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On the Linear—Quadratic-Gaussian Nash
Game with One-Step Delay Observation
Sharing Pattern

GEORGE P. PAPAVASSILOPOULOS, MEMBER, IEEE

Abstract —This paper studies a two-player Nash dynamic, discrete-time,
linear-quadratic game under the so-called “one-step delay observation
sharing pattern.” It is shown that under very weak assumptions the solution
exists and is unique and linear in the information.

I. INTRODUCTION

HE PURPOSE of this paper is to analyze the two-

player linear—quadratic—-Gaussian Nash game under
the so-called “one-step delay observation sharing pattern.”
This is an important problem in game theory which has
been studied previously only in [6]. Our main result is that
the solution almost always exists and is linear in the
information. By “almost always” we mean that the condi-
tions under which our results hold are satisfied for all
except a set of measure zero of the parameters of the
problem (i.e., the matrices involved). Also, if these condi-
tions are not satisfied, then either there exists no solution
or there exist infinitely many and they might be nonlinear
in the information.

The importance of Nash games is by now widely
accepted, but unfortunately, the theoretical difficulties as-
sociated with them are often discouraging. This is partly
due to the causal appearance of nonclassical information
patterns or nonuniqueness and nonlinearity of the solu-
tions. Also, the behavior of the solution might change
drastically for small variations of parameters or from the
deterministic to the stochastic counterpart.
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The problem considered here is-perhaps the only dy-
namic stochastic Nash game for which a relatively mature
ensemble of results seems to be possible in the near future.
A key point of the formulation is the employment of the
“one-step observation sharing pattern” for the information
of the players. Under this information setup, at each stage
each player acquires a new measurement, recalls all his
previous measurements and the previous measurements of
his opponent, but he has no access to the last measurement
of his opponent. This is a meaningful setup since the
acquisition of the information of the other player always
takes some time, either due to communication delays or
due to the time needed to perform any spying activities.
This type of information structure is different from the
“one-step delay sharing pattern” of [3], where at each stage
each player also has access to the previous control values of
his opponent (in reference to this, see Remark 9 in Section
IV). The only results available for this problem were estab-
lished by Basar in [6] and were based on the study of the
static case in [4] also by Basar. In [6] and [4], appropriate
conditions were imposed on the magnitudes of the norms
of the matrices involved so as to guarantee the use of the
contraction mapping theorem and thus obtain existence
and uniqueness of the solution, which under these condi-
tions turns out to be linear in-the information. Our analysis
is based on [7] where the static case was studied and
completely solved. The use of the results of [7] enables us

- to avoid the use of the contraction mapping theorem and

consequently avoid imposing the very restrictive conditions
of [6]. (It will become evident to the reader that our
assumptions induce those of [6].) Under the conditions that
we use we show that the game under consideration admits
a unique solution which has to be linear in the information.

0018-9286 /82 /1000-1065$00.75 ©1982 IEEE



1066

The meaning of these conditions is the demand that at each
stage the coupling of the costs to go of the two players is
not inversely proportional to some power of the coupling
of their information at this stage. The coupling of the costs
to go at each stage is quantified by the eigenvalues of the
product of the matrices which involve the cross terms of
the two controls at that stage, whereas the coupling of the
information at each stage is quantified by the canonical
correlation coefficients of the information of the two players
at that stage. Our conditions are expressed as invertibility
conditions on several matrices and they do not involve any
bounds on the norms of the matrices. The importance of
our main result lies in our opinion, in that our invertibility
conditions hold for almost all the values of the parameters
and thus it is guaranteed that almost all such Nash games
admit a unique solution which has to be linear in the
information. Having this linearity is appealing not only
due to its simplicity, but also because if the Nash game is
employed as a decentralized approximation of an originally
centralized problem which is linear-—quadratic-Gaussian
and thus has a linear solution, the solution of the ap-
proximate problem (i.e;, of the Nash game) is also linear.
The structure of the paper is the following. In Section II
we pose the problem and in Section III we present the
analysis. In Section IV we discuss possible extensions and
further research problems emanating from our analysis.

II. PROBLEM STATEMENT

Consider the state evolution equation
Xps) = An'xn + Blnuln + B2nu2n + Wns

n=0,1,2,---,N, (1)

the measurement equations

i=1,2, n=0,1,2,--- N, (2)

ym = Cinxn + vin’

and the costs

— ’ R
J=E Xne1Qi N+ 1 XN+ &

N

+ X (xkQuex + upuyy + uijikujk)
k=0 \
i=j, i,j=12. (3)

Xps Uy, Yin take values in finite-dimensional Euclidean
spaces of fixed dimensions, the matrices 4,, B;,,Q,,, R
are real, constant with appropriate dimensions and Q,, > 0,

R, =2 0. xy,w,, v, are Gaussian, zero mean, independent
random vectors and the v,,’s have nonsingular covariance
matrices. u,, is chosen as a measurable function y,, of the
elements of I,,, where

Itk=(1k’y;k)’ (4)
Ik=()’1o"" "’}’2,k—1) (5)

so that v, (I,) is a second-order random vector. Notice

i=1,2

V1, k=15 V205"
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that the class of admissible y,’s depends on vy, - -,
Yi.k-1Y205" " s Y2k~ Since each y, depends on y,,- - -,
Yii-1Y200" " Y2,1-1- Lt ¥, = (Y0, -+, %), s0 that J, is a
function of v, v,, Ji(y,,v,). We want to find ¥, ¥ so that
the Nash equilibrium conditions

J|('Yrv72)\-,|(7n72) (6)
L v3) < K(vhv), (7)

are satisfied. A pair (v, y}) satisfying (6) and (7) is called
a Nash pair, N-pair for short.

Our presentation will be occasionally sketchy, but
nonetheless completely rigorous.

V admissible vy,
V admissible y,

III. SoLuTiON

Let us first introduce some notation and some quantities
of importance to our analysis. Let 7, be defined as

Vin= Cin(An—lAn-2 o Agxgt A, Awg
v +An-lwn—2 + wn—l)+0in
i=12, n=0,1,2,---,N. (8)

¥ is the zero input response in (2) and is obtained from
Yin by substituting in (2) recursively the x,’s using (1),
thus expressing y,, as a linear function of Uigs®
Ui n_15 X0, Wos" * *»W,_1, U;,, and discarding the terms mvolv-
ing u,,, “*54; ,_. Thus '

yin=7in+Li"(uik’i=112,k=0’1s" (9)

The symbol L(-) indicates a linear function of the arguments
and it will be used repeatedly later. Let us also define the
following quantities:

s,n—1).

7 =(710""’}—’1.;.—1,}_’20:‘"J’z,n—l) (10)
L,=(1.5.) (1)
Zin=Din— E(}—’inﬁn)’ . (12)
in=Lin(Vir s, i=1,2,k=0,1,--- ,n=1)+y,. (13)

iin=(Tn’zin)zi‘i:n(yik’uik9i=1’2’;
k=0,1,---,N—1;y,). (14)

Tz, represents the essentially new information that y,, pro-

vides, if T, is known and can be expressed as a known
linear functlon of the observations and controls. We think
of the I'’s as vectors with the 3, ’s stuck one under the
other.

It is clear that for fixed admissible y,,---,

Yi,n—1>Y20" " *» Y2, n— 1> any admissible y,, can be expressed
as a functlon of I, ie., of the primitive random vectors
Xgs W, " * —1sVigstt ,v,,,, by recursive substitutions. The

o-fields generated by I,, and I, are obviously the same.
Also, z,, is orthogonal to I, E [-]-] denotes conditional
expectation and the L, ’s, I:,.,,’s in (13), (14) denote linear
functions of their arguments. The L,,’s and L, ’s can be
found by recursive substitution and thus we consider them
to be known. The following hold:
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E[,]=E[1,]=E[|L,]
uy = E[u,|1,]= E[uikIIj,n+l]’
n>k, i,j=1,2. (16)

(15)

Notice that since we are dealing with second-order ran-
dom vectors, the conditional expectations can be thought
of as orthogonal projections in appropriately defined Hil-
bert spaces (where we consider that from each random
vector we have subtracted its mean if this mean is nonzero).
For easy reference we also introduce the following quanti-
ties (costs to go):

_ ’
Jn=E| XN 1Qi N+ 1 XN+

N
+ Z (xl’chkxk +ujuy +

k=n

’
uijikujk)

1,2, n=0,1,---,N. (17)

Before starting to work on our problem we need the
following definition.

Definition: A pair (v{,v5), v*=(v},- -, v%), i=1,2, is
called a stagewise Nash equilibrium pair for the game
defined in (1)-(5) if instead of (6), (7) it holds that

=i j=

S (Yoo o ¥ km s Yo Y YL V)
SJl(Yi“o,"’gYi',k—UYlef,kH"",YE‘N»Y;)
V admissible y,, (18)
Jz(Yi"on""’Y;.k—hﬁk’ﬁ,ku,“‘-Y;N) ‘
<ALV V0 V- Yoo ke 1o 0 ¥
-V admissible y,, Vk=0,1,2,---,N. (19)

A pair (v{, v¥) satisfying (18), (19) will be referred to as an
SN-pair.

It is clear that an N-pair is an SN-pair, but the converse
is not true. Let us assume that (y},yS) is an N-pair.
Therefore it is an SN-pair and (18), (19) hold for k& = N.
Using (17) for n= N and substituting x,_, by its equal
from (1) we obtain

E[“;N(I + BiyQ; ni1Bin)uin
+2u;NBi’NQi.N—I(ANxN _[N Ujn )
+ “}N(an + Bj’NQi.N+ lBjN)ujN
+2ujyBiNQ; Ny AnXy

+xy(Qiy + AN, v IAN)xN]

+ E(WyQ; i Wy)

where we used the independence of wy, on the other quanti-
ties and the fact that E(wy)=0. Considering now (18),
(19) for k = N and applying a standard minimization result
for stochastic quadratic functions we obtain the following
necessary and sufficient conditions in order that y¥,, v},
satisfy (18), (19):

Jin=

i=j,i,j=1,2  (20)
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(I+BiyQ, yerBin)tin + BinQ) ni 1 BonPiyttyy
+BinQ\ N1 AnPiyxy =0 (21)
(1+BynQ; nr1Ban)tan + Bin@s nivi BinPayittyy
+ BinQ,, Ne1AxPyyxy =0 (22)

where E[-|,y]= P,y. Although u, x is a function of I, it
can be expressed as a function of [, the funcuonal form

of which will depend on v%, i=1,2; k=0,1,- -1
Any such function can be expressed as

Uy =uy+iy (23)

Uy = ¢{)(7N) (24)

[3_‘ kpi('fu)qi(zm)d,il (25)

where the ¢,’s are some second-order random vectors, the
Pi’s, q)’s are real-valued Hermite polynomials so that the
(P4}, constitutes an orthonormal complete set with
respect to which any second-order random function of I,
can be expressed, and the constant vectors d}, satisfy
Llldill* < +oo (26)
kit
(-]l denotes the usual Euclidean norm). Notice that in the
summation of (25) we consider /> 1, i.e., we exclude the
term gg = 1, since the part of u,y which depends only on 1,

as well as the mean of u, are supposed to have been
incorporated in %y = ¢(Iy). It also holds that

PNxN—LN(utk’y:k’ =12

k=01, ,N=1)+L(z,y) (27)

where the L,’s, Li,’s denote linear functions which can be
found by using recursively (1), (2), and (8)-(16) and. thus
we consider them to be known. Notice also that L (u;,, y,,
i=12k=0,1, —1) can be expressed as a function
of I. Thus, we can decompose (1), (22) into two sets of
equations (28) and (29) as follows:

I+ ByO By BiyO, n+1Boy Uy
BéNQz.NHBIN I+ BZ'NQZ.N+IBZN Uy i
B;NQLNHANL}V(“.'ks Yiko 1=1,2,3
_ k=0,1,---,N—1)
BinQr n+ 1ANLfv(“ik, Yk 1=1,2,;
k=0,1,---,N—-1)
(28)
and
I+BiyQnBiy  BinQs neiBan am]
BinQr v Biy 1+ ByyQy vt Boy ||
= B;NQI,Nd-IANl:}V(zIN)] (29)
BéNQ2,N+IANL%I(22N)
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To find the &, as functions of I,y we have to solve (29).
This can be done explicitly by using the results of [7]. The
solution of (24) might in general not exist, be it nonunique
or nonlinear. Nonetheless the following lemma holds (see
(7). '

Lemma 1: The solution of (29) will exist, and will be
unique if and only if the matrix

I+ B{NQI.N+IBIN
I-’-BﬁNQz.NHBIN

MBiNQLNHBzN
I+ BéNQz,NHBzN

is nonsingular for every p equal to a finite product of
powers of the canonical correlation coefficients on z,, z, 5.
In this case the unique solution of (29) is given by

Ay =Mz,y (31)
where the M,’s are the (unique) solutions of the system
(I+BixQ, N+IBIN)M1 + BinQi n+1Ban M2,

— Biy0,, N+lANL
BZNQZ N+IBINM122+(I+ BinQ,, N+IB2N)M2
= —BZNQZ,N+IAN )2v (33)

and where 2|, 2, are known matrices which satisfy
E [sz|ziN] =_2iziN’

(see [9] for the notion of the canonical correlation coeffi-
cients). It should be pointed out that the canonical correla-
tion coefficients of Iy, I,y are either 1 or the canonical
correlation coefficients of z,y, z, [see (11), (12)]. In (30)
we do not consider p =1 since that would correspond to a
part of u,, dependent only on I. Also, the z,y, z,5 have
canonical correlation coefficients strictly less than 1 be-
cause v, , v,y are independent. If the condition of Lemma
1 does not hold, then (29) has either no solution or it has
infinitely many which may be nonlinear functlons of Iy, z,y
(see [7].

To find the &, ’s we have to study (28). Since we assume
that an N-pair exists, (28) must have a solution. Thus
(#]y, U5y ) must be equal to the product of the pseudoin-
verse of the left-hand side matrix of (28) by the right-hand
side of (28) plus anything in the null space of the matrix
on the left-hand side. To avoid this nonuniqueness we as-
sume the invertibility of this matrix; i.e., we assume that
the condition of Lemma 1 holds also for u =1. Thus, the
solution of both (28) and (29) becomes easy under the
following assumption.

Assumption N: The matrix (30) is nonsingular for any
p=1 or equal to any finite product of powers of the
canonical correlation coefficients of z,y, z,5 (or equiva-
lently p = any finite product of powers of the canonical
correlation coefficients of 7y, I, ).

In the following we assume that Assumption N holds. Since
Uiy = Yin(P10r Vi n=15 Yaos" " Yo n—1> Vin)s the B;y’s
and #,,’s can be expressed as functions of the same y,;’s.
Considering (8)-(14) we obtain

uy=¢(y0,

] (30)

(32)

i=1,2 (34)

'»)’1.N—1’}’20""a)’2,‘N—1) (35)
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Uiy=Myy+ ‘V()’mv,’ Vi N=15Ya0s" ’)’2.N—|) (36)
for some ¢'’s, ¥'’s which have to satisfy
I+ BiyQ vi1Biv  BinQinviiBan |

-

BﬁNQZ,N+iBIN I+BéNQ2.N+|B2N

BinQ, v AnLy (s Yy, i=1,2;
k=0,1,---,N—l)

) ’ . . (37)
BinQy Nt AnLY (i, Yier i=1,25
k=0,1)...,N_1)
V' =L, (Y 4ip,i=1,2; k=0,1,--- ,N—1). (38)

The reason that the dependence of u, of y, is known [see
(36)] is essentially due to the fact that z,, contains v,y as
an additive term and so does y,, and v,y is independent of
all the other primitive random variables. Combining (35)

and (36) we obtain
=My + v+ (39)

where M, is known and the \V ’s, ¢'’s are functions of I
sansfymg (37), (38).

We are now ready to go one step backwards and use
(18), (19) for x = N — 1. Using (17) for n = N — 1, substitut-
ing x , |, Xy from (1) and using (39) to express y,y in terms
of Xp_ 1,4y y_1s Uy y— WE Obtain

J;. y—1 = E{quadratic function of (4, y_,, %5 y—1» Xy_i»
‘P|+¢|9‘p2+¢2’WN’WN—I’OIN’U2N')}' (40)

The quadratic functions in (40) are positive definite in
u; y_, and their coefficient matrices depend on M,, M,.
The ¢/ + ¢' terms are functions of y g, * -,y y—1, Vag»" " *»
2. n— and thus they do not depend on u; ,_,. We are thus
faced with a situation similar to (2). Applying the same
standard result, we obtain the analogs of (21), (22), i.e.,

SN Nuy yoy + SHTPy N, v
= Pl.N—liJ;v—l(xN— LY+, YR+ ¢,
Wxs Wh— 15 V1w °2N) (41)
SNTPy it -1+ S g o
= PZ.N—-IIA‘%I-— (xyo ¥ + ¢, 92+ ¢2,
wN’wN—I’UIN’UZN) (42)
where the $/~'’s are known matrices depending on
M,, M,, the L, _’s are known linear functions, and P, ,_,
= E[-|F; y_,) In (41) and (42) we now substitute the
Y, ¢'’s with their equals from (37) and (38) which depend

on u, y_,,U; y—;- We then group together the terms in-
volving the u; y_,’s and end up with the equation

SN 'uy v+ S%_ZPI,N—I“LN—X
= PI.N‘li‘lN*l(xN—l’wN’wN—l,’ulN’oZN’

U N-2»

'J’Z,N—I)

Upgs™ " " sUy N—25Up05" "

Y (43)

YIN=1V200" "
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SZI-PZN 1%, N- l+Szz “2N 1

=P N lLN-l(xN— WNSWN_ 15 V185 Oapns

U, Uy N-2>

Yios" " 'v)’2,N'—‘|) (44)
where the L, _,’s are known linear functions. In (43), (44)
we can substitute y; y_, with their equals from (2), use
(10)-(16), and repeat the analysis we did for (21), (22)
where the role of I, z; iN will be assumed by I,_,, z AN=1s
i.e., we will repeat the steps taken after (22) until (39). The

counterpart of Assumption N is as follows.
Assumption N — 1: The matrix

[ sy #Sﬁ‘q
pSH~ SET!

sUp N—25 Ug05" "

Yi,N=1> V20"

(45)

is nonsingular for any p = any finite product of [ powers of -

the canonical correlation coefficients of I, _,, I noy
Under Assumption N —1 we will obtain that U y—y is
linear in z; 5_, and thusin y, y_,, i.e,,

U o1 =My, + (v + Wv-1)
‘(105" ’Jz,;v—z) (46)

where the M,’s are known matrices [recall the discussion
between (35)-(39)]. Substituting u, _,,u, y_, from (46)
into (37), (38) and using the fact that the v, y_,, v, y_, are
independent among themselves and independent of all the
Yio»" * *»Yi.n—2 S We learn the functional dependence of the
¢,¢¥'’s on y, y_,, ¥, v_, and thus the functional depen-
dence of u; y,u;y ON y, y_, ¥, y_;. These functional
dependencies are linear and the corresponding gains are
known. In conclusion, at the end of the analysis at stage
N —1 we have the following. Under Assumption N and
Assumption N — 1, the u; »’s, u, y_,’s are equal to

SYI,N=2002,00""

MNny + MIKIN_I.V(.N—I
+MEV 'y v+ fin(Iy_y) (47)
U, o =My v+ fiono i (Iyy) (48)

where the matrices M are known. The functions f,y, f; r_,
in (47), (48) have to satisfy conditions correspondmg to
those thit the ¢'’s, ¥’s had to satisfy at stage N [see (37),
(38)].

We can now continue this process backwards. At stage
k, for example, we will impose the followmg

Assumption k: The matrix

Slkl I‘Slkz

(49)
I‘Szkl Szkz

is nonsingular for any p. = any finite product of powers of the
canonical correlation coefficients of I, ,,I,, and we will
obtain

Uy =My, + Mp'"ly 4+ MRy
M2 = V1t A'Iil' Yo + fu(L_y)
l=k,k+1,---,N (50)
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where the M matrices are known and the f,’s have to
satisfy certain conditions [recall (37), (38)]. Also, the matrix
in (49) depends on the M;™’s with /, m > k + 1, so that the
nonsingularity of (49) can be checked recursively.

It should be clear by now that if Assumption k holds for
k=N,N—1,---,0, we will have a unique stagewise Nash
equilibrium which will have to be linear in the information.
It is an easy task to verify that it will also be a Nash
equilibrium by checking directly that it satisfies Definition
1; in regard to this, the reader can consult [6]. Let us
formalize the above analysis in the following theorem.

Theorem I: If Assumption k holds for k=N, N—
1,---,0, then the Nash problem stated in Section II admits
a unique solution which has to be linear in the information.

IV. DiscussioN

In this section we provide several remarks which indicate
how one can generalize our analysis to other cases, how to

~weaken several assumptions, how to relate our results to

the work of others and point out several open problems.
Remark 1: The essential aspect of our results is that the
solution of the stochastic Nash game with one-step delay
observation sharing pattern will amost always exist and be
unique and linear in the information. Assumption k will
hold for almost any choice of the parameter matrices A4,
B, Cits Qix» R, and even if it does not, by perturbing a
little the values of some parameter matrices it can be made
to hold. Considering that in a real-life problem the values
of the parameter matrices are known within a small error,
one can conclude that when solving such a Nash game he
can securely restrict himself to solutions linear in the
information. If Assumption k fails for some k, then there
exists no solution or there exist infinitely many which may
be nonlinear functions of the information. This can be
demonstrated easily by using the results of [7] where the
static version is studied. An important result which holds
for the static case is that if there exists a solution, then
there will exist a solution linear in the information. The
corresponding statement for the:dynamic case considered
here has not been established, although one would be
tempted to conjecture it. The proof of such a conjecture for
the dynamic case lies in showing that if Assumption N does
not hold, but (29) is solvable for u;, and u,y is chosen to
be any (perhaps nonlinear) function of z,, (and thus of
Yin) which satisfies (29) and a solution for u; ,_, exists,
then a solution for #, _, would also exist if u;, had to be
chosen linear in z;,. (Using the results of [7] we can see
that if Assumption N does not hold, but (29) is solvable for
u,y, then there are infinitely many u,,’s which solve (29)
and some of them—perhaps infinitely many—are linear in
z;5-) Showing this is quite difficult due to the nonlinear
dependence of u,y on z,, and thus on u, ,_,, which results
inJ; y_, being nonlinear in u; ,_, (see also Remark 2).
Remark 2: Using the results of [7], one can analyze (29)
completely; i.e., check whether or not it has a solution and
if it has, construct all the solutions. If (29) is solvable, but
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Assumption N does not hold, then i,, will (in general)
have the form (25). The assumption that v,y, v,y are
independent yields that the canonical correlation coeffi-
cients of z,y,z,y are strictly less than 1 and thus the
summation with respect to / in (25) will be finite; (inspect-
ion of (30) shows that Assumption N will hold as pu — 0).
In (25) we can substitute z,, from (12) and this will yield

N

Uiy = 121 %‘#k()’lo" *Vi -1 )20 " Yan-1)41(Vin)
where the §;’s are known polynomials of the components
of y,y- (The reason that the §;’s are known is the same as
the one stated after (22).) These ;s will assume the role
of the #,y’s in (36) and the resulting J; _, (40) will be a
polynomial function of u, y_,. (43) and (44) will no longer
be linear in u; »_,. The procedure described above is the
one that should be followed if one wants to come up with a
complete analysis of the Nash game under consideration.
For simple cases where N is small, it is feasible to carry it
out, but as N increases the situation deteriorates rapidly.
Nonetheless, it is the only way to go if one wants to prove
or disprove the conjecture mentioned at the end of Remark
1, Also if Assumption N does not hold for u =1, then the
dependence of (#,y, #, ) on an arbitrary function of (y,,
i=12;k=0,1,---,N—1) with range in the null space of
the left-hand side matrix in (28) will again create trouble
when we try to find the functional dependence of the
¢'’s [see (35), (37) and discussion following (46)] on
Yin-v Vo N-1- _

Remark 3: The calculation of the S%’s in (49) can be
done recursively, but it is a laborious task. We will not give
their forms here, but the interested reader can consult [10],
whose notation D, ;(k — 1) corresponds to our Sj.

Remark 4: In order to make legitimate use of Hermite
polynomials all we need to require from the primitive
random variables x,, w,, v;, is that they are Gaussian and
such that the I,,’s have nonsingular covariance matrices.
Also, in order to be able to extract the functional depen-
dence of u;, on y,y what we really need is that y,, and I,
have canonical correlation coefficients strictly less than 1
and in order to extract the functional dependence of u,y on
Yi.N-1s Yan—1 What we really need is that y, y_, and
7,.n-1 have canonical correlation coefficients strictly less
than one. All these are guaranteed by the independence of
the x,,w,,v;,’s and the nonsingular covariance matrix of
each v, , but obviously we can relax these assumptions and
allow interdependencies among the x,,w,,v;’s and de-
mand only that what was stated as sufficient for stage N to
hold in the beginning of this remark should hold for all
stages. Under this relaxation, Theorem 1 still holds.

Remark 5: The validity of Assumption k is very dif-
ficult to check except if we are dealing with a scalar case
with small N. A special case where they hold is when
I(SK) 'Sk (S%) 'Sl <1(||-|| denotes the usual sup norm).
This again is not an easy condition to check for all k’s. It is
trivial to see that if this norm is strictly less than 1, then the
matrix (49) is nonsingular for any || <1 and thus Assump-

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-27, NO. 5, OCTOBER 1982

tion k holds (recall that a canonical correlation coefficient
is always in [0, 1]). This is the condition under which the
results of [6] are proven (that (S*) ™! exists is easily verifia-
ble).

Remark 6: We mentioned in the Introduction an inter-
pretation of Assumption k. According to this interpre-
tation, the u’s represent the coupling of the information.
That the canonical correlation coefficients and their prod-
ucts admit such an interpretation is clear. If Assumption &
does not hold for some p, this means equivalently that
(p)"? is equal to some eigenvalue of the matrix
(SK)7'Sk(8%) ™ 'SX. This matrix can be interpreted as the
coupling of the costs to go at stage k, assuming that the
players use their optimum strategies at stages k, k +1,- - -,
N. Thus, we can interpret Assumption k as demanding that
at each stage the coupling of the optimal costs to go is not
inversely proportional to some even power of the coupling
of the information at this stage.

Remark 7: If we consider that Q,, = Q,,, R, =1, k="
0,1,---,N+1, then it is easy to see that Assumption k
holds for all k’s and for all p€[0,1]. This yields im-
mediately that the solution of the team problem with
one-step delay observation sharing pattern admits a unique
solution which has to be linear in the information; see [8].

Remark 8: If y,,=x,, i=1,2, n=0,1,---,N—1, then
Theorem 1 still holds if we assume that the x,, wy, w;," - -, Wy
are independent Gaussian random vectors with nonsingu-
lar covariance matrices (see Remark 4 above concerning’
the relaxation of the assumptions on the primitive random .
variables). Actually, in this case Assumption k simplifies
into asking that the matrix in (49) is nonsingular for u =1.
This result has been previously obtained by Basar in [5].

Remark 9: An obvious but useful extension of our re-
sults is to consider that at stage k player 1 knows the values
of uyq,- - *,u, 4, With some noise and player 2 knows the
values of ug," - -,u; ,_, with some noise. This amounts to
augmenting the state space into X, = (x,, X,,, X,,) Where
Xin=1u; ,_, and using '

5 . Cln 0 0]— [vln]
= + .
Yin [ o o 1™ ls,

By assuming that the ©,,’s are independent among them-
selves and of the x,, w,’s, v, ’s and that they have nonsin-
gular covariance matrices we are back to our original
formulation. Using augmentation of the state space we can
also consider cases where at stage k player 1 acquires
Cixj k—m + 0y, where m > 1. We thus see that several cases
where at each stage noisy versions of previous values of the
controls are communicated can be reformulated by ap-
propriate state-space augmentation into the form of the

problem studied here.
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