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A dripping faucet experiment, based on a new apparatus is presented. Time-drop intervals,
covering the entire dripping spectrum, are measured and a multifarious nonlinear action is detected.
In particular, we report three distinct dripping regions of complex behavior and discuss their main
features. Finally, we propose alternative methods for estimating the invariant characteristics of the
experimental signals, in frames of nonlinear time series analysis.
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1. Introduction and historical
notes

A dripping faucet may easily be seen in everyday
life. Its rhythm depends, sensitively, on the �ow
of water and can be either regular or irregular. In
the latter case, one might blame it on noise due
to unseen in�uences such as small air vibrations.
However, it is nowadays well-known that dripping
faucet is a paradigm of a dissipative nonlinear physical
system capable of exhibiting chaos. The same system
can change from a periodic and predictable to an
aperiodic, quasi-random pattern of behavior, as a
single parameter (in this case, the �ow rate) is varied.

The story of drips falling from a faucet goes
back, in the early 70's. At the dawn of this decade,
it had been generally realized that simple mechanical
oscillators can undergo a transition from predictable
to unpredictable behavior analogous to the transition
from laminar to turbulent �ow in a �uid. In 1977,
O. R�ossler suggested that an exceptional connection
between �ow and oscillator dynamics is the example
of a dripping faucet [1]. R. Shaw et al, ([2, 3])
were the �rst who, in 1984, studied this phenomenon
experimentally, proving R�ossler's suggestion true and
establishing the aspect that Chaos is not only
a mathematical product but also a phenomenon
ubiquitous in the real world. In the years to follow,
there had been other similar attempts (see Ref. [4�
6]).
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1.1. The Experimental Apparatus

Water from a large tank (50x50x20 cm) is
metered trough a valve to a nozzle with ori�ce of 4mm
diameter. Drops fall from the ori�ce, break a laser
beam and generate pulses in a photocell signal (see
Fig.1). The signal is guided through an analog device
to a computer where it is digitized. In the end, the
signal we receive is a sequence of pulses adjusted to
drops. What we measure is the time distance between
consecutive peaks, which corresponds to the time
distance between consecutive drops. This sequence of
numbers, {Tn}, is the the apparatus' output signal in
which, study and analysis of its behavior, in frames of
nonlinear dynamic systems theory, is carried out. The
control of the system is the rate of drops, which we will
meet throughout this paper. It will be symbolised by
f and measured in drops/sec units. The experiment's
main speci�cations are: Hydrostatic pressure ' 0.98
atm and environment's temperature at 20 to 25 oC.
For further information on the experimental setup, see
Ref. [7].

FIG. 1. Diagram of the experimental apparatus. The main
tank generates drips to be detected by the laser system
while the secondary tank keeps the main tank's hydrostatic
pressure steady.

198



A New Dripping Faucet Experiment 199

2. Results and Discussion

The project is separated in two sections. The
�rst one is the view of the various signals from
the entire data spectrum that our water system can
generate. Varying the �ow rate (drops/sec), which is
our only control parameter, we observe the recorded
signals and attempt through visual inspection, to
clarify these behaviors.

The second part of our paper is the analysis of
certain output signals implementing more elaborate
techniques of nonlinear time-series analysis (see Ref.
[8�10]). The main strategy is based on modelling
our experimental time-series and generate arti�cial
data capable of providing numerical estimations
of some basic characteristic invariant quantities
of chaos in the dynamical systems, such as
Correlation Dimension, Correlation Entropy and
Maximal Lyapunov Exponent.

2.1. Nonlinear Phenomena and Chaos

A typical recording of the phenomenon's
evolution, provides us with a sequence of numbers
that, as it is stated above, is approximately, the time
between successive drops. The most common method
for inspecting such streams of numbers, is the method
of delay plots (Tn, Tn+1), which is capable of verifying
possible deterministic connection between consecutive
drop intervals. These delay plots can be considered as
Poincar�e planes of an underlying continuous dynamic
system ([2, 4, 8]). Apart from these maps, we will also
make use of the regular time-series plots (n, Tn),when
necessary. Along with delay plots, they are the most
powerfull tool for the understanding of such dynamic
evolution. In our experiment, three sorts of signals
were observed. This is how the necessity to roughly
outline, equal in number, dripping zones, has emerged.
We cited these discreet regions as:

• The 2D Low Dimensional Chaos

• The Nebulous Zone

• The 3D Low Dimensional Chaos.

2.1.1. 2D Low Dimensional Chaos

This family of attractors is de�ned for dripping
rates not higher than f =3.5 drops/sec. This is
a highly unstable zone, where many nonlinear
phenomena coexist with chaos. Typical output signals
of this region are most probably to depict long-term

transients or intermittencies from periodic to chaotic
patterns. As far as the purely chaotic time-series
are concerned, these, generally, converge to strange
attractors which lie on two-dimensional manifolds. In
other words, hénon-like attractors, are the types of
chaotic limit sets to be observed. These attractors
have also been observed [2, 5, 11]. In following �gures,
we will introduce various experimental time-series of
this zone. Furthermore, we will present a phenomenon,
su�ciently, interpreted in frames of a crisis.

Periodic Patterns
Undoubtedly, orbits in this region are not prone
to a regular evolution and thus, periodic patterns
are rarely observed. All in all, we observed periodic
solutions of period one, two, three and four. In
Fig. 2, below, we present a characteristic signal
exhibiting at f=2.43 drop/sec a period-3 behavior,
at �rst, and through an abrupt transition, period-
1 orbits at f=2.53 and 2.54 drop/sec. Despite the
dominating periodicity here, the silhouette of a
"worm-like"attractor, existing nearby period-3 orbit,
is easily noticed.

FIG. 2. Periodic Patterns. Left image (Tn, Tn+1): delay-
plot, right image (n, Tn): time-series. This signal exhibits
regular behavior of period 3 and then 1. For the period-3,
A-noted, interval the estimated rate is f=2.43 drops/sec
while for the rest period-1, B and C-noted,intervals where
f=2.53 and 2.54 drops/sec, respectively.

Transient State
In lower dripping rates, like here, the transition of
a typical orbit to steady state may sometimes be
a generally lengthy procedure. Our system takes
signi�cant amount of time, in order to eliminate
trend and settle down to steady state. The value of
transients in our experiment is that the orbit is for
a long time attracted by the neighboring limit sets,
before settling down to the steady state attractor. This
discloses the contigious, to the steady state attractor,
dynamics. In Figs. 3 and 4 we present two of the most
common kinds of transients. Hence, for example in
Fig. 3 the steady state can be readily identi�ed to
be the period-1 orbit around T≈0.65 sec. However,
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the orbit starts from T≈0.605 sec and in it's e�ort
to reach the steady state, is attracted, �rstly, by a
limit cycle and then by a strange attractor. It can
be, therefore, concluded that a limit cycle and a
strange attractor exist in the dripping rate interval
between 1.54 and 1.65 drops/sec. Another transient

FIG. 3. Transient Mode. Left image (Tn, Tn+1): delay-plot,
right image (n, Tn): time-series. In it's run to steady state,
this signal "indulges"in conterminious basins of attraction
of di�erent limit sets. Finally, it settles down to period one
where f=1.54 drops/sec.

state is presented in Fig. 4. In this case, the signal
varies among three di�erent chaotic attractors. It is
worth noticing that these attractors do not intersect
to each other. Especially B and C limit sets present a
remarkable symmetry.
The feature of transient mode is, exclusively, observed

FIG. 4. Transient Mode. Left image (Tn, Tn+1): delay-plot,
right image (n, Tn): time-series. In the recording above,
the orbit is con�ned in the A-noted region at rate f=2.13
drops/sec, then suddenly jumps to a chaotic mode with
no trend in the B-noted region where f=2.14 drops/sec.
Finally, the trajectory enters the C-noted interval, where
a strange attractor emerges. For this, dripping rate is
calculated to be f=2.19 drops/sec.

in this dripping zone, whereas in the rest two zones no
such states were noticed. We shall continue, now, to
some purely chaotic signals, many of which have been
also detected in previous works (see Ref. [2, 3, 5, 6]).

Strange Attractors

The expected result of any dripping faucet experiment
is of course delay-plots that resemble to �gures
like these of Figs.5 to 7. These worm-like �gures
are now considered to be nothing more than limit
sets topologically similar to a 2D logistic or H�enon

attractor. Here we present our apparatus', lower
dripping rate, chaotic signals. This sort of attractors
is only detected in this dripping zone. In the other
regions, much more complicated attractors come to
view. In the meantime, for f=1.84 drops/sec we will
observe an attractor pretty similar to this of Fig. 5.
For f=1.97 drops/sec a strange set same as this of Fig.

FIG. 5. Chaotic Attractor. Left image (Tn, Tn+1): delay-
plot, right image (n, Tn): time-series. Dripping rate f=1.84
drops/sec.

6 is about to appear and for f=2.68 drops/sec another
attractor, similar to this in Fig. 7, may be discerned.
In the second part of this paper we will work on these

FIG. 6. Chaotic Attractor. Left image (Tn, Tn+1): 2D
delay-plot, right image (Tn, Tn+1, Tn+2): 3D delay-plot.
Dripping rate f=1.97 drops/sec.

two signals again in a more innovative way.

FIG. 7. Chaotic Attractor. Image (Tn, Tn+1): delay-plot.
Dripping rate f=2.65 drops/sec.

A double boundary crisis
In this section we will present a sequence of signals
recorded at the region of 2.67 drops/sec. The system,
here, exhibits an obscure behavior, which however, can
su�ciently be clari�ed as a type of boundary crisis. We
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begin our analysis, by examining the graph in Fig. 8
where f=2.66 drops/sec. The attractor appears to be
splitted in two compartments. This structure can be
detected by speculating a window of our time-series
(n,Tn) plot, presented in Fig. 8. Apparently, the orbit
oscillates between the two fragments going through
a chaotic mode in every part. The strange attractor
consists of these two parts which we have distinguished
with a curve (see Fig. 8). This chaotic mode comes

FIG. 8. First stage of a nonlinear phenomenon related
to a crisis. Left image (Tn, Tn+1): delay-plot, right image
(n, Tn): time-series. Here f=2.66 drops/sec, where a two-
sided chaotic attractor comes to rise. In the right image,
the signal is printed in continuous form, for convenience.

to a halt for f=2.67 drops/sec and a period-2 orbit
supplants the previous attractor, as we can see in Fig.
9. The periodic behavior seizes for f=2.69 drops/sec,

FIG. 9. Second stage of a nonlinear phenomenon related
to a crisis. Left image (Tn, Tn+1): delay-plot, right
image (n, Tn): time-series. Here f=2.67 drops/sec. Abrupt
transition from chaos to period-2 mode.

where a new strange attractor appears. In Fig. 10 we
can notice it's form and magnitude. This attractor is
considerably bigger than that of Fig. 8 and obviously
in a uniform connected structure. The string of
signals presented above may thought to be consecutive
regular intermittencies between order and chaos. This
is, however, a less probable scenario. The same pattern
of behavior has been detected in the Chua Circuit (see
Ref [12]).

2.1.2. Nebulous Zone

This family of attractors is de�ned for dripping
rates between 3.5 drops/sec and 12 drops/sec. At

FIG. 10. Third stage of a nonlinear phenomenon related
to a crisis. Here f=2.69 drops/sec. Abrupt transition from
period-2 mode to chaos.

these dripping rates we meet schemes like these in
Figs. 11 and 12. We call this zone Nebular in order
to depict the withering of deterministic chaos. This
world consists of vague �gures that, although seem
resemblant to strange attractors, they exhibit no pure
chaotic behavior [7]. A possible explanation is that,
at this dripping span, a debilitation in the oscillatory
character of drops may occur. For example, an
attenuation of resonance between the water particles.
It is also likely that typical trajectories of this zone
are, in fact, hybrid; consisting of both deterministic
and stochastic features. In such case, a typical orbit
alters from chance to chaos in an irregular, maybe
chaotic, manner. Nevertheless, further research, in
order to gain a more concrete perspective for the
dynamics of this zone, has to be done.

FIG. 11. Attractors of Nebulous Zone. (Tn, Tn+1) delay-
plots: The left one depicts a signal of f=3.61 drops/sec,
whereas the right one, a signal of f=5.02 drops/sec.

FIG. 12. Attractors of Nebulous Zone. (Tn, Tn+1) delay-
plots: The left one is a signal of f=5.21 drops/sec, whereas
the right one is recorded at f=6.29 drops/sec.
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2.1.3. 3D Low Dimensional Chaos

This is the third and last dripping region, that
is de�ned for f=12 drops/sec to f=23 drops/sec.
Here, novel and more complicated strange attractors
appear. As has already been noted [2, 3], these objects
are not su�ciently de�ned in plane return-maps.
Here we reconstruct them in 2D maps for convenience
reasons, only. Analysis of these signals, in order to
determine the nature and type of chaos showed that
these objects lie in a 3D manifold and su�ciently
de�ned by a 3D dynamic spectrum of Lyapunov
exponents, only one of which has a positive sign
(see ref [2, 7]). This is, actually, the reason for
which both third and �rst zone, are named after.
In the 3D Low Dimensional Chaos dripping area,
chaotic mode is, virtually, omnipresent. Attractors
appear to be remarkably big and of high complexity.
Nevertheless, there are, rather, few nonlinear
phenomena. Transition between attractors is rather
smooth with few intermittencies, whereas periodic
behavior was scarcely detected. Furthermore, neither
transient mode, nor trends or any other instability as
in the �rst zone, was observed (for more see Ref. [7]).
In the next four �gures we present the main strange
attractors, that were detected in this region. In Fig.
16 we plot the 3D representation (Tn,Tn+1,Tn+2) of
the time-series of Fig. 15 (see respective �gures for
further details).
At this point, the representation and inspection of

FIG. 13. Strange Attractors of 3D Low Dimensional Zone.
Left image (Tn, Tn+1): delay-plot, right image (n, Tn):
time-series. Here f=16.78 drops/sec.

FIG. 14. Strange Attractors of 3D Low Dimensional Zone.
Image (Tn, Tn+1): delay-plot. Here f=20.83 drops/sec.

FIG. 15. Strange Attractors of 3D Low Dimensional Zone.
Left image (Tn, Tn+1): delay-plot, right image (n, Tn):
time-series. This attractor has also been found in previous
works (see Ref. [2]) Here f=22.5 drops/sec.

FIG. 16. Strange Attractors of 3D Low Dimensional
Zone. 3D reconstruction of the signal in Fig. 15 in
(Tn, Tn+1, Tn+2) phase space.

some characteristic signals from our experiment, is
completed. Dripping turns to jetting for rates higher
than 23 drops/sec. For even higher dripping rates
experimental equipment of larger capacity is required.
(one can see ref [5, 11]). We now pass on to a new
method for studying our data.

2.2. Nonlinear Modelling

2.2.1. Modelling Strategy

The rudimentary assumption on which the
dripping faucet research is based, is that, whatever
the underlying continuous dynamic system is, the
time intervals between successive drops are,virtually,
numbers generated by a map-equation of the form:

xn+1 = f(xn). (1)
From this point of view, one would try to estimate this
function f and generate data with similar to the real
data statistical features. More information concerning
prediction and modelling of time-series can be found
here [8�10]. Back to our experiment, now, we made
use of a certain nonlinear model.

Radial Basis Functions
This is a very �exible class of global nonlinear models.
According to this modelling strategy, function (1) can
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estimated by a linear superposition of basis functions

xn+1 = F (xn) = a0 +
n∑

i=1

aiΦi(d(xn, yi)) (2)

where Φ(r) are bell-shaped functions with a maximum
at Φ(0) and a rapid decayed towards zero with
increasing r. The argument of Φi is a metric function
of xn and a selected point yi on the attractor. For
more information concerning (2) see Ref [8, 9, 13].
The necessity for modelling our data came from the
fact that the apparatus generates both noisy and
statistically poor time-series. It is obvious that no
valid numerical analysis of a sequence of number with
length less than 3000 points, can be executed. On the
other hand, successful modelling generates arbitrarily
long and noise-free stream of numbers which are
statistically close to our real data. In such case, an
assiduous analysis of our surrogate time-series can
lead to handfull results concerning our real system.
The implemented algorithm worked remarkably well
for pure chaotic signals of the 2D Low Dimensional
Chaos zone, contrary to the rest dripping zones where
the results were disappointing.

In Figs. 17 and 18 we present the delay plots
(Tn, Tn+1) of arti�cial time-series based on the real
signals of Fig.5 and 6, respectively. A rough visual
inspection can verify the resemblance of these signals.
It is worth noticing that the Fig.5 shows a time-series
of 1000 points the corresponding �gure (Fig. 17)
consists of 60000 points. Finally, in Fig. 19 one can
compare and contrast real and modelled time-series
of Fig. 6 and 18 in 3D delay plots.

2.2.2. Invariant Measures

The characterisation of deterministic chaos is
not only a matter of visual inspection of the
plots. Certain criteria have to be full�lled such as
exponential divergence of nearby trajectories and
fractality in the geometry of the limit sets in the
state space of typical solutions. In Ref. [7] we examine
our modelled data thoroughly, in order to provide
tangible evidence for the chaotic nature of stationary
signals in low-dripping rates. Thus, by implementing
certain algorithms [14], we have numerically estimated
invariant quantities, the main of which are correlation
integrals and Lyapunov exponents. In this paper,
we present the main results from our analysis from
the time-series of Fig. 18. In Fig. 20 graphs from
correlation sums are presented. From the local slopes
of di�erent embedding dimensions, we would read o�

an estimate of correlation dimension Dc = 1.48± 0.01
and correlation entropy h2 = 0.34± 0.02.

FIG. 17. RBF model of signal in Fig. 5. Left image
(Tn, Tn+1): delay-plot, right image (n, Tn+1): time-series.

FIG. 18. RBF model of signal in Fig. 6. Left image
(Tn, Tn+1): delay-plot, right image (Tn, Tn+1, Tn+2): 3D
delay-plot.

FIG. 19. Estimates of correlation dimension (left) and
correlation entropy (right) of signal in Fig.6 (f=1.97
drops/sec). The correlation sum has been computed for
embedding dimensions m=2,...,10. For the spatial ε-range
scaling plateaus are detected leading to values Dc =
1.48± 0.01 and h2 = 0.34± 0.02, respectively.

3. Conclusions

In this paper, a new experimental apparatus
for the study of the classic dripping faucet system is
presented. The equipments' stability, as well as the
accuracy of the recordings, allowed an extended study
of the system's dripping spectrum, the bandwidth of
which is approximately 23 drops/sec. Three roughly
distinct dripping zones were de�ned and various
dynamics and phenomena were reported for each
region separately. The �rst one, named 2D Low
Dimensional Chaos, corresponding to lower dripping
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FIG. 20. Estimation of signal signal of Fig. 6. The
embedding reconstructions vary from m=2,...,5 and the
linear parts of the ccurves are well described by and
exponential ∝ e0.49∆n. The estimation of maximam
Lyapunov Exponent is λ = 0.49± 0.01.

rates is a zone of many nonlinear phenomena that
coexist together with chaos. One of them, conistent
with a boundary crisis interpretation is outlined.
Hénon-like types of limit sets were also observed.

The next dripping zone, named Nebulous Zone, is
an unclear region of not purely chaotic dynamics.
It's attractors although seem to be strange, there
are still no concrete evidence in favor of this view.
Finally, the last family,named 3D Low Dimensional
Chaos, is a world of large and complicated strange
attractors which lie in 3D manifolds. In the
last part of the paper a new perspective in
studying our experimental data is proposed. Global
nonlinear �tting models of radial basis functions were
used to generate arti�cial time-series, qualitatively
similar to the ones observed at the laboratory.
This allowed a more profound research upon our
experimental data in characterizing the nature and
quantitative interpretation of deterministic chaos. A
comprehensive analysis of these models is carried out
in Ref. [7].
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