of glucose is introduced. The new model, termed the 

Augmented Minimal Model (AMM), is described by the 

following differential equations: 
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where I represents plasma insulin, � plasma glucagon and X 

insulin action (all deviations from basal values). GI is the 

deviation of blood glucose from the basal value (Gb=90 

mg/dl) due to insulin action, G� is the deviation of blood 

glucose from the basal value due to glucagon action and G is 

the concentration of blood glucose. DI is the intravenous 

insulin input and DG the glucose disturbance (e.g. meals). 

Based on simulations of Sorensen’s model [8] and published 

data, we have concluded that the following set of parameters 

can represent the dynamics of Type 1 diabetes: p1=0.013, 

p2=0.063, p3=9·10
-6

, p4=0.04, p5=0.016, β=0, γ�=3·10
-3

, 

α=8·10
-4

 and θ�=83 (γI and θI do not matter since β=0). 

By simulating the AMM presented above, we produce 

discrete-time, broadband input - output data with sampling 

period equal to 3 minutes. Then we decompose the dynamics 

captured in that data in a linear filter, the Principal Dynamic 

Mode (from which quantities like peak value, peak time, 

time constant and memory of the system are directly 

observable) and a nonlinearity in series, through which the 

output of the filter is transformed. The result of this 

identification procedure is the PDM model of Figure 1: the 

left panel presents the linear filter whereas the right panel 

shows the corresponding nonlinearity and its linear 

approximation, which will be used later on. The normalized 

mean square error of the identification is 1.36% for the 

nonlinear PDM model and 5.68% for the linear one. 
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Note that the output of the PDM model of Figure 1 

corresponds to the deviation of blood glucose concentration 

from its basal value (G-Gb). 
 

FIGURE 1 

THE NONLINEAR PDM MODEL OF THE INSULIN-GLUCOSE 

DYNAMICS AND ITS LINEARIZED COUNTERPART 
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B. Glucose Disturbance 

We define as glucose disturbance every factor that causes 

blood glucose to deviate from its basal value. For the 

purposes of this study we have considered a glucose 

disturbance signal DG, which is additive to the output of the 

PDM model and includes the following components: 

• Three gamma-like functions 
 
(of the form t

3
·e

-0.4t
) every 

24 hours of simulation, representing the effects of the 

three daily meals. These gamma-like functions have 

peak value 40, 60 and 50 mg/dl (breakfast, lunch and 

dinner), peak time about 80 minutes and random times 

of occurrence (uniformly distributed within specified 

periods). The meal forms are roughly equivalent to 

small Lehmann - Deutsch meals [9]. 

• Two sinusoids with periods 8 and 24 hours respectively, 

phases uniformly distributed within [0 , π] and 

amplitudes 10 mg/dl. These sinusoids attempt to capture 

the diurnal and circadian rhythms of glucose [10], [11].  

• Gaussian White Noise (GWN), additive to the sum of 

the other two components, with signal-to-noise ratio 20 

dB. This term represents small-scale, unknown factors 

that affect the concentration of blood glucose.  

In contrast to the vast majority of similar publications, this 

computational study considers also stochastic, non-meal 

disturbance factors, in an attempt to make the glucose 

disturbance signal more realistic and also more challenging 

for the controller. 

 

C. Prediction of Glucose Disturbance 

In order to apply MPC we must be able to predict 

accurately the future values of blood glucose concentration. 

Apart from having a good description of the insulin – 

glucose dynamics and knowing all the past insulin inputs, 

this also implies our ability to predict accurately the future 

values of glucose disturbance. To achieve this we 

hypothesize that the glucose disturbance signal DG can be 

considered as the output of an Auto-Regressive (AR) model: 
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where α is the vector of coefficients of the AR model, w is an 

unknown “innovation process” (ideally a white sequence), 

and K is the order of the AR model. 

     At a discrete-time instant n, the prediction task consists 

of estimating the coefficient vector α, which in turn will 

allow us to estimate the future values of glucose disturbance: 

a consequence of the Certainty Equivalence Principle is that 

we can use the already estimated disturbance values as if 

they were real, in order to compute the glucose disturbance 

over the desired future horizon using sequentially the AR 

model. In that way the issue of predicting disturbance is 

transformed to an equivalent parameter estimation problem. 

The estimation of the coefficient vector can be performed 

with the method of linear least-squares as: 
 

1[ ]T TA A A bα −=  

 

where A is a matrix constructed with the appropriate values 

of the D vectors over M discrete times (M>K) and b is the 

corresponding vector of disturbance values [12]. Note, 

however, that we do not know apriori whether the least-

squares criterion is appropriate in the AR context; what is 

most pertinent is the lack of correlation among the residuals. 

For this reason, we also compute the autocorrelation of the 

residuals and seek to make its values for all non-zero lags 

statistically insignificant, a fact indicating that all structured / 

correlated information in the glucose disturbance signal has 

been captured by the AR model. A critical part of this 

procedure is the determination of the best AR model order K, 

at every discrete-time instant. This is performed using the 

Akaike Information Criterion (AIC) [13]. 

 

D. Model Predictive Control 

Having knowledge of the PDM model describing the 

dynamics between insulin and glucose, all the past insulin 

inputs and an estimate of the future values of glucose 

disturbance, the goal of the MPC is at every time instant n to 

determine the control input value U(n), so that the following 

cost function is minimized: 
 

2( ) [ ( | ) ] [ ( | ) ] ( )T

y UJ n G n p n R G n p n R U n= + − ⋅Γ ⋅ + − +Γ ⋅  

 

where G(n+p|n) is the vector of predicted output values over 

a future horizon of p steps (20 samples in the present study), 

R is the target value for the output (set equal to Gb), Γy is a 

diagonal matrix of weighting coefficients that assigns greater 

importance to the near-future predictions  (negative 

exponential with time constant of 1 hour) and ΓU a scalar, 
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determining how “expensive” is the insulin input (considered 

0 here). More details on MPC, the Certainty Equivalence 

Principle and relevant control issues can be found in [14]. 

The notion of asymmetric weight is also utilized (see e.g. 

[15]), as a measure of precaution against hypoglycaemia. 

 

E. Closed-Loop System 

In our simulations the PDM model plays the role of the 

real system. The objective of the MPC is to attenuate the 

effects of the disturbance signal DG and keep the error signal 

(Gb-G) within bounds, defined as the normoglycaemic region 

(a conservative definition of the normoglycaemic region 

used in this study is from 70 to 110 mg/dl). The use of an 

insulin micro-pump is simulated with the imposition of an 

upper bound of 80 mU/min on the magnitude of the 

exogenous insulin rate. A block diagram of the closed-loop 

system considered in this study can be seen in Figure 2. 
 

FIGURE 2 

CLOSED-LOOP SYSTEM FOR BLOOD GLUCOSE REGULATION 

 
 

III. RESULTS 
 

A. Plant – Model Match 

We begin this section by examining the case when the 

MPC algorithm has perfect knowledge of the nonlinear PDM 

model. The figures presented below aim to give insight into 

how our algorithm works and the performance it achieves 

under all conditions stated above. 

Figure 3 presents the blood glucose concentration without 

control and with MPC, in its upper panel. The lower panel 

shows the intravenous insulin infusion rate (superimposed to 

the basal rate) as determined by the MPC. Obviously the 

proposed algorithm can regulate well blood glucose and is 

able to deal with both positive and negative deviations of 

glucose from its basal value (the latter by reducing the rate of 

infusion below the basal). 

In Figure 4 we can see how the order of the AR-Model 

varies with time, as determined by the AIC, for the 

simulation of Figure 3. Even though several hypotheses can 

be made about its relation with the glucose disturbance 

structure, none can be verified by the results we have seen 

after numerous simulation runs. 

Figure 5 demonstrates the autocorrelation function of the 

innovation process w. The fact that its value for all non-zero 

time lags is statistically insignificant (smaller than the 

confidence bounds determined by the null hypothesis that the 

residuals are uncorrelated with zero mean) implies that most 

of the structure of the glucose disturbance signal is captured 

by the AR-Model. This result is very important, considering 

that we have included a significant level of GWN in our 

disturbance. 
FIGURE 3 

BLOOD GLUCOSE WITH AND WITHOUT MPC AND THE 

CORRESPONDING INSULIN INFUSIONS 
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FIGURE 4 

THE ORDER OF THE AR-MODEL FOR GLUCOSE DISTURBANCE 

PREDICTION 
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In Table 1 we present the average behavior of the MPC 

algorithm with perfect knowledge of the PDM model 

(denoted as PM on the Table), based on some widely 

accepted metrics of performance: the mean value of blood 

glucose (MV), its standard deviation (STD), the percent of 

time that glucose is outside the target regions of [70 , 110] 

mg/dl (PTO) and the average insulin per day required (IU). 

In the same Table we present the case of “No Control” (only 

the basal infusion rate) for comparison with MPC. The 

number of hypoglycaemias that occurred is a good measure 

of the patients’ safety and is also given. 

 

B. Plant – Model Mismatch 

Finally, we consider one of the possible cases of plant – 

model mismatch: we assume that the MPC has access only to 

the linearized version of the PDM model (dashed line in the 

right panel of Figure 1) and not the full nonlinear model. The 

average behavior of the MPC algorithm in the case of plant – 

model mismatch (denoted as PMM) can be found again in 
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Table 1. Comparison with the “perfect model” case shows a 

very slight degradation in performance; the MPC is still able 

to regulate very well blood glucose and not risk the patients’ 

safety. 
FIGURE 5 

AUTOCORRELATION OF THE RESIDUALS OF THE AR-MODEL 
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TABLE   1 

AVERAGE BEHAVIOR OF THE MPC FOR 30 INDEPENDENT 

SIMULATION RUNS OF 48 HOURS EACH 

 

 &O  

CO&TROL 

MPC 

(PM) 

MPC  

(PMM) 

MV 103.1 89.8 91.4 

STD 21 7.8 7.6 

PTO 26 2 3 

IU 14.8 29.8 27.5 

HYPO 0 0 0 

 

IV. DISCUSSION 
 

    The present computational study of Model Predictive 

Control of blood glucose seeks to: 

• Demonstrate that the insulin – glucose dynamics of Type 1 

diabetes can be captured with a data – driven, nonparametric 

model in the form of Principal Dynamic Modes. This form 

provides a parsimonious and intuitive discrete – time 

representation of the actual system. 

• Show the efficacy of utilizing PDM models in model-

based strategies for the regulation of blood glucose. The 

results of our simulations strongly suggest that a PDM - 

MPC strategy can regulate blood glucose very well under the 

presence of stochastic, noise - corrupted disturbance, and at 

the same time avoid dangerous hypoglycaemic events. 

• Provide an alternative way for predicting blood glucose 

disturbance: an Auto-Regressive model, whose order is 

determined adaptively by the AIC, is able to capture the 

basic structure of a stochastic disturbance signal, even if it is 

corrupted by noise. This approach is conceptually simple and 

provides an alternative to other, more sophisticated 

techniques (such as the Kalman filter [2]). 

A side – conclusion of this study comes up by the results 

of the “plant – model mismatch” case: in Type 1 diabetics 

the control design can be based on a linearized version of the 

model of insulin – glucose dynamics and not necessarily the 

precise nonlinear one. A look at Figure 3 shows that 

regulated blood glucose does not exceed ± 20 mg/dl from the 

basal value. In Figure 1 we can see that for deviations up to 

this magnitude, the system operates in the linear region 

anyway. 

The results and conclusions of this paper depend critically 

on the assumption that the model of Sorensen (from which 

the AMM and the PDM models are derived) is an accurate 

description of the blood glucose regulation system. 

Sorensen’s model was derived out of numerous real data sets 

and several computational studies have used it to date, as a 

representation of the actual metabolic system [1], [2], [16]. 

Naturally, clinical validation of both the nonparametric 

model and the performance of the control strategy developed 

here, are necessary future directions in our research. 
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