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1. INTRODUCTION
Many different methods have been developed to deal with
the discontinuity problems encountered in integrated
optics.1–7 By the term discontinuity problems, we mean
the abrupt changes in the cross section, the refractive-
index changes in the waveguide core or cladding, the
bending of a waveguide, etc. In the past the problem of
the scattering of transverse electric (TE) or transverse
magnetic (TM) modes by a semi-infinite symmetrical slab
waveguide was solved by several authors,8–12 while simi-
lar problems for cylindrical geometry were also
investigated.13–15 Furthermore, extensive research has
been made for the coupling phenomena between sym-
metrical or asymmetrical waveguides, where either both
are planar,16 both are circular,17,18 or one is circular and
one is planar.19 Finally, the scattering phenomenon
from an abruptly terminated three-layer slab waveguide
for the case of TE modes has recently been solved by both
the integral equation method and the variational
technique.20

In the present work the reflectivity properties of an
abruptly ended asymmetrical slab waveguide for the case
of the dominant TM guided mode are analyzed by both
the integral equation method and the variational tech-
nique. It has to be mentioned that this problem has sig-
nificant practical interest, since such systems find wide
application in integrated optics. Note also that there ex-
ist new, potentially interesting effects (such as asymme-
0740-3232/2000/010162-11$15.00 ©
try of the far-field pattern, etc.) for asymmetrical geom-
etry, which are lacking in symmetrical problems.
Finally, in the case of TM modes the electric field distri-
bution has a discontinuity in the edge points on the ter-
minal plane.

In Section 2 the radiation characteristics of an abruptly
terminated asymmetrical slab waveguide (Fig. 1) are
treated in detail by the integral equation method. In
particular, an incident TM guided mode is assumed to
propagate inside the slab waveguide toward the terminal
plane z 5 0. The existence of the axial discontinuity ex-
cites radiation waves and a guided mode propagating
along the negative z axis. As a consequence, a mixed
spectrum of eigenwaves is employed to describe the in-
duced electromagnetic field inside the waveguide.21 On
the other hand, the fields in the semi-infinite region (z
. 0) are expressed in terms of free-space eigenwaves
(i.e., plane waves). Then a well-known procedure20 is fol-
lowed, and a Fredholm integral equation of the second
kind is obtained for the unknown transverse electric field
distribution Ex(x, z 5 0) on the terminal plane of the
waveguide in a form suitable for developing a Neumann-
series solution. This procedure is applied up to third or-
der and yields very accurate results, especially when the
weak guiding condition is satisfied. Then the reflection
coefficient of the guided mode, the far-field radiation pat-
tern, and the transverse electric field distribution on the
terminal plane are computed.
2000 Optical Society of America
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In Section 3 the problem in question is treated by the
variational technique,8,13,14,22 which is based on the same
equations (the eigenwave expansions and the integral
equation for the electric field on the terminal plane) as
those with the integral equation method. This technique

Fig. 1. Geometry of an abruptly ended asymmetrical slab wave-
guide.
is an approximate method and does not give a complete
solution of the problem, for example for the outward ra-
diation pattern. However, it has some advantages: It is
simple and can be applied to problems with complicated
geometry (for example, abruptly ended fibers, anisotropic
waveguides,13,15,22 etc.). In addition, this technique has
already been employed to study the abruptly terminated
asymmetrical planar guide with constant and variable
profiles of the refractive index.20 Note that the last pro-
file of dielectrics frequently occurs because of the diffusive
process during manufacture of the waveguides.

2. INTEGRAL EQUATION METHOD
The geometry of the problem under consideration is pre-
sented in Fig. 1. In particular, a three-layer slab wave-
guide (z , 0) is abruptly terminated at the plane z
5 0 and radiates into the homogeneous semi-infinite re-
gion z . 0. The core region of the waveguide is assumed
to have a refractive index n2 and width D and is deposited
on an infinitely wide substrate with a refractive index n1 .
The refractive index of the medium above the core
(x . D/2) is indicated as n3 . To achieve true mode guid-
ance, n2 should be larger than n1 and n3 . In the present
paper we have chosen n2 . n1 > n3 . If n1 5 n3 , obvi-
ously the waveguide is reduced to that of a symmetrical
slab. On the other hand, the semi-infinite region z . 0
is considered to be homogeneous and have a refractive in-
dex equal to n0 . The whole space is assumed to be mag-
netically homogeneous with a magnetic permeability m0
5 4p 3 1027 H/m. In the following analysis a harmonic
time dependence exp(1jvt) is supposed and suppressed
for the electromagnetic field quantities, while the free-
space wave number is denoted by k0 5 v/c, where c is the
velocity of light in vacuum.

Since the slab is assumed to be infinitely extended in
the y direction, all field quantities are independent of y
(]/]y [ 0) and the electromagnetic field can be decom-
posed in terms of TE and TM modes. In an asymmetrical
slab waveguide, these modes are more complicated than
those of a symmetrical one, since in the latter they can be
expressed as either even or odd field distributions.21

Furthermore, the lowest-order mode of an asymmetrical
slab waveguide has a nonzero cutoff frequency, which
means that this mode cannot propagate at arbitrarily low
frequencies. In the present paper, only one TM guided
mode is taken into account. For this case, only a single
component of the magnetic field, parallel to the y axis, ex-
ists and is given by

Hyg~x, z ! 5
ve0

b0
U0~x !exp~2jb0z !, (1)

where e0 is the dielectric constant of the free space,
U0~x ! 5 AH exp@2h3~x 2 D/2!#, x > D/2

cos@h2~x 2 D/2!# 2 ~h3 /h2!~n2 /n3!2 sin@h2~x 2 D/2!#, uxu < D/2 ,

@cos~h2D ! 1 ~h3 /h2!~n2 /n3!2 sin~h2D !#exp@h1~x 1 D/2!#, x < 2D/2
(2)
and h1
2 5 b0

2 2 k0
2n1

2, h2
2 5 k0

2n2
2 2 b0

2, and h3
2

5 b0
2 2 k0

2n3
2, where b0 is the axial wave number,

which satisfy the equation

S h2
2

n2
4 2

h1h3

n1
2n3

2D tan~h2D ! 5
h2

n2
2 S h1

n1
2 1

h3

n3
2D (3a)

or the equivalent,

h2D 5 cos21S h2 /n2
2

V21
D 1 cos21S h2 /n2

2

V23
D , (3b)

with

V21 5 S h2
2

n2
4 1

h1
2

n1
4D 1/2

, V23 5 S h2
2

n2
4 1

h3
2

n3
4D 1/2

. (4)

Note that Eqs. (1)–(3) have been derived by taking into
account the boundary conditions at the interfaces x
5 6D/2. The expansion coefficient A can be obtained
from the normalization condition

E
2`

1` U0
2~x !

n2~x !
dx 5 1, (5)

where

n~x ! 5 H n3 , x . D/2

n2 , uxu , D/2 .

n1 , x , 2D/2
(6)
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It should be mentioned that in this problem the electric
field has two components, one parallel to the propagation
z axis (Ez) and one parallel to the x axis (Ex).

As mentioned in Section 1, the existence of the axial
discontinuity at the plane z 5 0 inevitably excites radia-
tion waves and a guided mode propagating along the
negative z axis opposite the incident wave direction.
Therefore the radiation waves should also be included in
the description of the field inside the waveguide region.
These waves are, in general, described by a continuous
spectrum of eigenwaves. Considering the nondepolariz-
ing nature of the abrupt termination and the z-directed
propagation of the incident wave, only one component,
also parallel to the y axis, of the magnetic field is needed
to describe the radiation waves in the waveguide region.
The expressions of these waves can be easily found in the
literature,21 and therefore they are omitted in this paper.
Nevertheless, we quote the orthogonality relations satis-
fied by the mixed spectrum of eigenwaves:

E
2`

1` Cm~x, r!Ck~x, r8!

n2~x !
dx 5 dmkd ~r 2 r8!,

m, k 5 1, 2, (7a)

E
2`

1` U0~x !Cm~x, r!

n2~x !
dx 5 0, m 5 1, 2, (7b)

U0~x !U0~x8! 1 (
m51

2 E
rm

1`

Cm~x, r!Cm~x8, r!dr

5 n2~x !d ~x 2 x8!, (7c)

where r1 5 0, r2 5 k0An1
2 2 n3

2, Cm(x, r)(m 5 1, 2,
rm , r , 1`) is the eigenfunction of the radiation
waves, r is the transverse wave number of the radiation
waves, dmk is the Kronecker symbol, and d (r 2 r8) is the
Dirac delta function. Note that if r , r2 , there is only
one branch of the radiation waves of the waveguide,
whereas if r . r2 , two terms must be included in the ra-
diation field expansion.21

According to the above discussion, the total magnetic
field in the waveguide region is written as

Hy
I ~x, z ! 5

ve0

b0
U0~x !@exp~2jb0z ! 2 R0 exp~1jb0z !#

2 (
m51

2 E
rm

1` ve0

b~r!
Rm~r!Cm~x, r!

3 exp@1jb~r!z#dr, (8)

where

b2~r! 5 k0
2n1

2 2 r2 ~rm , r , 1`!. (9)

The first term on the right-hand side of Eq. (8) represents
the incident wave, while the second and third terms are
the reflected guided mode and the reflected radiation
modes, respectively. The summation in Eq. (8) is used in
order that all the radiation modes are included. Note
that Re@b ( r)# . 0 and Im@b ( r)# , 0 in order that the ra-
diation conditions are satisfied and to have outgoing
waves. Finally, R0 and Rm(r) are unknown expansion
coefficients to be determined.

In the semi-infinite region z . 0, only one component
of the magnetic field, also parallel to the y axis, is taken
into account, and it can be written as a Fourier integral:

Hy
II~x, z ! 5 (

l51

2 E
0

1` ve0

g ~s !
Tl~s !w l~x, s !exp@2jg ~s !z#ds,

(10)

where g2(s) 5 k0
2n0

2 2 s2 (0 , s , 1`), Re@g (s)# . 0,
Im@g (s)# , 0, T1(s), T2(s) are unknown expansion coeffi-
cients to be determined, and w1(x, s) 5 (n0 /Ap)cos(sx),
w2(x, s) 5 (n0 /Ap)sin(sx) are the free-space eigenwaves
satisfying the orthogonality relations:

E
2`

1` wm~x, s !wk~x, s8!

n0
2 dx

5 dmkd ~s 2 s8!, m, k 5 1, 2, (11)

E
0

1` w1~x, s !w1~x8, s ! 1 w2~x, s !w2~x8, s !

n0
2 ds

5 d ~x 2 x8!. (12)

The corresponding expressions of the transverse elec-
tric field distribution Ex(x, z) in the waveguide and semi-
infinite regions are given by

Ex
I ~x, z ! 5

1

n2~x !
U0~x !@exp~2jb0z ! 1 R0 exp~1jb0z !#

1
1

n2~x !
(
m51

2 E
rm

1`

Rm~r!Cm~x, r!

3 exp@1jb~r!z#dr, (13)

Ex
II~x, z ! 5

1

n0
2 (

l51

2 E
0

1`

Tl~s !w l~x, s !exp@2jg ~s !z#ds.

(14)

Following a well-known procedure20 and using the or-
thogonal properties of $U0(x),Cm(x, r),w1(x, s),w2(x, s)%,
we derive the following Fredholm integral equation of the
second kind for the transverse electric field distribution
Ex(x, z 5 0) 5 E(x) on the plane z 5 0:

E~x ! 5 E0~x ! 1 E
2`

1`

E~x8!K~x, x8!dx8, (15)

where
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E0~x ! 5
2Y1

par~x !
U0~x !, (16)

K~x, x8!

5 2
1

par~x !
H ~Y1 2 Y10!U0~x !U0~x8!

1 (
m51

2 E
rm

1`

@Y~r! 2 Y10#Cm~x, r!Cm~x8, r!dr

1 (
l51

2 E
0

1`

@Y0~s ! 2 Y00#w l~x, s !w l~x8, s !dsJ ,

(17)

with

Y1 5
ve0

b0
, Y~r! 5

ve0

b~r!
,

Y0~s ! 5
ve0

g ~s !
, Y10 5

ve0

k0n1
, Y00 5

ve0

k0n0
, (18)

par~x ! 5 Y10n
2~x ! 1 Y00n0

2. (19)

In the limiting case where n2 5 n1 5 n3 , the physical
problem treated in this paper is reduced to the simple
case of reflection from a dielectric half-space. In this case
the incident wave becomes a plane wave exp(2jk0n1z),
and the electric field on the plane z 5 0 is given from the
first term on the right-hand side of Eq. (15). Therefore it
is reasonable to expect that, when n3 ' n1 ' n2 , the ex-
act solution E(x) would not differ significantly from E0(x).
Consequently, in integrated optics applications, where
n1 ' n2 ' n3 , a method of successive-order approxima-
tions could be used to solve Eq. (15); i.e., the electric field
could be written in the form

EN~x ! 5 E0~x ! 1 (
i51

N

Ci~x !, N 5 1, 2, 3, (20)

with

Ci~x ! 5 E
2`

1`

dx1E
2`

1`

dx2 ¯ E
2`

1`

dxi K~x, x1!K~x1 , x2! ¯

K~xi21 , xi!E0~xi!. (21)

We can validate the solution described above on the basis
of the following considerations. Under the condition
where n3 ' n1 ' n2 , the characteristic transverse size D
of the guided-mode field distribution is large: k0D @ 1,
where D ; min(1/hj), j 5 1, 2, 3. In this case the spec-
tra of the radiation modes are narrow, i.e., r , 1/D
! k0n2 and s , 1/D ! k0n0 ; therefore b(r) ' k0n1 ,
g (s) ' k0n0 [see Eq. (9)], and Y(r) ' Y10 , Y0(s) ' Y00
[see Eqs. (18)]. Hence the integral equation kernel
K(x, x8) is small, and we can use the iteration procedure
described above. In this paper iterations up to third or-
der have been computed, but only the expression of the
first-order solution of the transverse electric field distri-
bution is given below:
E1~x ! 5 E0~x ! 2
2Y1

par~x !
H ~Y1 2 Y10!U0~x !S UU

par D
1 (

m51

2 E
rm

1`

@Y~r! 2 Y10#Cm~x, r!S UCm

par Ddr

1 (
l51

2 E
0

1`

@Y0~s ! 2 Y00#w l~x, s !S Uw l

par DdsJ ,

(22)
where

UU

par
5 E

2`

1` U0~x !U0~x !

par~x !
dx, (23)

UCm

par
5 E

2`

1` U0~x !Cm~x, r!

par~x !
d x, m 5 1, 2, (24)

Uw l

par
5 E

2`

1` U0~x !w l~x, s !

par~x !
dx, l 5 1, 2, (25)

whose analytical expressions could be easily found by
straightforward algebra. Note that in the computation of
the first-order solution of the transverse electric field dis-
tribution, only one-dimensional integrals have to be cal-
culated, while in the computation of the higher-order so-
lutions two- and three-dimensional integrals are
encountered.

Since the successive-order solutions of the transverse
electric field distribution E(x) on the plane z 5 0 have
been computed, it is possible to calculate the electric field
inside the waveguide as well as in the semi-infinite region
z . 0 in terms of E(x). For this purpose the successive-
order solutions of the expansion coefficients R0 , Rm(r),
T1(s), and T2(s) are obtained by replacing the respective
solutions of E(x) in the following equations:

R0 5 21 1 E
2`

1`

E~x !U0~x !dx, (26a)

Rm~r! 5 E
2`

1`

E~x !Cm~x, r!dx, m 5 1, 2, (26b)

Tl~s ! 5 E
2`

1`

E~x !w l~x, s !dx, l 5 1, 2. (26c)

Equations (26) are derived from the boundary condition of
the transverse electric field distribution on z 5 0. Then
the zero- and first-order solutions of the guided-mode re-
flection coefficient are given by

R00 5 21 1 2Y1S UU

par D , (27a)

R01 5 R00 2 2Y1H ~Y1 2 Y10!S UU

par D
2

1 (
m51

2 E
rm

1`

@Y~r! 2 Y10#S UCm

par D 2

dr

1 (
l51

2 E
0

1`

@Y0~s ! 2 Y00#S Uw l

par D 2

dsJ , (27b)

while the second-order (R02) and third-order (R03) solu-
tions of the guided-mode reflection coefficient as well as
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the successive-order solutions for the other coefficients,
Rm(r) and Tl(s), are omitted. Note that the zero-order
solution given in Eq. (27a) corresponds to the reflection
coefficient of a plane wave on the interface between two
semi-infinite regions with refractive indices n1 and n0 ,
respectively.

Finally, since the power of the reflected guided mode is
equal to uR0u2, the respective power of the reflected radia-
tion modes is given by

Prad 5 (
m51

2 E
rm

1`

uRm~r!u2 dr, (28)

while the far-field radiation pattern is found to be20

FII~r, u! 5 A 2

k0n0r
exp~2jk0n0r 1 jp/4!~k0n0 cos u!

3 (
l51

2

Tl~s 5 k0n0 sin u! ~r → 1`!, (29)

where r and u are the cylindrical coordinates (z 5 r cos u
and x 5 r sin u) and 0 , u , p/2 in order that Eq. (29)
defines the pattern only for z . 0.

3. SOLUTION BY THE VARIATIONAL
TECHNIQUE
In this section the above and other problems will be
solved by the approximate variational technique, which is
a modification of the well-known method proposed by
Schwinger for solving different problems of the metal
waveguide theory.8,13,14,22 Below we shall consider a
general case, assuming that the refractive index n(x) is
an arbitrary function of the transverse coordinate x inside
the slab (uxu , D/2). We shall derive the basic equations
in the vector form, which is more convenient for such
problems. As stated in Section 2, we shall treat a single-
mode problem. Many derivations are similar to those
used in the previous section; therefore we omit some de-
tails.

In the left (z , 0) and right (z . 0) regions, the fields
can be written in terms of the eigenmode
expansions.13,15,23 Let us assume that E0(1), H0(1),
Emr(1), Hmr(1), and Ems(2), Hms(2) are the electric and
magnetic fields of the guided mode and the radiation
eigenmodes of the waveguide (z , 0) and the right semi-
infinite region (z . 0), respectively, where r, s are the
transverse wave numbers and m is the discrete index la-
beling the modes (for example, the even and odd modes of
the right semi-infinite region). The numbers 1 and 2 in
the parentheses denote the quantities related to the left
and right regions. For z , 0 the eigenmode expansion
mentioned above is

E 5 @exp~2jb0z ! 1 R0 exp~1jb0z !#E0~1 !

1 (
m51

2 E
rm

`

Rm~r!Emr~1 !exp@ jb~r!z#dr, (30)

and for z . 0 it is
E 5 (
m51

2 E
0

`

Tm~s !Ems~2 !exp@2jg ~s !z#ds, (31)

where Rm(r), Tm(s) are unknown expansion coefficients
and b(r), g (s) are the propagation coefficients.

For the three-layer slab guide with a constant profile
n(x), the analytical representation of modes are the same
as those used in Section 2. In a general case we can con-
struct the system of the radiation modes by using the
S-operator theory.24,25 The electric field of the guided
mode is given by E0(1) 5 (U0(x), 0, dU0(x)/dx)/n2(x),
where U0(x) is the solution of the following differential
equation:

n2~x !
d

dx F 1

n2~x !

dU0

dx G 1 @k0
2n2~x ! 2 b0

2#U0 5 0, (32)

where b0 is the propagation constant of the mode [see
Eqs. (1)–(3)] and the function U0(x) must approach zero
for x → 6`.

The fields of all the eigenmodes satisfy the orthogonal-
ity conditions:

^E0~1 !, Hmr~1 !& 5 0,

^Emr~1 !, Hm8r8~1 !& 5 dmm8d ~r 2 r8!,

^E0~1 !, H0~1 !& 5 1,

^Ems~2 !, Hm8s8~2 !& 5 dmm8d ~s 2 s8!, (33)

where

^E, H& 5 E
z50

~E 3 H! • ez dxdy. (34)

Equations (33) can be derived from the general orthogo-
nality relations presented in Refs. 24 and 25. Here ez is
the unit vector oriented along the guide axis Oz, and the
skew cross indicates the vector product. Note that the
unknown expansion coefficients Rm(r), Tm(s) can be ex-
pressed in terms of the facet electric (or magnetic) field
with the help of the orthogonality relations presented
above. Matching the transverse field components at the
terminal plane z 5 0 and utilizing the eigenmode or-
thogonality relations lead to the integral equation for the
transverse electric field E [see Eqs. (15)–(17)]:

Ĵe@E# 5 2H0'~1 !, (35)

where the integral operator Ĵe is equal to

Ĵe@E# 5 ^E, H0'~1 !&H0'~1 !

1 (
m51

2 E ^E, Hmr'~1 !&Hmr'~1 !dr

1 (
m51

2 E ^E, Hms'~2 !&Hms'~2 !ds (36)

and the' sign denotes the transverse parts of the vectors.
In this equation the integration limits, which depend on
the waveguide structure and can be determined by the
approach described in Ref. 24, have not been written.

Using a standard technique,13,15,22 we can derive the
stationary functionals for basic characteristics of the
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problem in question. For instance, taking into account
the expression for the reflection coefficient,

R0 5 21 1 ^E, H0~1 !&, (37)

we obtain the following functional:

1 2 R0

1 1 R0
5

^E, Ĵer@E#&

^E, H0~1 !&2 , (38)

where the new integral operator is

Ĵer@E# 5 Ĵe@E# 2 ^E, H0'~1 !&H0'~1 !. (39)

Because of the stationary property of Eq. (38), sufficiently
precise results can be obtained for the reflection coeffi-
cient R0 by substituting the approximate field distribu-
tion E. The field that is proportional to the incident one
E 5 AE0(1), with A being a constant, will be used below.
Note that this constant is canceled out in the following
equations. Utilizing Eq. (38) for the three-layer slab
waveguide leads to the expression

1 2 R0

1 1 R0
5

b0n0
2

pQ0
2~1 !

E
0

1`

@Qc
2~s ! 1 Qs

2~s !#

3
ds

~k0
2n0

2 2 s2!1/2 , (40)

where

Qc~s ! 5 E
2`

1`

U0~x !
cos~sx !

n2~x !
dx,

Qs~s ! 5 E
2`

1`

U0~x !
sin~sx !

n2~x !
dx, (41)

Q0
2~1 ! 5 E

2`

1` U0
2~x !

n2~x !
dx, (42)

and U0(x) is the solution of Eq. (32). It should be noted
that the functions E0(1) and Hmr(1) are orthogonal [see
Eqs. (33)]; therefore the waveguide radiation mode fields
are excluded from the final results. This property of the
variational solution permits the study of complicated
structures, since the free-space eigenmode fields Ems(2),
Hms(2) can be easily constructed [see Eq. (11)]. Note
also that for the constant profile of the n(x) the integrals
Qc and Qs can be calculated analytically.

Based on Eq. (40) derived above, simple estimations of
the reflection coefficient R0 can be obtained for several
limiting cases. For example, near cutoff, where k0D
→ 0 and h1 ! h2 , h1 ! h3 , all the integrals of Eqs. (41)
can be calculated analytically. As a result, the following
equation is valid:

R0 5 ~n1 2 n0!/~n1 1 n0!. (43)

Fresnel law can also derive the last equation if the field of
the guided mode is considered near cutoff.

Equation (38) is the so-called electrical formulation of
the variational principle.13,15,22,26 With the help of the
same technique, the integral equation for the magnetic
field H at the facet plane z 5 0 can be derived:

Ĵm@H# 5 2E0'~1 !, (44)
where the integral operator Ĵm is expressed in terms of
the electric fields of all eigenmodes. From this equation
the magnetic formulation of the variational principle for
the reflection coefficient R0 can be obtained.15 For the
problem in question, the final equation has the form

1 1 R0

1 2 R0
5

1

pb0n0
2Q0

2~1 !

3 E
0

1`

@Q̃c
2~s ! 1 Q̃s

2~s !#Ak0
2n0

2 2 s2 ds,

(45)
where

Q̃c~s ! 5 E
2`

1`

U0~x !cos~sx !dx,

Q̃s~s ! 5 E
2`

1`

U0~x !sin~sx !dx. (46)

Near cutoff (k0D → 0) Eqs. (40) and (45) give similar
results. However, they are not identical. Test and esti-
mations have shown that the electrical formulation [see
Eq. (40)] is more precise. Table 1 illustrates this conclu-
sion, where the values of the square magnitude of the
guided-mode reflection coefficient calculated by different
methods are presented. The parameters of the problem
are l0 5 0.86 mm, n2 5 3.6, D 5 0.2 mm, D12 5 D32
5 10% (i.e., n1 5 n3 5 3.24), and n0 5 1. The same re-
sults are valid for other parameters.

The numerical results, presented in Section 4, are ob-
tained with the help of the electric field formulation of the
variational principle. The boundary-value problem for
the guided mode on the interval (2D/2, D/2) is solved by
the target method.27 Both the field distribution U0(x)
and the Fourier integrals Qc , Qs are calculated at the
same time by the adaptive Runge–Kutta procedure (with
a variable step of the integrations). Finally, the reflec-
tion coefficient is computed by the general equation (40).

4. NUMERICAL RESULTS
We have performed several numerical computations by
applying the theory developed in Sections 2 and 3. It
should be noted that in the numerical computation of the

Table 1. Convergence of the Reflection
Coefficient for an Abruptly Ended Waveguidea

Method Reflectivity uR0u2

Integral equation method (zero order) 0.2499
Integral equation method (first order) 0.2741
Integral equation method (second order) 0.2701
Integral equation method (third order) 0.2697
Variational technique [Eq. (40)] 0.2687
Variational technique [Eq. (45)] 0.2181
Vassallo method (Ref. 10) 0.2638
Buus formula (Ref. 30) 0.2322

a For the parameters l0 5 0.86 mm, n2 5 3.6, D 5 0.2 mm, D12 5 D32

5 10% (i.e., n1 5 n3 5 3.24), and n0 5 1.
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integrals a multisegment Gaussian quadrature procedure
has been employed. Increasing the number of segments
attains convergence in the numerical integrations. Fi-
nally, the following definitions are made: D12 5 1
2 n1 /n2 , D13 5 1 2 n3 /n1 , and D32 5 1 2 n3 /n2 .

At first we consider the problem of an abruptly termi-
nated symmetrical slab waveguide, and we compare our
results with those obtained by methods appearing in pre-
viously published works.9–12,28–33 The results of the com-
parison are presented in Fig. 2, where the reflectivity
uR0u2 of the dominant TM guided mode is plotted as a
function of the core width D (slab thickness) for a wave-
guide geometry with l0 5 0.86 mm, n2 5 3.6, and n0
5 1. In Fig. 2(a) we have chosen n1 5 n3 5 3.492 (i.e.,
D12 5 D32 5 3%, D13 5 0%), and in Fig. 2(b), we have
chosen n1 5 n3 5 3.24 (i.e., D12 5 D32 5 10%, D13
5 0%). From these figures it is clear that results ob-
tained by using the first- and second-order solutions of
the integral equation method are in very good agreement
with those of the variational method. It should also be
mentioned that most of the methods derived in the publi-
cations given in Fig. 2 are approximate. Furthermore,

Fig. 2. (a) Comparison of the results obtained by using the two
methods presented in this paper with others appearing in previ-
ously published works for an abruptly terminated symmetrical
slab waveguide with l0 5 0.86 mm, n2 5 3.6, n0 5 1, and n1
5 n3 5 3.492 (D12 5 D32 5 3%, D13 5 0%). (b) Similar to (a)
but applies to the problem with the parameters l0 5 0.86 mm,
n2 5 3.6, n0 5 1, and n1 5 n3 5 3.24 (D12 5 D32 5 10%, D13
5 0%).
the data presented in these figures are close for all values
of the core width D, except the range 0.1 , D , 0.3.
Nevertheless, the difference between all the results
observed in that width range decreases if the value
D12 → 0.

Next, a comparison of the successive-order solutions of
the integral equation method is performed in order to
study its convergence. In Fig. 3 we present the differ-
ence between the successive-order solutions as a function
of the core width D, with the relative refractive-index dif-
ference D12 as a parameter, for an abruptly terminated
symmetrical slab waveguide with l0 5 0.9 mm, n2
5 3.61, n0 5 1, and D12 5 D32 5 0.1%, 0.5%, 1%, and
5%. From these figures it is obvious that the difference
becomes smaller as D12 decreases, especially near cutoff.

We now consider asymmetrical structures. In all the
numerical computations considered below, the following
values have been chosen: l0 5 0.9 mm, n2 5 3.61, and
n0 5 1. In Fig. 4 the very good agreement between the
two methods employed in this paper is exhibited. In par-
ticular, we present the variation of the reflectivity uR0u2 of
the dominant TM guided mode with the core width D for
two cases, one with D12 5 1%, D32 5 10% [Fig. 4(a)] and
the other with D12 5 5%, D32 5 10% [Fig. 4(b)]. From

Fig. 3. (a) Difference between the first- and second-order solu-
tions of the integral equation method for an abruptly terminated
symmetrical slab waveguide with l0 5 0.9 mm, n2 5 3.6, n0
5 1, and D12 5 D32 5 0.1%, 0.5%, 1%, and 5%. (b) Similar to
(a) but for the difference between the second- and third-order so-
lutions.
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these figures it is clear that the results obtained by the
variational technique (squares) coincide with the higher-
order solutions of the integral equation method (solid,
long-dashed, and dotted curves), especially when the
weak guidance condition is satisfied [see Fig. 4(a)]. Fur-
thermore, the two horizontal short-dotted and dotted–
dashed lines correspond to the cases of the reflection be-
tween two semi-infinite spaces with refractive indices
n1 , n0 and n2 , n0 , respectively. The lower of them cor-
responds to the near-cutoff regime obtained by Eq. (43),
and the higher one corresponds to the asymptotic value
k0D → 1`. Finally, we give the results obtained by us-
ing the effective refractive-index formula (EFIF), i.e., by
using the equation R0 5 (b0 2 k0n0)/(b0 1 k0n0) (short-
dashed curve).

In Fig. 5(a) we present the variation of the magnitudes
of the transverse electric field distribution uE(x)u (solid
curve) and the guided-mode transverse electric field dis-
tribution, i.e., u(1 1 R0)U0(x)u/n2(x) (dashed curve), with
the normalized transverse distance x/D on the terminal
plane z 5 0 for a slab waveguide with D 5 0.5 mm and

Fig. 4. (a) Variation of the reflectivity uR0u2 of the dominant TM
guided mode with the core width D for an abruptly terminated
asymmetrical slab waveguide with l0 5 0.9 mm, n2 5 3.61, n0
5 1, D12 5 1%, and D32 5 10%. (b) Similar to (a) but applies
to the problem with the parameters l0 5 0.9 mm, n2 5 3.61, n0
5 1, D12 5 5%, and D32 5 10%.
D12 5 D32 5 1%. Obviously, in that case the waveguide
is symmetrical; therefore the curves uE(x)u and u(1
1 R0)U0(x)u/n2(x) are also symmetrical with respect to
the plane x 5 0, as is expected. Since these two curves
are almost identical, the contribution of the radiation
modes to the transverse electric field distribution on the
plane z 5 0 is negligible. It should be mentioned that
the transverse electric field distribution is not continuous
at the core–clad interface (x 5 6D/2), as is expected
from the boundary conditions. In the same figure the
corresponding curves of an asymmetrical slab waveguide
are also drawn for a waveguide with the same param-

Fig. 5. (a) Variation of the magnitude of the transverse electric
field distribution uE(x)u (solid curve) and the transverse electric
field distribution of the guided mode, u(1 1 R0) U0(x)u/n2(x)
(dashed curve), at the plane z 5 0 with the normalized trans-
verse distance x/D for a slab waveguide with l0 5 0.9 mm, n2
5 3.61, D 5 0.5 mm, n0 5 1, and D12 5 D32 5 1%. Also
given is the variation of uE(x)u (dotted curve) and u(1
1 R0)U0(x)u/n2(x) (circles) for the same geometry but with
D12 5 1%, D32 5 10%. (b) Variation of the magnitude of the
transverse electric field distribution uE(x)u (solid curve) and the
transverse electric field distribution of the guided mode, u(1
1 R0)U0(x)u/n2(x) (dashed curve), at the plane z 5 0 with the
normalized transverse distance x/D for a slab waveguide with
l0 5 0.9 mm, n2 5 3.61, D 5 0.25 mm, n0 5 1, and D12
5 D32 5 5%. Also given is the variation of uE(x)u (dotted curve)
and u(1 1 R0)U0(x)u/n2(x) (circles) for the same geometry but
with D12 5 5%, D32 5 10%.
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eters, except that D12 5 1% and D32 5 10%. From the
last two curves, the asymmetrical behavior of uE(x)u (dot-
ted curve) and u(1 1 R0)U0(x)u/n2(x) (circles) is exhib-
ited. The same variations are presented in Fig. 5(b) for a
waveguide with D 5 0.25 mm and D12 5 D32 5 5% (solid
and dashed curves) and D12 5 5%, D32 5 10% (dotted
curve and circles). Obviously, in this case the asym-
metrical behavior of the electric field is smaller than in
the previous case, because of the larger value of D12 , with
the result that most of the field distribution and the
guided power is in the core region uxu , D/2. Further-
more, in the last case the discontinuity of uE(x)u and
u(1 1 R0)U0(x)u/n2(x) at the core–clad interface is larger
than in the previous case because of the larger value of
D12 .

Fig. 6. (a) Normalized radiation pattern for an abruptly termi-
nated slab waveguide with l0 5 0.9 mm, n2 5 3.61, D 5
0.5 mm, n0 5 1, and D12 5 D32 5 1% (solid curve) and
D12 5 1%, D32 5 10% (dashed curve). (b) Similar to (a) but
applies to the problem with the parameters l0 5 0.9 mm,
n2 5 3.61, D 5 0.25 mm, n0 5 1, and D12 5 D32 5 5%
(solid curve) and D12 5 5%, D32 5 10% (dashed curve).
As a consequence, the far-field radiation patterns for
these cases are different [Figs. 6(a) and 6(b)]. Specifi-
cally, the radiation pattern of the first waveguide [Fig.
6(a)] is narrower (i.e., smaller value of the 3-dB angle and
therefore larger directivity) than that of the second [Fig.
6(b)]. In addition, for the system under consideration the

Fig. 7. (a) Variation of the refractive index n(x), which is as-
sumed to change linearly from n1 to n2 on the interval
(2D/2, xl). (b) Variation of the reflectivity uR0u2 of the domi-
nant TM guided mode with the core width D for an abruptly ter-
minated symmetrical slab with l0 5 0.9 mm, n2 5 3.61, D12
5 D32 5 10%, and n0 5 1 and with linearly varying refractive
index from n1 to n2 on the interval (2D/2, xl) as shown in (a).
(c) Variation of the reflectivity uR0u2 of the dominant TM guided
mode with the core width D for an abruptly terminated asym-
metrical slab with l0 5 0.9 mm, n2 5 3.61, D12 5 5%, D32
5 10%, and n0 5 1 and with linearly varying refractive index
from n1 to n2 on the interval (2D/2, xl) as shown in (a).
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far-field pattern is asymmetrical rather than symmetri-
cal. However, under weak guidance conditions this
asymmetry is very small. For example, for the param-
eters used in Fig. 6 the value of the angle umax , which cor-
responds to the maximum value of the far-field pattern, is
approximately 0.1°–0.5° (different from umax 5 0° of the
symmetrical waveguide).

To demonstrate the potential of the variational tech-
nique, we examine the effect of the transition (diffusion)
layer of the waveguide refractive-index profile on the re-
flectivity features. The refractive index n(x) is assumed
to change linearly from n1 to n2 on the interval
(2D/2, xl), as shown in Fig. 7(a). Figures 7(b) and 7(c)
present the reflectivity uR0u2 for such structures. The
drawn curves correspond to the cases xl 5 0.5D (solid
curve), xl 5 0 (dashed curve), xl 5 20.25D (dotted
curve), and xl 5 20.5D (dotted–dashed curve, i.e., for the
step profile). The problem parameters are l0 5 0.9 mm,
n2 5 3.61, n0 5 1, and D12 5 D32 5 10% [Fig. 7(b)] and
D12 5 5%, D32 5 10% [Fig. 7(c)]. From these figures it is
obvious that asymmetry of the refractive-index values n1
and n3 is seen to change the reflective characteristics.

5. DISCUSSION
The results for the TM problem, presented above, suffi-
ciently differ from those for the similar TE problem.20

Near cutoff the reflection coefficient uR0u of the TM mode
is smaller than its initial value [see Eq. (43)], whereas for
the TE mode it is larger than this value. For the sym-
metrical geometry this effect can be explained by using
the Fresnel law.30 This explanation is also suitable for
the asymmetrical problem. However, in the asymmetri-
cal case the reflectivity dependencies on the problem pa-
rameters are more complicated, since these parameters
can also shift the mode cutoff frequencies.

In the TM and TE problems, the field structures at the
terminal planes are also different. For the first problem
the scattering of the waves by the edge points (x
5 6D/2, z 5 0) plays a more important role than for the
second problem. Below, we briefly consider this item by
using the results of Meixner’s theory34 and its
modification.26 For simplicity, we shall treat the sym-
metrical case (n1 5 n3). Estimations, based on the
above papers, show that the electric field at the terminal
plane z 5 0 has the following approximate representa-
tion:

Ex~x, 0 ! 5 F1~x ! 1 F2~x !D12re
2a/ln~kre!, (47)

where

re 5 Aux2 2 D2/4u, a ' A2D12 /@p~n0
2 1 n2

2!#.
(48)

Here F1 and F2 are piecewise regular functions, which
are liable to steps in the points x 5 6D/2. For the TM
problem the electric field is seen to be singular in the edge
points. Under the weak guidance condition the power
constant a is very small; for example, assuming that n2
5 3.61, D12 5 10%, and n0 5 1, we have a ' 0.01. In
this case the singularities are small; nevertheless, they
complicate the solution of the problem.

Using the above formulas, we can make our conclu-
sions, dealing with the convergence of the technique de-
scribed in Section 2, more accurate. Since the electric
field on the terminal plane is irregular, all the integrals of
the eigenmode expansions [see Eqs. (8) and (10)] converge
only in the mean. From Eq. (47) it follows that the ex-
pansion coefficients Rm(r) and Tl(s) contain small terms,
which slowly approach zero when r → 1` and s → 1`.
The existence of these terms slows the convergence of the
iteration procedure, especially in the vicinity of the points
x 5 6D/2 (see Fig. 5). However, if D12 ! 1, the second
singular term in Eq. (47) is small and its influence is neg-
ligible. Since the singular regions (near the edge points)
are very narrow, they make small contributions to all the
integral characteristics of the problem, such as the reflec-
tion coefficient, etc. It seems that the convergence of the
technique can be improved if we use the terminal field de-
scribed by Eq. (47) as the first-order solution. Neverthe-
less, this subject requires further consideration.

Note that for the TE problem, only high derivatives
of the electric field at the terminal plane are singular.
In this case the field is continuous; for example, for
x → D/2 we have

uEx~x, 0 ! 2 Ex~D/2, 0 !u ; D12re
2 ln~kre!. (49)

Therefore, for this problem, the difficulties mentioned
above are removed, and the conditions required for D12
are less drastic.20

6. CONCLUSION
The scattering phenomenon from an abruptly terminated
asymmetrical slab waveguide has been studied by both
the integral equation method and the variational tech-
nique. The reflection coefficient of the dominant TM
guided mode, the far-field radiation pattern, and the
transverse electric field distribution on the terminal plane
z 5 0 are computed. Both methods employed in this
problem are based on the same integral equation, and
they seem to be able to complement each other. Based on
the analysis developed in Sections 2 and 3, several nu-
merical computations have been performed, including the
three-layer slab waveguide and the structure with vari-
able profile of the core refractive index. From the nu-
merical results it has been found that the two methods
are in very good agreement, especially under the weak
guidance condition, while a comparison with previously
published works has been performed and presented.
Furthermore, the reflectivity properties of the asymmetri-
cal structures are found to differ from those of symmetri-
cal ones, i.e., the phase asymmetry of the field distribu-
tion on the terminal plane. Of course, this effect is small
under the weak guidance conditions, and therefore the
displacement of the radiation pattern (with respect to u
5 0°) is also small. Finally, it should be mentioned that
in the case of TM modes, unlike that of TE modes, the
transverse electric field distribution is discontinuous at
the core–clad interface (x 5 6D/2).
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