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Algorithms for a Class of Nondifferentiable Problems 

G. PAPAVASSILOPOULOS 2 

Communicated by D. G. Luenberger 

Abstract. A nonlinear programming problem with nondifferen- 
tiabilities is considered. The nondifferentiabilities are due to terms of 
the form minffl(x) . . . . .  f,,(x)), which may enter nonlinearly in the cost 
and the constraints. Necessary and sufficient conditions are developed. 
Two algorithms for solving this problem are described, and their con- 
vergence is studied. A duality framework for interpretation of the 
algorithms is also developed. 

Key Words. Nonlinear programming, nondifferentiable optimization, 
algorithms, min-max problems, duality. 

1. Introduction 

The present paper  deals with algorithms for finding the minimum of a 
problem with nondifferentiable cost functional and constraints. All the 
functions involved have domains and ranges in finite-dimensional Euclidean 
spaces. 

Much research has been conducted in the area of nondifferentiable 
optimization, and more  remains to be done. As expected, almost  all the 
methods proposed until now tend to exploit the knowledge which is avail- 
able for the differentiable case. Some of them use generalizations of notions 
which exist for the differentiable case. The subgradient and e-subgradient 
methods (Refs. 7, 14) use the notions of subgradient and e-subgradient of a 
function at a point, which generalize the familiar notion of the derivative, 
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and they treat nondifferentiable problems in a direct way. Some other 
methods, like the one that we propose here, try to reduce the whole problem 
to a differentiable one, treating it in an indirect way. Optimality conditions 
have been derived by several authors (Refs. 9, 11, 12), and it has been shown 
that convexity theory is particularly helpful in establishing such conditions. 
In this context, Clarke's work (Ref. 9) can be pointed out as a representative 
one. Algorithmic procedures have also been proposed and analyzed (Refs. 
4, 5, 7, 13, 17-19). Many of these methods are of limited applicability, due to 
restrictive assumptions, such as convexity, or are applicable only to prob- 
lems of a specific structure. Also, many of them, although theoretically 
interesting and intellectually pleasing, are quite cumbersome and compli- 
cated in practice. For this reason, the increasing demand for general- 
purpose methods makes algorithms for nondifferentiable optimization a 
topic of current interest. 

The algorithms that we propose and analyze deal with problems of the 
form 

(NP) minimize g[x, max{hi(x) . . . . .  hm(x)} . . . . .  max{fkl(X) . . . . .  fkm(X)}], 

subject to hi[x, max{fll(x) . . . . .  fire(x)} . . . . .  max{fk f fx ) . . . . .  fk,,(X )} ] = O, 

where the functions 

f # : R " ~ R ,  

] = 1  . . . . .  q, 

g Rn+k ~ : K, h / : R " + k ~ R  

are continuously differentiable. The nondifferentiability of g and h i with 
respect to x is due to the presence of the terms 

max{f/l(x) . . . . .  fire(x)}, i = 1 . . . . .  k. 

It is clear that quite a large number of cases of practical interest is covered by 
Problem (NP). The algorithms are conceptually simple to understand and 
practically easy to implement. They are related closely to the methods of 
multipliers. For a fairly complete account of multiplier methods, 3 we suggest 
two recent survey papers (Refs. 3 and 21). The basic idea on which our 
algorithms operate was introduced in Refs. 4-5; and hence, we consider this 
work as a continuation of Refs. 4-5. 

For the sake of avoiding the use of complicated formulas and keeping 
the exposition simple, we give the proofs only for a simplified version of 
problem (NP). These proofs can be generalized easily for (NP). The results 
and the algorithm for (NP) are given in Section 5. 

3 Also called augmented Lagrangian methods. 
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We start, in Section 2, by stating the problem and developing necessary 
and sufficient conditions for optimality. These conditions, besides being 
of interest in their own right, are used in the sequel to establish certain 
results. In Section 3, we develop a duality framework. In Section 4, we 
introduce the algorithms, interpreting them as gradient methods (approxi- 
mate steepest ascent and Newton's method) for solving the dual problem, 
and we prove convergence and convergence-rate results. In Section 5, we 
state the results and the algorithms for Problem (NP) without proofs. At the 
end, we have a conclusion section. 

Abbreviations 

w.r.t. 
w.l.o.g. 
(NP) 
(NPS) 
(DP) 
(DPS) 
(AS) 
(AN) 

with respect to 
without loss of generality 
nondifferentiable problem 
simplified nondifferentiable problem 
decomposed problem corresponding to (NP) 
decomposed problem corresponding to (NPS) 
algorithm with steepest descent update 
algorithm with Newton update 

Notation 

R,~ 

II,II 
Ll.II 
S(x, E) 

g(x, E) 

C1 C 2 

denotes the n-dimensional real Euclidean, space and its ele- 
ments are considered to be column vectors; 
denotes transposition of vector or matrix; 
for x ~R" ,  Hxll = ~/(x~ + . . . + x ~ ) ;  
for A, n x m real matrix, IIAH = sup{llAxH Ix ~ R m, Ilx H = 1}; 
for x e R"  and e > 0 ,  $(x, e) denotes the open ball in R"  
centred at x with radius e, i.e., 

S(x, e)={y e R"  lHx - yiI< e}; 

denotes the closure of S(x, e) in R", i.e., 

g(x, e n  ° [llx-yH  0c}; 

C 1 denotes the set of all continuously differentiable functions 
from one Euclidean space to another, and C 2 denotes the set 
of twice continuously differentiable functions. 

Our definitions of local, strict local, global, strict global minimum of a 
real-valued function are the standard ones, see Ref. 15. 
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For  a funct ion f :  R "  -~ R,  f • C ~, we deno te  the gradient  of  f at x • R ~ 
by Vf(x),  and we consider  it to  be a co lumn vector  in R ~. If in addit ion f • C 2, 
we deno te  the Hess ian  of  f at x by V2f(x). 

For  a funct ion 

f :  R "  -> R ~, f ( x )  = (f~(x) . . . . .  f , , (x)) ' ,  f •  C 1, 

we deno te  the n x m matr ix [Vfl(x) i " "  i Vfm(x)] by Vf(x). Using this 
nota t ion,  we have that,  if 

where  

f : R k ~ R  ",  

then 

g(x) = f (h (x ) ) ,  

h : R ~ R  k, g = R " ~ R  "~, g , f , h • C  l, 

Vg(x) = Vh (x)Vf(x). 

If  a function f : R n + k ~  R is in C 1, x • R " ,  z • R  k, we write 

Vxf = (Of/Oxl . . . . .  Of/Ox,)', V~f = (Of /Oz l , . . . ,  OflOzk), V.d = oflOz,. 

If in addi t ion f • C 2, we write 

 oV/o .,oz  . . .  1 
Vxzf = | : • , n x fi matrix, 

Lei lox°oz ,  . oV/oxoozd 

v ~ f f  = (vxff)' .  

If A is an n x m matrix, then X ( A )  and Y~ (A) deno te  the null space and 
the  range  of  space of A ,  respectively,  i.e., 

Y ( A )  = {x Ix • R m and A x  = 0}, 

(A) = {x t x • R n and x = A w for  some  w • R m }. 

We  also write 

a = (aii), 

where  aq are the entries of A.  
By {x~}7=1, we deno te  the sequence x 1, x z . . . .  of e lements  of R n. 
If  A and M are matrices,  vectors,  or  scalars and A depends  on M, 

A = O ( M )  

means  that  A is of o rde r  M ;  i.e., for  some  K > 0, 6 > 0, it holds that  

IIAII/IIMII <- K, for  all M # 0, IIMII-< ~. 
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T h e  symbol  0 is used to deno t e  the zero  of R,  the zero  vec to r  of  R'~, or  a zero  
matr ix .  

2. Problem Statement, Optimality Conditions 

2.1.  Problem Statement. T h e  p r o b l e m  tha t  we are  conce rned  with is 
the following: 

(NP) min imize  g[x, y [ f i ( x ) ]  . . . . .  y[fk(x)]],  

subjec t  to hi[x, y [ f i ( x ) ]  . . . . .  y[fk(x)]] = O, ] = 1 . . . . .  q, 

where  the funct ions 

f i : R " ~ R  m, i = 1  . . . . .  k, g : R n + ~ R ,  h i :R  ~+k ">R, 

j = l  . . . . .  q, 

are in C 1. For  the ffls, we have  

f ,=(f~ . . . . .  f.~)', i =  l , . . . , k ,  (1) 

where  

f i i : R ~ R ,  f q ~ C  1, i = 1  . . . .  , k ,  /=1 . . . .  ,q.  

T h e  funct ion ,/:  R n ~ R m is def ined by 

~/[t] = max{t1 . . . . .  tin}, (2) 

where  

t =  (tl . . . . .  tm ) 'ER  m 

O u r  s tanding assumpt ions  for  P rob l em (NP) are  tha t  the  o p t i m u m  value g* is 
finite and that  fi, g, hi are in C a. The  funct ion y is not  e v e r y w h e r e  
different iable ,  which is the cause of the  nondi t te ren t iab le  charac te r  of  the 
p rob l em.  W e  will re fer  to y def ined in (2) as a kink.  

Le t  us also in t roduce  the simplified uncons t ra ined  vers ion of (NP) 

(NPS) m i n i m i z e g [ x ,  T [ f l ( X ) ]  . . . . .  T[fk(X)]], 

subjec t  to x ~ R ~, 

where  the funct ions f,., 

f ~ : R ~ R ,  i = 1  . . . . .  k, (3) 

and  g : R  "+k ~ R  are in C a, and where  y : R  -~R  is def ined by 

y[ t ]  = max{0, t}, for  atl t ~ R.  (4) 
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Our standing assumptions for Problem (NPS) are that the optimum value g* 
is finite and that fl, g are in C 1. We will refer to 3' defined in (4) as a simple 
kink.  We write 

yi(x) = 3"[/~(x)] = max{f~l (x) , . . . ,  fire (x)}, i =  1 , . . . ,  k, (5) 

for the kink y of problem (NP) and 

3,i(x) = y[ f i (x)]  = max{0,/dx)}, i = 1 . . . . .  k, (6) 

for the simple kink 3' of Problem (NPS). 
In the case of (NP), we say that the function fit is active at x if 

it is inactive at  x if 

For x ~ R n, we denote  

3"i(x) =;~j(x); 

v,(x ) > [ , (x  ). 

Z~(x)={/lf,(x)=3"i(x),/=l . . . .  , m } ,  i = 1  . . . . .  k. 

In the case of (NPS), we say that the function fi is active at  x if 

it is inactive at x if 

For x ~ R ' ,  we denote 

iS(x) = 0; 

f ,(x) ~ O. 

(7) 

2.2. Equivalences with Nonlinear Programming Problems. In Sec- 
tions 2, 3, 4 we deal exclusively with Problem (NPS). Consequently, by/ i  and 
3' we mean those defined in (3) and (4), respectively, for (NPS). 

I ( x )  = { j ] f i ( x )=  0, i = 1 . . . . .  k}. (8) 

Notice that, for given x, I ( x )  may be empty. Although we could consider as 
definition of active function, for the (NPS) case, the same that we gave for 
the (NP) case, we prefer  to give the different but essentially equivalent 
definition (7), because it leads to simpler formulas. 

We comment  now on the formulation of Problem (NP). There  is no loss 
of generality in requiring that all the fi's take values in R " ,  since a kink of 
length less than m can be transformed to a kind of length m. For example, 

max{h, t2, t3} = max{h, t2, t3 , t2-  10, t l -  2}. 

We also assume w.l.o.g, that the functions g, h i , . . . ,  hq contain the same 
kinks, since we may add zero multiples of any missing kinks to g, hl . . . . .  hq. 
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We now introduce a class of nonlinear programming problems which is 
closely related to Problem (NPS). Let x* ~ R n, I(x*) be as in (8), and let J be 
any subset of i(x*), including the empty set. let 

where 

g j ( x )  = g[x,  8~(x; J)  . . . . .  8k(x; J)], 

t fi(x), 

Consider the problem 

(DPS-J) minimize gj(x), 

subjecttofi(x)>-O, if i~J ,  

~i(x)<-O, i f i~ l (x*) ,  i~J. 

The following lemma shows the relationship between problems (NPS) and 
(DPS-J). The proof is straightforward and is left to the reader. 

if ]~ (x*) > O, 

if fi(x *) < O, 
if i ~ I(x*) and i ~ J, 
i f i~J ,  

Lemma 2.1, A vector x* ~ R ~ is a strict local minimum of (NPS) iff x* 
is a strict local minimum of (DPS-J), for every J CI(x*).  Also, g* = gj(x*), 
for every J CI(x*) .  

We now proceed to obtain conditions for optimality for Problem (NPS) 
by exploiting its relation with Problem (DPS-J). 

2.3. First-Order and Second-Order Necessary Conditions for Opti- 
mality. We first give a theorem which resembles the one given in Ref. 4 as 
Proposition 3.2. 

Theorem 2.1. Let x* be a local minimum of Problem (NPS). Then, 
there exist scalars y* . . . . .  y*, such that 

k 

Vxg+ ~ y*VigVfi=0,  
i = 1  

(9) 
0-<y*---< 1, i = 1  . . . . .  k, 

0, if f~(x*) < 0, 
Y*= 1, if fi(x*) > 0 .  (1.0) 

If in addition the vectors Vfi, for which V~g ¢ 0 and fi(x*)= O, are linearly 
independent, then the scalars y* are unique. All the gradients are calculated 
at x*. 
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Proof.  The proof is a direct application of Proposition 2.1 of Ref. 12. 
First, we show that the generalized gradients of g at any point x where 

f l ( x )  = 0 . . . . .  f n ( x )  = O, 

f,,+l(x) > 0 . . . . .  f.+~ (x) > O, 

fn+~+l(x)<O . . . . .  /k(x)<O 

is a subset of 

V~g+ y~V¢)+ Y Vf~+i. 0 < - y ~ < - l , i = l  . . . . .  n , 
i=1 /=1 

and then we use the necessary condition proved in Ref. 12 that, if x* is a local 
minimum of (NPS), then the zero vector must belong to the generalized 
subgradient of g at x*. [] 

Theorem 2.2. Let  x* be a local minimum of Problem (NPS), at which 
the gradients V/~(x*), i ~  I ( x * ) ,  are linearly independent.  Then, there are 
real numbers y * , . . . ,  y*, such that 

y~ = 0 ,  

y~ =1 ,  

k 

Vxg+ E Y/*VigVfi = 0 ,  
i=l  

(11) 
0 - < y ~ - < l ,  i = 1  . . . . .  k, 

for all i ;~I (x*) ,  f i ( x * ) < O ,  
(12) 

for all i ¢ : I ( x* ) ,  f i ( x * ) > O ,  

Vig >- O, V i  E l ( x * ) .  (13) 

furthermore,  y* . . . . .  y* are such that the scalars y*Vig ,  i = 1 . . . . .  k, are 
unique. All the gradients are calculated at x*. 

ProoL Assume w.l.o.g, that every fi is active at x*. then, by Lemma 
2.1, we have that x* is a local minimum of the following two problems: 

and 

minimize g[x,  h (x ), . . . , fk (X ) ], 

subject to f i ( x )  >-- 0, i = 1 . . . . .  k, 

minimize g[x,  0 . . . . .  0], 

subject t o f i ( x )<-O ,  i = 1 . . . . .  k. 

(14) 

(15) 
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Since the gradients of the contraints of these two problems are linearly 
independent by hypothesis, we can write the corresponding first-order 
necessary Kuhn-Tucker  conditions 

k k 

Vxg + Y VigV~ - Z ~iV/~ = O, (16) 
i = 1  i = 1  

k 

Vxg + Z , i v ~  = 0, (17) 
i = 1  

where/~i, &, i = 1 . . . . .  k, are nonnegative real numbers. Using the linear 
independence of the Vfi's, i=  1 . . . . .  k, and using (16)-(17), we obtain 

V~g =/x~+M, i = 1  . . . . .  k, (18) 

which implies (13). Since/x~--0 and a, "--_ 0, (18) implies also that there is a 
y* ~ R satisfying 

O < y  * <1 ,  Ai * - =yiV~g, /z~ = ( 1 -  y*)V~g, i = 1  . . . . .  k. (19) 

It is also clear that, if Vlg ¢ 0, then y* is unique. [] 
It is evident that the linear independence of the gradients of the active 

ffs  at x* is equivalent to the regularity of x* for Problems (DPS-J), see Ref. 
15. With this in mind, we give the following definition. 

Definition 2.1. A point x* ~ R ~ is said to be a regular point of the f,'s, 
i = 1 . . . .  , k, if the gradients Vf~(x*), i ~ I(x*) ,  are linearly independent. 

By first-order necessary conditions, we mean the  conditions of 
Theorem 2.2 (i.e., under regularity, unless stated otherwise). 

The next theorem gives second-order necessary conditions for opti- 
mality of a point x*~ R "  for Problem (NPS). 

Theorem 2.3. Assume that x* satisfies the hypothesis of Theorem 2.2 
and that g, f l  . . . . .  fk ~ C 2. Let y* . . . . .  y* be as in Theorem 2.2, and denote 

y~*. 0 
Y* = , k x k matrix, 

~0 y~ 
y * = ( y ~  . . . . .  y * ) ' ~ R  k, 

f = ffl . . . . .  f~)', 
k 

E , (x , y*) = V~g + F. y*V~gV2~/+VfY*Vzxg + V = g Y * V f '  
i = 1  

(20) 

(21) 

(22) 

+ V f Y * V ~ g Y * V f ' .  (23) 
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Then, 

w"~(x*,  y*)w >- 0, for alI w e R  n, such that w'Vf~ =0 ,  

for all i E I ( x * ) .  

All derivatives are calculated at x*. 

(24) 

Let  

Proof.  Assume w.l.o.g, that 

I (x*)  = {1 . . . . .  p}, 

fp+l (x*)>o  . . . . .  L ( x * ) > o ,  

L+l(x*)  < 0 . . . . .  fk(x*) < o. 

if[x, y [ f l (x) ]  . . . . .  y[fp(x)]] 

= g[x, y[ f f fx )]  . . . . .  y[fp (x)], fp+l(x) . . . . .  fq(X), 0 . . . . .  0]. (25) 

By Lemma 2.1, x* is a local minimum of the problem 

minimize ~[x, 0 . . . . .  0] ,  

subject to fi (x) <- O, i e I (x*) .  
(26) 

By hypothesis, Vfi, i e I (x*) ,  are linearly independent;  hence, there are 
nonnegative real numbers A1 . . . . .  Ap, such that 

P 

V ~  + E 2t,vfg = O, (27) 
i = l  

i = l  
for all w e R ", w'Vf~ = 0, 

i e I (x*) .  (28) 

By differentiation of ~ in (26), we obtain 

q 

V~(, = V,,g + E VigVf~, (29) 
i = p + l  

q 

v~d=Vx~g+ E 
i = p + l  

{G,gVf; + vf, V,xg + V,gV:f,} 

q 

+ Z Vf~V~je, V[;. 
i d = p + l  

(30) 
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From (27), (29), (11), we obtain 

;~i = y* rig, i ~ I (x*) .  (31) 

The desired result follows from (28), (30), (31). [] 
Notice that the contribution of V2fi, Vf~, i = q + 1 . . . . .  k, to the quantity 

(23) is zero, since they are multiplied by y* = 0. 
It should be pointed out, that although the Hessians of the Lagrangians 

of Problems (DPS-J), calculated at x*, y*, are different, they induce the 
same quadratic on the subspace 

dg. = { w l w  e R n, w'Vf i  = O, i e I(x*)}. (32) 

2.4. Second-Order Sufficiency Conditions for Optimality. The 
second-order sufficiency conditions can be proved similarly to the cor- 
responding second-order necessary conditions. 

satisfy 

Theorem 2.4. Assume that g, fl . . . .  , fk ~ C 2 and that 

x * 6 R  '~, y*=(y*  . . . . .  y* ) '~R  k 

k 
Vxg+ Y * Yi Vifi  = O, 

i=1 

y~* =1 ,  i f ~ ( x * ) > 0 ,  

y* =0, if fi(x*) < 0, 

0 < y *  <1, i f i ~ I ( x * ) ,  

Vig>0, i f i s I ( x * ) ,  

w 'E (x* ,  y*)w >0,  for all w ~M, w #0.  

(33) 

(34) 

(35) 

Then, x* is a strict local minimum of (NPS). All derivatives are calculated 
at x*. 

It is clear that the second-order sufficiency conditions correspond to 
those given for the classical nonlinear programming problem under strict 
complementarity. Slightly different second-order sufficiency conditions 
would have resulted from assuming that 

0-<yi-< 1, i = 1  . . . .  ,k, V~g->0, i ~ I ( x * ) ,  

instead of (33)-(34), and by considering 

At = {wj w'Vfi = 0, i ~ I ( x * ) ,  yiV,g > 0}, 

instead of ~ as in (32). 
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Finally, note that, if x*, y* satisfy the second-order sufficiency condi- 
tions, then the problem 

minimize g(x, zl . . . . .  zk), 

subject tofi(x)<-zi, i = 1 . . . . .  k, 

has a strict local minimum at (x*, y*), where 

z* = ~[~(x*)] ,  

with associated Kuhn-Tucker  vector 

/~* = (y*V~g . . . . .  y* Vkg). 

3. Duality 

In this section, we develop a duality framework which will serve to 
motivate and interpret the algorithms. Let  us introduce the function 
Pc( ' ,  Y):R -~R of t, 

Pc(t, y) = inf{3,[t- u] + yu + (c/2)u21u ~ R}, (36) 

where y and c are fixed real numbers and c > 0. This function was originally 
introduced and studied in Refs. 4-5 in a more general framework. It is real 
valued, convex, and continuously differentiable in t. The  infimum in (36) is 
achieved at a unique point  u* for every t ~ R ; thus, we can use minimum, 
instead of infimum, in (36). The function pc(', y) (see Fig. 1) and its 
derivative can be calculated explicitly (see Refs. 4-5): 

I t -  (1 - y)2/2c, 

pc(t, y )= ~ - y 2 / 2 c ,  
~yt + (c/2)t 2, 

V~p~(t, y ) =  O, 

y +Ct, 

if t --- (1 - y)/c, 
if t <- - y / c ,  (37) 

if - y / c  <- t <- (1 - y)/c, 

if t -> (1 - y)/c, 
if t <- - y / c ,  (38) 

if - y  -< t -< (1 - y)/c. 

By using (37), it is easily verified that, if y c A C R, bounded, then 

K/c<_pc(t ,y)-y(t)<_O, f o r a l l t ~ R ,  y 6 A ,  (39) 

where K is a fixed scalar which depends on A. 
Let  us introduce the function F defined as 

F(x, y, c) = gEx, pc[fl(x), yl] . . . . .  pc[fk(X), Yk]], (40) 
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Pc(t,y) 

~(t,y) yOI 
/ /  

/ / /  i-y 
/ z: 

yZ 1-y 

Fig. 1. The functions pc(t, y) and y(t). 

where 

Y = (Yl . . . . .  yk)'~ R k 

The gradient of F w.r.t, x is 

k 
V~F(x, y, c ) = V ~ g +  ~2 )7~V~gV£-, 

i = 1  

where 

I 
1, 

~ = y~ ( x )  -= 0~ 

y,+c£(x), 

if fi(x) -> (1 - yi)/c, 
if fg(x) - -yi/c, 
if -yi /c  <-£(x) <- (1 - yi)/c. 

(41) 

(42) 

Theorem 3.1. Assume that x * e R  '~ and y*~R  k, y * = ( y *  . . . . .  y*) '  
satisfy the first-order necessary conditions (Theorem 2.2) for x* to be a local 
minimum of Problem (NPS). Then, for all c > 0, 

V~F(x*, y*, c) = 0. (43) 

Proof.  The hypothesis and (12), (37) yield 

pc[f,(x*), y*] = W,(x*)]. (44) 

The result now follows from (11) and (41). [] 
Although F is continuously differentiable, it is not twice continuously 

differentiable w.r.t, x, as (41) and (42) show. Nonetheless, we have the 
following theorem. 

Theorem 3.2. Let  x*, y* be as in Theorem 3.1, and assume in addition 
that they satisfy the second-order sufficiency conditions for x* to be a strict 
local minimum of Problem (NPS). Then, there exists an E1 = El(c) > 0, such 
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that, for all (x, y) ~ S((x*, y*), El), the function F(x, y, c) is twice continu- 
ously differentiable w.r.t .x. Also, there exist scalars c* ~ 0 and e > O, such 
that, for all c 6 [c*, ~] and (x, y) ~ S((x*, y*), ~), the Hessian V~xF(x, y, c) is 
positive definite, where ? is an arbitrarily large fixed constant. 

Proof,  By hypothesis, (33) holds. The continuity of the f~'s together 
with (33) and (42), guarantees that, for (x, y) sufficiently close to (x*, y*), 

1, if f~(x*) > 0 ,  

)7~=37~(x)= 0, i f f~(x*)<0,  
y~ + cry(x), if/~(x*) = 0, (45) 

0<)7 i<  1, if)~(x*) = 0. 

Consequently, VxF(x,y ,c)  is differentiable w.r.t, x for (x,y) 
S((x*, y*), el), for some E1 -- el(c) > 0. Similarly as in (45), we have 

(vf,(x), 
Vxpc(f~(x), y,) = (~(y~°' 

+ cft(x))Vfi(x), 

if fi(x*) >0 ,  

if f,. (x*) < 0, 

if fi(x*) = O. 
(46) 

Direct calculation yields 

k 

V,,.F(x, y, c) = Vx.g + ~, ~VigV2fi +VfI'z'V~xg + V.~glT"Vf ' 
i = 1  

where 

+VflT"VzzglT'Vf'+c Y. VigVfiVf~, (47) 
i~I(x*) 

I 7" = , k x k matrix, (48) 
, 

and all the derivatives are calculated at the current point (x, y). Using (47) 
and (23), we have 

V,~,,F(x*, y*,c)=~-(x*, y*)+c Y~ VigVfiVfl[(x*.y*). (49) 
i~I(x*) 

By hypothesis, (34) holds. By Theorem 2.10 of Ref. 8, there exists c * -  > 0, 
such that, for all c-> c*, the matrix VxxF(x*, y*, c) is positive definite. By 
choosing E' sufficiently small, we have that (48) and (49) hold for all 
(x, y)c S((x*, y*), # )  and c ~ [c*, ~]. The continuity of VxxF(x*, y*, c) for 
(x, y ) e  S((x*, y*, c), e') guarantees that there exists an S((x*, y*), e) in 
which Vx~F(x, y, c) is positive definite for all c c [c*, ~]. [] 
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The next theorem is the cornerstone of the duality framework that we 
wish to establish. It is very similar to Proposition 1 of Ref. 1, and its proof is 
the same if one uses the results and expressions of our problem, instead of 
the ones used in Ref. 1. 

Theorem 3.3. Let  x*, y*, c* be as in Theorem 3.2. then, there exist 
positive scalars e* and 8* such that, for all y ~ S(y*, 8*) and all c ~ ~c*, E], 
the problem 

minimize F(x, y, c), 
(50) 

subject to x ~ S(x*, E*), 

has a unique solution x(y, c). Furthermore,  for every E with 0 < e - E*, there 
exists a 8 with 0 < 8 -< 8", such that 

x(y,c)~S(x*,e), forally~S(y*,8),c~[c*,~]. 

The following corollary is an easy consequence of Theorem 3.3 (see 
Corollary 1.1 in Ref. 1). 

Corollary 3.1. Let  M be such that 

Hf(x)-f(y)N<-MItx -YI[, for all x, y e 57(x*, e*), (51) 

and let e*, 8* be as in Theorem 3.3. Then, for every e with 0 < e -< e*, there 
exists a 8 with 0 < 8 - < 8 " ,  such that 

for all 

where 

x(y, c) ~ S(x*, E), ~7(x (y, c)) ~ S(y*, 8 + ?Me), (52) 

y~S(y*,8), c ~[c*,  e], 

Proof. The proof proceeds as the one of Corollary 1.t  of Ref. 1 if one 
notes that, for E*, 8"  sufficiently small, (45) holds for every c ~ [c*, g]. 

We are now ready to define the dual functional qc(y). The function 
F(x, y, c) has a locally convex structure under the assumptions of Theorem 
3.2, and thus the dual character of qc(y) will be local. The definition is given 
under the assumption that the hypothesis of Theorems 3.2 and 3.3 holds. We 
define 

qc(Y) = rain F(x, y, c), 

subject to x ~ S(x*, E*), 
(53) 
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for all y s S(y*, 6*) and c e [c*, ~], where the minimum over the open ball 
S (x *, e*) is attained by Theorem 3.3. The results already obtained concern- 
ing F(x, y, c) guarantee that e* and 6* can be chosen so that qc(y) is twice 
continuously differentiable in S(y*, 8 ' )  for all c e[c*, g]; see Refs. 8, 15 for 
the corresponding result for the classical nonlinear programming problem. 
We assume that e* and 6* have been so chosen. 

We could have defined the dual functional in a different way. For fixed 
c >- c*, by using Theorem 3.2 and the implicit function theorem, we obtain 
that the system of equations 

VxF(x ,  y, c) = 0 

has an implicit function solution x(y, c), which is a strict local minimum of 
F(x, y, c). We could set 

qc(y) = F(x(y,  c), y, c). 

However, the domain of definition of qc will then depend on c. On the other 
hand, in (53) the domain of definition of qc is the same for all c e [c*, ~]. This 
is better suited to our purposes, since we intend to vary c in our algorithms. 
The restriction c -< ~ does not lead to a great loss of generality especially for 
practical purposes. 

We will now calculate Vqc (y) and V2q~ (y). From Theorem 3.3 and (53), 
we have 

qc(y) = F(x(y,  c), y, c), 

from which 

Vq~(y) = Vyx(y, c)V,,F(x(y, c), y, c)+ VyF(x(y, c), y, c). (54) 

Theorem 3.3 yields 

and thus 

VxF(x(y, c), y, c)=-O, 

Vqc(y) = V~F(x(y, c), y, c). 

Calculating VyF(x(y, c), y, c), we obtain 

VVlg . 
Vqc(y) = ( l / c ) ]  

0 [_ 

which can also be written as 

. f f (x (y ,  c ) ) -  y),  

Vkg] 

I VlgV" Y~Pl 1 
Vq~(y) L VkgV,~pk_] Or,p, 

(55) 

(56) 

(57) 



JOTA: VOL 34, NO, 1, MAY 1981 57 

where 

( ( 1  - y3 / c ,  

Vr, pi =~ fi(x(y, c)), 

~. -yi/c, 

if f~(x (y, c)) -> (1 - y~)/c, 

if -yl/c - f/(x(y, c)) -< (1 - y,)/c, 

if f;(x (y, c)) -< -y~/c. 
(58) 

Let us assume that E* and 6" have been chosen sufficiently small, so 
that, for all i = 1 . . . . .  k and all y ~ S(y*, 6*) and c ~ [c*, ?], 

fi(x(y, c)) > (1 - yi)/c, 

/~(x (y, c) )  < -y,/c, 

-y,/c < f , (x  (y, c) )  < (1 - y3/c, 

if/i(x*) > O, 

if fi(x*)<O, 

if i ~ I(x*), 

and thus (45) holds. Consequently, ~r2qc(y ) exists for all y ~S(y*,  6"), 
c e [c*, ?], if e* and 6" are sufficiently small• Let 

I (x*)  = {1 . . . . .  p}, 

~-(x*) > 0 ,  f o r i = p + l  . . . . .  q, 

fi(x*)<O, f o r i = q + l  . . . . .  k. 

Differentiating (56) w.r.t, y, we get 

V2q~(y) = Vyx(y, c){V~g(1/c)(~"- Y) + Vf~dV~zg(1/c)( Y -  Y) +V/G} 

+ (1 / c ) ( I  7"- Y)Vzzg(I/c)(~'- Y)+(1/c)((~-G), (59) 

where I 7" = IT'(x(y, c)), 

O = r-lVlg 

! 

L o  

"Vtg 

6 =  

• o j  
k x k matrix, (60) 

. 

Vpg 

0 

0 

k × k matrix, (61) 

and all the quantities are calculated at (x(y, c), y). Differentiating (55) w.r.t. 
y (total derivative), we obtain 

~7yX (y, c)=-VyxF[VxxF]  -I, (62) 
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since by Theorem 3.2 [V~F] -1 exists. By direct calculation, we also have 

Vy ,F=  (1 / c ) ( I7 -  Y ) V ~ x g + G V f ' + ( 1 / c ) ( Y -  Y )V , zg YV f ' .  (63) 

Let 

L = [V~F]  -~. 

Substituting (63) in (62) and (62) in (59), we have finally 

V2q~ (y) = -G~Tf 'LVfG -- (1 /c ) (G - G) 

+ (1/c)( I7" - Y){V ~,zg - V ~xgLV,:~g - V ~zg Y V f ' L V f Y V  ~zg 

- V  ~xgLVflT"V ~g  + V ~ IYVf'LVx~g}(1 / c ) (  I7" - Y) 

-(1/c)(17"- Y)(V~,:gLVf +V~gI"Vf 'LVf}G-  

- G{Vf'LV,~g + V f 'LV fYV~zg} (1 / c ) (Y  - Y) .  (64) 

[p(x) o 
( 1  - y,,÷~)/c 

(1/c)(17"- Y)=  (65) 

(1- yq)/c 
0 -yq+l /c  

--" Yk/~ x=x(~,c) 

So, for x and y sufficiently close to x* and y*, respectively, (64) takes the 
form 

V2qc (y) = - 6 V f ' L V f G  - (1 /c ) (G - G) + o(lly - y*ll). (66) 

An immediate consequence of (66) is that qc(y) has a locally concave 
structure around y*, on the subspace 

v I = ~ (~Vf ' lx . ) .  

The characterization of q¢ (y) as a dual functional of F(x, y, c) under the 
assumptions stated is now justified. Since, for x near x*, only the active/i 's 
are of importance, we can consider that all the fi's are active, or equivalently 
restrict our attention on M ±, where qc (y) is strictly concave. The point y* is a 
strict local maximum of q~(y) on M l ,  and 

q~(y*) = F(x(y*,  c), y*, c), 

Using (45), we can write 

fl(x) 
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since 
x(y*,c)=x*. 

Therefore,  we define the problem 

maximize qc (y), 
(67) 

subject to y ~ V l, 

to be the locally-dual problem of the problem 

minimize F(x, y, c), 

subject to x ~ R ~. (68) 

In the next section, we introduce the algorithms for solving Problem 
(NPS), interpreting them as gradient methods for solving the dual problem. 

4. Algorithms, Convergence Results 

4.1. Algorithms. In this section, we describe two algorithms, denoted 
as Algorithms (AS) and (AN). Algorithm (AS) was originally introduced in 
Ref. 4 for Problem (NPS) and extended further in Ref. 5. In the next section, 
we will extend Algorithm (AS) for Problem (NP). Algorithm (AN) is 
introduced here for the first time. The description of Algorithm (AN) for 
(NPS) is given in this section, and for (NP) in the next section, They both take 
the following general (and imprecise) form. 

Step O. Choose a vector y = y° = (y~ . . . . .  y~)' ~ R k and a scalar c = 
c ° > 0 .  

Step 1. Find a perhaps local minimum x ' = x(y ~, c ~) of the problem 

minimize F(x, y', e~), 

subject to x ~ R"  (69) 

Step 2. Update yS and c" in a certain way and get y,+l, cS+l, with 
c~+l>-cL Set s = s + l ,  and go to Step 1. 

The cost function of Problem (69) is differentiable w.r.t, x ; thus, any of 
the known suitable techniques can be used. The difference between 
Algorithms (AS) and (AN) lies in Step 2. Before completing the description 
of Algorithms (AS) and (AN), we make this remark. If any update for y ~ is 
used in Step 3, with yS ~ A for every s = 0, 1 , . . . ,  where A is a bounded 
subset of R k, we have that Problem (69) is an approximate version of 
Problem (NPS) and corresponds to an iteration of the penalty method for the 
classical nonlinear programming problem. So, one can expect some kind of 

Ix Sl°a convergence of x ~=1 to an optimum of (NPS), under certain assumptions. 



60 JOTA: VOL. 34, NO. 1, MAY 1981 

By updating y in an intelligent way, our algorithm will enjoy the advantages 
of the multiplier methods over the penalty method. 

The update that Algorithm (AS) uses is the following. 

Step 2. Algor i thm (AS): 

~+1 Ilyi  s ~ if(1-Y~)/c~<fi(xS)'. ~ ~ ~ s 
Yi = +C fi(X ), lf - -y i /c  <-fi(xS)<--(1--yi)/C , (70) 

[ O, if/~ (x s ) < - y ~ / c  ~, 

which is a steepest ascent-type iteration for solving the dual problem. 
The update that Algorithm (AN) uses is the following. 

Step 2. Algor i thm (AN): 

y~+l = y~ _ [ H ~ ] - I G , V y p ,  (71) 

where Vyp is given in (58), 

H ~ = - G * V f ' L V f G *  - (1 /c ) (G*  - G*)lx,,y, c,, (72) 

G* = (a*), (~* = (b*), k x k diagonal matrices, 

a* ={Vig ,  if Vig # O, 
1, if V~g = 0 ,  

V~g, if - y d c  <]~(x) < (1 - yi)/c and Vig # O, 

* =~ 1, if (1 - yi) /c  and Vig = O, bii - y i / c  </~ (x) < 

l 0, otherwise, 

and everything is calculated at x ', yS, c s. If H ~ as given in (72) is not 
invertable, set H ~ = L This iteration is a quasi-Newtoniteration for solving 
the dual problem. We call it quasi-Newton iteration, because H ~ cor- 
responds to an appropriate invertible approximation of the Hessian. If the 
assumptions of Theorem 3.3 hold and 

I (x*)  ={1, 2 . . . . .  p}, 

then for x, y sufficiently close to x*, y*, respectively, the iteration (71) 
becomes 

y~+l = 1, if (1 - y~)/c ~ < - ~ ( x  ), i ~ I ( x* ) ,  

y~+l = 0 ,  i f f ~ ( x ' ) < - y ~ / c  ~, i ~ I ( x * ) ,  

where A is the upper left p x p minor of Vf 'LV f .  
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4,2. Convergence Results. Here, we deal with convergence results 
for the algorithms. Theorem 4.1 is similar to Proposition 2 of Ref. 1. The 
functions f and g are assumed to be in C 2 throughout this section. 

Theorem 4.1. Assume that the hypothesis of Theorem 3.3 holds. Let 

I ( x * )  = {1 . . . . .  p}. 

Assume that the p x p matrix D(x,  y) defined as 

where 

~ _ [ ~  O], k x k  matrix, 

is defined and invertible in a set S(x*, e) x S(y*, 8 + gMe), where e and 8 are 
positive scalars, such that 

x ( y , c ) e S ( x * , e ) ,  ~ ( x ( y , c ) ) ~ S ( y * , 8 + E M E ) ,  

for all y e S(y*, B) and all c ~ [c*, 6], in accordance with Theorem 3.3 and 
Corollary 2.1, and E*, 6 '  are assumed to be sufficiently small, so that (45) 
holds. Assume also that Algorithm (AS) yields a sequence {(x s, Y')}~=t 
converging to (x*, y*) and that, after some index f, the (x ~, y~) are contained 
in S(x*,  E)x S(y*, 8). Then, we have 

l l > " + ~ -  y*t l  --- r, l l / -  y*[], for all s ->g, (75) 

where 

- * + 2 K ( 6 + g M e ) ,  rs - rs 

Proof. Since, for E and 8 sufficiently small, (45) holds, the y /s  for 
which i~I (x*)  will converge in a finite number of iterations. So w.l.o.g, we 
assume that all the f,.'s are active at x*. Then, 

D(x,  y ) =  - G V f ' [ ~ ( x ,  y)]-lVf, 
and 

f(x (y', c')) = f(x ~) = y'+1 = y~ +cT(x'). 

r* = _ .ma$ • [1/{1-c~e,[D(x, y)]}[, i =  1 , . . .  k. (76) 
(x,y)~S(x ,~)xS(y ,8+~M~) 

K is some constant with K - 0, and e~[D(x, y)] denotes the ith eigenvalue of 
D(x,  y). 
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We have 

Since 

we have 

[lye+l-y*[[ = Ily ~ - y*+cT(x (y  s, c'))[I. 

x (y* ,  c s) = x*,  [ (x*)  = 0, 

[ly ~+ 1 _ y*[I  = [[Y" - Y* + c S [f(x (y ~, c s)) _ f ( x  (y*, c s))]ll 
1 

frO $ ! $ 
= l l y S - y * + c  ~ V y f ( x ( y , c  ) ) (y  - y * ) d t l l  

1 

= I] Io {I + c~Vyf(x(y, c'))} '(y ~ -  y*)  at[I, 

where 

y = y * + t ( y ~ - y * ) ,  

Using (62) and (63), we obtain 

O _ < t _ l .  

(77) 

where 

F = F ( x  (y, c ~), y) = [Vzxg + Vz~g YVf']LVf. 

Since F-->F, F a constant matrix and I7"-Y->0,  as s--> +co, the result 
follows. [] 

We now obtain the following local convergence result (see also Corol- 
lary 2 in Ref. 1). 

I + c~Vyf(x(y, c~)) = I - c ~ G V f ' L V f -  ( Y  - Y)[V~g + V ~ g ~ ' V f ' ] L V f ,  
(78) 

where 

L = ['~ + c S V f G V f ' ]  -1, 

and all the quantities are calculated at x(y, cS), y. A well-known matrix 
identity implies that 

I - c ' G V f ' [ E + c ' V f G V f ' ] - I V f = [ I + c * G V f ' E - I V f ]  -1. (79) 

Notice that, since all fi's are active at x* and the second-order sufficiency 
conditions hold, the matrix G will have positive entries for • and 6 
sufficiently small. Equations (77), (78), (79) yield 

I + cSVyf(x  (y, c s)) = [I  - cSD] -~ - ( Y  - Y )F ,  (80) 
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Corollary 4.1. Assume that the hypothesis of Theorem 3.3 holds and 
that the matrix D(x, y) and E, 8 are as in Theorem 4.1. Assume also that e 
and 8 are sufficiently small and c s is sufficiently large, so that, for some 
constant ix, 

c s >-/z > max{0, 2/ei[D(x, y)]}, for all s > 0, 

for all eigenvalues ei[D(x, y)] of D(x, )t ) over S(x*, e) x S(y*, 8 + ?Me) and 
that y0 s S(y, g), where g is sufficiently small, so as to have g+ ?Me < 8, for e 
sufficiently small. Then, the sequence {y'}~= ~ generated by the iteration (70) 
remains in S(y*, 8) and converges to y* for E and 8 sufficiently small. 

Proof.  The proof goes as the proof of Corollary 2.1 in Ref. 1. Notice 
that, if 

I(x*) = {1 . . . . .  p} 

and y r ° ¢ 0  or 1, for some "[¢~I(x*), then Y r = 0 or 1 if 

fr(x*) < 0  or f r ( x* )>  1, 

respectively, and yt  E S(y*, 8). So, we can assume w.l.o.g, that y° ~ S(y*, S) 
and y~. = 0 or 1 if 

/ r ( x * ) < 0  or  / r ( x * ) > 0 ,  

respectively, and forget about 
We first prove that, for some constant p* with 0-< p* < 1, it holds that 

r~*-<p*<l ,  for s - 0 .  

By taking ~ and 8 sufficiently small, we make the quantity 2K(8  +?ME) 
arbitrarily small, so that, for some constant p and for all s -- 0, 

0-<rs- - -p< 1. 

The next theorem is similar to Proposition t of Ref. 2. 

Theorem 4.2. Assume that x*, y* satisfy the first-order necessary and 
the second-order  sufficiency conditions for x* to be a strict local minimum of 
(NPS) and that, in a neighbourhood S(x*, e) of x*, f l  . . . . .  fk are twice 
continuously ditterentiable and V2fl . . . .  , V2f~ are Lipschitz continuous. 
Assume also that, in a neighbourhood S((x*, z*), e) of (x*, z*), where 

z*  = ( , / l (x*)  . . . . .  "/k(x*))'~R k, 

g is twice continuously differentiable and V2g is Lipschitz continuous. Let  B 
be any bounded subset of R k. Then, there exists a scalar c* -> 0 depending on 
B, such that, for every c>c* and y e B ,  Problem (68) has a unique 
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minimizing point x(y, c) with respect to x within some open ball centered at 
x*. Fur thermore ,  for some scalar N -> O, we have 

lix(y, c)-x*ll-<NIty -y*l [ /c ,  for all c > c* and y e B, (81) 

I l l -  y*tl-<NllY - Y*ll/c, for all c > c *  and y e B ,  (82) 

where  the vector 

f = f ( x ( y ,  c) ~ R ~ 

has components  )T/(x(y,~ c)) as in (45). 

Proof.  The proof  is similar to the proof  of Proposition 1 in Ref. 2. For 
x ~ S(x*, ~) and any fixed y ~ B, c > 0, we consider the auxiliary variables 

l 
where t7(x) is as in (45). Using (39) and the fact that ~ e C 1 for [Ipll < E, we 
obtain 

IPc (fi(X), Yi) --  Z~81 ~ P c ( f i ( x ) ,  Yi) --  "Y(fl (X))l -~ ['~(fi(X)) -- ~/(fi (X*)) l 

<-go/c + I / e ( x ) - ~ ( x * ) < - g o / c  + tillPll, (83) 

where K0, Li - 0 are constants which depend on B and e, respectively. The 
relation (83) holds for llptl < E. From (83), we obtain that, for Ilplt < ~1 and 
c > & for some appropriate ly  chosen ~1, ~ with 0 < E1 - E, ~ -  0, we will be 
working in the domain where the differentiability and Lipschitz assumptions 
hold. In the rest of the proof,  we assume that 

l[p[I < E1 and c -> ~. 

We consider now 

q = f ( x ) -  y*.  

If i~ l(x*), then, for [Ipll sufficiently small and c sufficiently large, it holds that 
qi = 0 for every y ~ B. Consequently,  we consider ~1 and ? sufficiently small 
and large, respectively, and thus we assume w.l.o.g, that 

I(x*) = {1 . . . . .  k}. 

If x is a local minimum of F(x, y, c), it will hold that 

V~F(x, y, c) = fdx )VigV ~.,.~ = O. 
1 
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It also holds that 

( V~g+ ~ y/*Vig ~*,y*~=0. 
i = 1  

Since, for ItPll ~ 0, we have that 

we can prove, by using Proposition 1.2 and the lemma used there of Ref. 23, 
that 

f (x) l  ~.,~--" y*, as ltplI-* 0. 

It is clear that ~ ( x ) ~  y*, as ]IP ll ~ 0, uniformly in c, i.e., for all c ---c1. If we 
vary c, say c ~ e c ,  then we facilitate the convergence of 17(x) to y*. We 
conclude that, for e~ sufficiently small, q will be given by 

q = y + c f ( x ) -  y*, 

from which 

where 

V f ( x  *)'p - q /c  = (y* - y ) /c  - rs(p), (84) 

f(x)  =d(x* l  + V f (x *)' p + rs(p ), 

rs(O) = O, (85) 

tlVrs(p)lt- K~IlPlI, (86) 

and Ks -> 0 is a constant depending on e. 
For every y ~ B, there holds that 

Vxgl~.r,c = V~gtx*.,.*.c + (Vxxg +Vx~gY*Vf ' ) l x* , . cp  + r~(s). (87) 

Here,  Z I x.y,c means that A is calculated at x, y, c. For example, 

Vxg [ x,,,c-- Vxg ] x,,,c = Vxg[x, pcff,(x), y~) . . . . .  p~ffk(x), yk)]. 

We will also denote in this proof A I~. y. ~ by A*;  and we will denote  A t x,y,~ 
by A. 

r~(O) = o.  (88 )  

Using the Lipschitz assumption, we can show that 

ilVra(s)tl<-Klllslt, (89) 

where K~ is constant which depends on e and B. 
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Similarly, we have, for i = 1 . . . . .  k, 

i Vig[ x.y,c = V,gt x..~*,c+ (Vixg + Vi~gY*Vf')l x.,y.,cp + r2 (s), (90) 
i rE(O) = O, (91) 

i liVr2 (s)l] -< Kzi [IS [I, (92) 
V~(x) = Vf/(x*) + V2D(x*)p + r~ (p), (93) 

i 
r3  ( 0 )  = 0 ,  ( 9 4 )  

i llVr3 (P)II-< g3~llpll, (95) 

where K2i, K3i --- 0 are constants which depend on B and e. 
We consider now F(x, y, c). Using (44) and (87)-(95), we obtain 

Vxf(x ,  y, c )= Vxg + Y. ~i(x)V~g Vfi(x) 
x , y , c  i = I  X ,y ,c  

k 

= V~g + Vxxgp + Vx~gY*Vf'p + r~ + E (q~ + Y* )[V~g + Vi~gp 
i=1 

+ V i~g Y*V f '  p i + r:][V/, + V2f, p ' + r 3 ] ;  

all derivatives in the last expression are calculated at x*, y*, c; equivalently, 

V~F(x, y, c) = ~(x*,  y*)p +VfGq + r4(s), (96) 

where 

r4(0) = 0, (97) 

tlvr,(s)ll-< K411s II; (98) 

here, /£4 - 0 is a constant depending on B and E. 
Combining now (96), (97), (98), (84)-(86), we have that, in order for a 

point x ~ S(x*, ~1) to satisfy 

VxF(x ,  y, c) = O, 

it is necessary and sufficient that the corresponding point s satisfies the 
equation 

Bs = a +r(s), (99) 

where 

B = [ ~ ,  VrCl o , 1--,.4(.,.)1 
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and I is the k × k identity matrix. Concerning r(s), we have 

r(0) = 0, ]IVr(s)tL-< Kllsll, (t01) 

where K -> 0 is a constant depending on B and e. 
If E is not positive definite, we consider the problem 

minimize g[x,  T i l l ( x ) ]  . . . .  , y[ fk(x)]]+(c/Z)[[f(x)H z. (102) 

It is easy to prove that x*, y* satisfy the first-order necessary and second- 
order  sufficiency conditions for Problem (NP) iff they satisfy the first-order 
necessary and second-order sufficiency conditions for the Problem (102), 
assuming in both cases that 

I ( x * )  = {1 . . . . .  k}. 

To (102) corresponds a Ec, which equals E(x*, y* )+  c V f ( x * ) V f ( x * ) ' ,  and is 
positive definite for c sufficiently large (see Theorem 2.10 in Ref. 8). The 
proof now follows exactly as the one of Proposition t in Ref. 2, by using the 
following two lemmas. 

Lemma 4.1 is a modified version of Lemma 1 of Ref. 20 and can be 
proved by trivial modification of this lemma. Lemma 4.2 extends Lemma 2 
of Ref. 20 and can be proved again by a trivial modification of the proof in 
Ref. 20. 

Lemma 4.1. Consider the (n + k) x (n + k) matrix 

B = - l / c  ' 

where _~ is an n × n positive-definite matrix, S is an n x k matrix, with rank 
M = k, G is a k x k positive-definite, symmetric matrix, and I is the k x k 
identity matrix. Then, B is invertible for every c > 0 and B -'~ is uniformly 
bounded for all c > 0; i.e., for some c1 > 0 and aH c > 0, 

tIB-1]1 cl. 

Lemma 4.2. Let  E be a Hitbert space. Let  B be a linear operator  from 
E into E possessing an inverse and 

IiB-111<_cl. 

Let r(s)  be an operator  from E into E, such that 

r(0) = 0 and ][Vr(s)[[- K][s[[, 
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where K -> 0 is a constant. Then, there exists a c* -> 0, such that, for all 

the equation 

c > c *  and Ilall~l/8c~g, 

has in the sphere 

a unique solution s*, where 

B s  = a + r (s  ) 

IlslI < 4c ~llall 

IIs*ll ~ (cl/2)11a11. 

We now consider Algorithm (AN), where the update (71) is employed. 

Theorem 4.3. Assume that the hypothesis of Theorem 3.3 holds and 
that, for some scalars e > 0, R > 0, we have 

ltV2qc (y )  - VZq~ (z)l] -< R flY - z tl, for all y, z ~ S(y*, E), 

for all c ~ [c*, c]. 

Then, there exists a scalar E '>  0, such that, if [[y ° -  Y*H < e', then y '  + y* and 
{lly ~ -  y*11}7ol converges to zero quadratically. 

Proof.  For  e' sut~ciently small, y will be updated by (73). So, we 
assume w.l.o.g, that 

I ( x * )  = {1 . . . . .  k}. 

Then, (73) can be written as 

Y = Y - qc ' tY  ), 

where 

D = - G V f ' L V f G I x , . y , c ~  

[recall (57)]. Since 

V2q - O  = O ( ] l y  S - y*] i ) ,  Vq~(y*) = O, 
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by using Taylor's expansion we have 

][y,+l _ Y*[] = [tyS _ D-~Tqc~'(y s) _ Y*It = l iD-lfD (y" - y*) - Vqd (y')]tl 

= IlP-a[D (y~ - y*) - V2q~ (y s)(y~ - y*) - f {V2qd (y '  + t(y* Y 
s)) 

V2 s s -V2q~(YS)}(Y'-Y*) dtll<-lID-1[i{ll D - q~(y )Hlly -y*[l 

+(R/2)[[y' - y.[[2} _-N{V2q~(y,) + o(iiy,  _ y,t[)}_l[[ 

• {o([[y s - y*l[ 2) + (R/2)lly' - y*l[ 2} __./~[ly s - y*!l 2 , 

where R is a constant depending on R and e. 
The following theorem is a rate of convergence result. 

Theorem 4.4. Assume that the hypothesis of theorem 3.3 holds and 
that Algorithm (AN) generates the sequences {Y'}~-o and {x'}~=o which 
converge to y* and x*, respectively. Then, we have 

lim[[iy,+l _ Y*I]/I]Y" - Y*]f] = 0, 

and hence the sequence {[[Y' - Y*l[}~=o converges to zero superlinearly. 

Proof. The proof is a direct application of Proposition 1.14 of Ref. 23. 
Notice that the hypothesis of Theorems 4.3 and 4.4 are different. ~. 

5. Results and Algorithms for Problem (NP) 

The results that we have proved until now concern Problem (NPS). In 
this section, we state without proofs several results for Problem (NP), which 
correspond to results already proved for Problem (NPS). We also give the 
algorithms for this problem. We use the same sequence of theorems, 
lemmas, and corollaries concerning (NP) as that used for (NPS). The 
symbols ~j, f,., y, g, hi, Ii (x) now denote the functions and the sets of active ])~'s 
at x for (NP). 

Let x* ~ R ' ,  

J ( x * )  = I i ( x * )  × . . .  × Ik (x* ) ,  

t = ( t ~  . . . . .  g k ) ~ J ( x * ) ,  

g , (x)  = g[x,  f , , . ( x )  . . . . .  A.~(x)], 

h#(x  ) = hi[x , f l~,l (x ) . . . . .  f k ~  (X)], 

Consider the problem 

(DP-t) minimize g,(x), 

j - - 1  . . . . .  q. 
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subject to h i t ( x )  . . . . .  hq,(x) = O, 

f i~(x)<-f l , i (x) ,  i = l  . . . . .  m , j ¢ l ~ i , i = l  . . . .  , k .  

Lemma 5.1. A vector x * e  R n is a strict local minimum of Problem 
(NP) iff x* is a strict local minimum of Problem (DP-t), for every t ~ J ( x * ) .  
Also, g * =  gt(x*)  for every t e J ( x * ) .  

The following notation refers to Theorem 2.2 given below. All 
gradients are evaluated at the point x*. 

•fi = [V f i l  i " ' "  i Vfim], i = 1 . . . . .  k, n x m matrices, 
(103) 

~ f l = [ V f i l i . . . i V f i p ~ ] ,  l < - p i < - m ,  i = 1  . . . . .  k, n x rn matrices, 

w = t w 1  i . . .  iwkl ,  

i . . .  i 

Yo 

V.h = [17.h 1 ~7.hq ], 
• • 

G h  = [V~hl V,hq], 

--I. I} 
-i Pl 

ol 'I -I 
_Y 

0 

-ljj 

0 

rzi 

,Pk 

- 1  

0 

0 

0 

I 
L , P k  
I 
I - - 1  

n x (k.  m) matrix, 

n x (Pl +" • • +Pk)  matrix, 

n x q matrix, 

k x q matrix, 

(104) 

(k.  m) x k matrix, (105) 

tt/ 

(Pl +" " " + Pk)  × k matrix, (106) 
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[Vxh I Vf] 
A = L V ~  t l YTo ' (n + k )  x (q + krn) matrix, (107) 

h I 
- 4 =  - -  m-r-;, , ( n + k ) x ( q + p ~ + . .  °+pk)matr ix .  (108) 

[V:h i YoJ 

Theorem 5.1. Let  x* be a local minimum of Problem (NP). Assume 
for convenience that 

D ( x * )  = {1 . . . . .  p i} ,  i = 1 . . . . .  , k ,  

where pi, i = 1 . . . . .  k, are integers satisfying 1 -< p~ - k ; and assume that 
has full rank q + p2 +" • " + Pk. Then, there are real numbers 

y*, i = 1  . . . . .  k , j = l  . . . . .  m, 

,t ~ . . . . .  A*, such that 

Vxg+ Z A*Vxh i+  Vlg+  ATVlh y lsVf l  
i = 1  ] = 1  i I 

+ ' " +  Vkg+ ~ A*Vkh 2 Y*s V =0 ,  (109) 
j = l  *" \ S = l  

0--<y*--<l, for a l l i =  1 . . . . .  k, f o r a l I ] = l  . . . . .  m, 

y~ =0 ,  i f ] ~ L ( x * ) , f o r a t l i = l  . . . . .  k, (110) 

y* = 1, for all i = 1 . . . . .  /~. 
i=1 

Also, for every i = 1 . . . . .  k, for which p,- _> 2, 

q 

V~g+ Z A*V~hs>-O. (11t)  
i=1 

Finally, the scalars 

* A iv~h i = 1 ,  k, j 1, A*, ~q . . . . . .  • • • , Yii, . ,  = , m, 
1 

are unique• All the gradients are evaluated at x*. 
An alternative formulation of the conclusions of Theorem 5.2 is that 

there is a unique (q + k m ) - v e c t o r  

[A.] = (A, . . . . .  Aq, y~l . . . . .  y, . . . . . .  Yki . . . .  , y'k,,)', 
Ly_l 
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such that  

Yij >-- O, 

yq = O, 

Notice  that  

and 

for  all i = 1 . . . . .  k,  j = 1 . . . . .  m,  if p; - 2, 

if  j ~  I / ( x* ) ,  i = 1 . . . . .  k .  

Aj =A~,  f =  1 . . . . .  q, 

Yii = ig AiVi , 
1 

i - - 1  . . . . .  k , j = l  . . . . .  m.  

Definition $.1. A poin t  x* ~ R "  is said to be  a regular  poin t  of the f i i 's,  

i =  1 . . . . .  k , ]  = 1 . . . . .  m,  if the matr ix  A has full r ank  q + P l + ' ' ' + P k .  
W e  assume  w.l.o.g, that  

I / ( x * )  = { 1 , . . . ,  p /} ,  i = 1 . . . . .  k .  

Let  

q 

lI(x, z) = g(x ,  z ) +  Y. A ' h i ( x ,  z ) ,  
i=1 

y *l ] 
• 0 

y,m 
y .  = _ _  2 .  

y*~ 
0 ~ • 

l Yk , , J  

T h e  condi t ions (109) and  (111) can be  wri t ten  as 

V~,II + V f Y * V ~ g  ](~*,z*) = O, 

ViII](x. z.)-> O, i = l , . . . , k ,  i f p i > - 2 ,  

x e R  n, z s R  k, (112) 

(k" m)  x k mat r ix .  (113) 

(114) 

(115) 

where  

z *  = ( v ~ ( x * ) ,  • • • ,  y k ( x * ) ) ' .  
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Theorem 5.2. Assume that x* satisfies the hypothesis of Theorem 5.1 
and that g, f l  . . . . .  fk, h i  . . . . .  h q ~ C  2. Let y*, h* be as in Theorem 5.1. 
Then, the matrix 

[VxxH 2 i = 1 V i l ~ 2 j = l  Y~V2fil I Vxzn 1 
r=t . . . . . .  ~2~ l~2m (116) 

is positive semidefinite on W(A~'). All gradients are evaluated at (x*, z*). 

Theorem 5.3. Assume that g, f l  . . . .  , fk, h~ . . . . .  hq e C 2 and that 
x * e R ~, y *, i =  I . . . . .  k, j = 1 , . . . ,  m,  ~ *, . . . , A *q satisfy 

vxg+ 2 ATvxhi+ vl~+ a,*Vlh ~ y~*jVfl 
i= l  ]=1 j= l  

+ .+ vkg+ ~ a?Vkh Z y~SV~k =0, 
1=t /\]=1 

yi~; =0,  i f j ; ~ I i ( x * ) , i = l  . . . . .  k, 

y* >0 ,  i f j ~ L . ( x * ) , i =  1 , . . . ,  k, 

y* = 1, for a l l / =  I . . . . .  k, 
/=1 

q 

ViTg : Vig 2c ~ 1~ T Vih i > O, 
1=1 

ifpi-->2, i =  1 , . . . ,  k. 

F is positive definite on W(A'). Then, x* is a strict local minimum of Problem 
(NP). All gradients are evaluated at (x*, z*). 

We introduce the function Pc(', A): R m ~ R  (see Ref. 5), 

p c ( t , A ) = i n f i m u m { 7 [ t - u ] + ; t ' u + ( c / 2 ) I l u t t 2 l u ~ R ~ } ,  (117) 

where A ~ R m, c > 0 are fixed. We have (see Ref. 5) 

Pc (t, y) = (1 / 2c) ~ {[max[0, Yi + c (tl - ~ (t, y, c))]]2 _ Y ~ } + t~ (t, y, c), 
i=l  

(118) 

where 

~ =tx( t ,  y , c )  
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is a scalar de t e rmined  uniquely,  for  given t, y, c, by 

max[0,  y~ + c ( t ~ -  tz (t, y, c))] = t ,  (119) 
i=1 

max[0,  Yl +c(h-/z)] ] 
~Ttpc(t, y) = • . 

[max[0 ,  y,. +c(tm - tz)]J 

(120) 

The  funct ion Pc( ' ,  Y) is real  valued and convex,  and a relat ion similar to (39) 
holds for  A ~ A C R k, A bounded .  Le t  

where  

We  have 

F(x ,  y, A, c) = g[x, pelfs(x),  Y l ] , . . . ,  p¢[fk(x), Yk]] 

q 

+ ~. hihj[x, pc~l(X), Yl] . . . . .  pc[fk(X), Yk]] 
i=1 

q 

+(c /2)  E (hi[x, pc[fl(x),  yl]  . . . . .  pc[fk(X), yk]]) z, (121) 
1=1 

. . . .  Yk) ~ K  , y e a R ' ,  i = 1  . . . . .  k, 

h = Otl  . . . . .  Aq)'ER q. 

q 

VxF(x,  y, A, c) = Vxg + Y'. ,~iVxhi 
]=1 

+ ~ [(V~g+ ~ £iV~hi) ~ )TiiVfi]], 
i=1 ]=1 ]=1 

(122) 

);~i(x) = m a x [ 0 ,  yii + c(fli(x ) - Ia, i(fi(x ), Yi, c))], i = 1  . . . . .  k, 

j = l  . . . . .  m, 

Aj(x) = Ai +ch],  j = 1 . . . . .  q, 

and /z ;  satisfies, for  i = 1 . . . . .  k, 

max[O, Ylj +c( f l j (x ) - t~ i ( f i (x ) ,  yi, c))] = 1. 
]=1 

(123) 

(124) 

Theorem 5.4. Assume that  x* ~ R ~ and y ~, i = 1 . . . . .  k, ] = 1 . . . . .  m, 
h*  . . . . .  h*  satisfy the hypothesis  of T h e o r e m  1.2. Then ,  for  all c > 0 ,  

VxF(x*,  y*, h*,  c) = 0. (125) 
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T h e o r e m  5.5. Let x*, y*, A * , . . . ,  A* be as in Theorem 5.1, and 
assume in addition that they satisfy the hypothesis of Theorem 5.3• Then, 
there exists an e x = e l ( c )>  0, such that, for all (x, y, ) t)c S ((x*, y*, A *), e 1), 
the function F(x, y, A, c) is twice continuously differentiable w.r.t .x. Also, 
there exists scalars c*>-0 and e > 0 ,  such that, for all c ~[c*, 8] and 
(x, y, ;t) e S((x*, y*, ,~*), e), the Hession ~7,,xF(x, y, A, c) is positive definite, 
where 8 is an arbitrarily large fixed constant. 

We have 

V:~,F(x,y,A,c)=Vxx~I+ ~ vYI ~ fiiV2fij+VfYVzxfI+Vx~(I~"'Vf ' 
i = 1  j = l  

+VfYV~zII Y'Vf' + c{VfGVf' 

+ (V~h + VfYY zh )(V ~h' ~-"Vf' -~ Vxh ')}, (12 6) 

where 

= 

~ =  

q 

II(x, z) = g(x, z)+ ~.. Ajhj(x, z), (127) 

• 0 

371m 

F;]7 
0 1 

I 

I Y k m  I 

- 

V1 

Vllr 

km× k matrix, (128) 

0 

0 " Vkl'I . ~ . . ~  

[. VkFI 

(129) 

contains only those vifI  for which p~ >-2; and Vf is like Vf in (104), but 
contains only those Vf,-'s for which p~ >2. All the quantities are assumed at x, 
y, A, c a n d  z = (zl . . . . .  Zk)', with 

z, = p c [ f i ( x ) ,  y l ] .  
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Theorem 5.6. Let  x*, yii, )t 1 . . . . .  ),q, c* be as in Theorem 5.5. Then, 
there exist positive scalars e* and 8" such that, for all (y, A) e S((y*, A*), 8) 
and all c ~ [c*, 6], the problem 

minimize F(x, y, A, c), 

subject to x ~ S(x*, •*), 

has a unique solution x(y, A, c). Furthermore,  for every • with 0 < • - < • * ,  
there exists a 8 with 0 < 8 -- 8", such that 

x(y ,A ,c)~S(x* , • ) ,  foral l (y ,A)~S((y*,A*),8) ,c~[c*,~].  

Corollary 5.1. Let  M be such that 

Ilh(y)-h(y')ll<-Mlly-y'tl, for all y, y' ~ S(y*, E*), 

Hfi(x)-fi(x')ll <<-M[lx - x'[I, i = 1 . . . . .  k, for all x, x ' c  S(x*, e*), 

where y E R  n+k and h = (hi . . . .  , hq)'; and let E*, 8* be as in Theorem 5.6. 
Then, for every E with 0 < • --- •*,  there exists a 8 with 0 < 8 -< 8", such that 

x(y, A, c) ~ S(x*, •*), 

(17(x (y,),, c)), ~((x (y, A, c))) ~ S(((y*, A*), 8 + gMe), 

for all 

(y,A)~S((y*,A*),6),  c ~[c* ,g] .  

Under  the assumption that the hypotheses of Theorems 5.5 and 5.6 
hold, we define the dual functional qc(y, it) by 

qc(Y, A) = min F(x, y, A, c), 
(130) 

subject to x ~ S(x*, e*), 

for all 

We have 

(y, A) ~ S((y*, A*), 8"), c ~[c*, ~]. 

(131) 
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where 

• " " V I H  

G= 

0 
• . , V k i i  ~ 

and 

Also, 

where 

P0 

7 

0 I' (132) 

. . . .  

Iqxq 

(kin +q) x (kin +q) matrix, 

Vp =(I/c)/[AY]]-[;]} =[ O~-y)/c] 
[ h(x) J" 

V2qc(y, A)=-GA'LAG-(1/c)PG+ O{ II[Y]- [ ; : ]  ] }, 

A = [Vf*" Vxh + VflT"Vzh], 

V/* = V f -  VfPo, 

0 pl 
1/pi"'" l/pi 

1 /p l""  1/pl 

1 ol 
I 
t 

o 11 
.3 

m 

i 

n x (kin +q) matrix, 

0 

0 

1/pk"" 1/pk 

1/pk"" 1/pk 
o 

o .i1 
' 1  

0 

(133) 

(134) 

(k" m) x (k" m) matrix, 
L = [Vx:,F(x(y, ,~, c), y, A, c)] -1, 
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rPo t o] n=[-o-ig~q , (km+q)x(km+q)matrix.  

We define the problem 

maximize qc (Y, 1), 
(135) 

subject to y ~ V ±, 

as the locally dual problem of the problem 

minimize F(x, y, A, c), 
(136) 

subject to x ~ R",  

where V "L = ~ (CA" I**), where 

Algorithms (AS) and (AN) for Problem (NP) operate as follows. 

StepO. Choose vectors y = y ° e R k %  h = A ° E R  q, and a scalar c =  
c ° > 0 .  

Stepl. Find a perhaps local minimum x '=x(y ' ,h~,c  ~) of the 
problem 

Step 2. 
s + l  s s s S 

Yii =max[O, y l j+c  ~ii(x ) - /~i ) ] ,  

minimize F(x, y,~, h ~, cS), 

subject to x ~ R".  

Algorithm (AS). Update y~, A', c ~ by 

i = l , . . . , k , ] = l  . . . . .  m, 

where Ix ~ satisfies, for i = 1 . . . . .  k, 

~. max[0, y i S / 4 "  cS(fii(X s) --/zs)] = 1, 
i = l  

$ s s s s s s 

h~ ÷1 =A s +c hi[x , pc=[ft(x ), Y l ] , . . .  ,Pcs[fk(x ), Yk]], 

s + l  C ~ C  s. 

(137) 

(138) 

j = l  . . . . .  q, 
(139) 

(140) 

Step 2. Algorithm (AN). Update y' ,  h ", c ~ by 

[y ,+l] y,  
xs+lj =[As]-[H~]-IG*VP, (141) 
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where H s is an invertible matrix 4 which approximates the Hessian 
V2qcs(y s, As), Vp is as in (133), G* is defined similarly to G* used by 
Algorithm (AN) for Problem (NPS), 

s + l  c -> c s. (142) 
Set s = s + 1, and go to Step 1. 

Remarks similar to those made for the interpretation of Algorithms 
(AS) and (AN) in the (NPS) case hold here. 

The convergence results (Theorems 4.1-4.4) hold, with the appropriate 
modifications. For example, we should use in Theorem 4.1 

[Y], instead of Y, 

D o  = - G*[~"~(x, y, h)-  1/~ instead of Do, 
where 

= 

':Lo -:], 
I~ = m x m matrix, 

I;  = o . . . .  i f  

%0 
0 

0 

O' 

= [Vf[" V,~h + VfYV ,h ], 

- V ~ G . . ~ ~  

V1G 
a • 

, i f  Pi ~- 2 ,  

0 

0 " VkG . ~ . m  

VkG 

4 The  matrix H s can be taken equal  to the  Hessian,  if the Hessian is invertible, or equal  to a 
matrix which is Close to the Hessian,  if the Hessian is not  invertible or almost  singular, like in 
the quasi -Newton methods  for differentiable problems. 
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We assumed w.l.o.g, that 

It(x*) ={1 . . . . .  p,}, 

and E(x, y, ,l) is the part of VxxF(x, y, A, c) which is not multiplied explicitly 
by c. 

6. Conclusions 

Our work in the previous sections has established certain results 
concerning the problem considered and the algorithms proposed. It should 
be clear that the results of this paper are very similar to results proved in 
Refs. 1-2 for multiplier methods. It is also clear that other results and 
remarks, given in the above-mentioned two papers, carry over to our case. 
For example, we can employ inexact minimization for the problems (69) or 
(137); see Proposition 2 in Ref. 2. We can also treat the case of inequality 
constraints h i -< 0 by introducing slack variables, although slack variables 
often introduce unnecessary numerical difficulties, see Ref. 24. It is felt that 
our main aim has been achieved, i.e., the establishment of a duality 
framework similar to the one holding for the multiplier methods and the 
demonstrat ion that basic results concerning these methods hold for the 
problem and the algorithms considered here. The reader who is familiar with 
Ref. 5 can see that similar results would hold, should another type of 3' 
function be considered. We did not present any implementation of the 
algorithms considered here, but the reader can find in Ref. 4 some imple- 
mentation results of Algorithm (AS). 

Recently, much attention has been focused on a class of methods called 
dual variable-metric algorithms (see Refs. 13, 20, 22, 6) and projected 
Langrangian algorithms (see Refs. 24-29). Although these methods were 
introduced for differentiable problems, it seems reasonable to expect that 
their basic philosophy is applicable to approximation methods for 
nonditterentiable problems, like Problem (NP). 
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