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Abstract. It has recently been shown that an extremely wide array of robust controller design prob- 
lems may be reduced to the problem of finding a feasible point under a Biaffine Matrix Inequality 
(BMI) constraint. The BMI feasibility problem is the bilinear version of the Linear (Affine) Matrix 
Inequality (LMI) feasibility problem, and may also be viewed as a bilinear extension to the Semidef- 
inite Programming (SDP) problem. The BMI problem may be approached as a biconvex global 
optimization problem of minimizing the maximum eigenvalue of a biaffine combination of symmet- 
ric matrices. This paper presents a branch and bound global optimization algorithm for the BMI. A 
simple numerical example is included. The robust control problem, i.e., the synthesis of a controller 
for a dynamic physical system which guarantees stability and performance in the face of significant 
modelling error and worst-case disturbance inputs, is frequently encountered in a variety of com- 
plex engineering applications including the design of aircraft, satellites, chemical plants, and other 
precision positioning and tracking systems. 
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1. Introduction 

This paper discusses the Biaffine Matrix Inequality (BMI) feasibility problem 
introduced in [35] and presents a global optimization algorithm for its solution. 
The BMI feasibility problem is of great significance in the field of robust control 
theory because it captures the essence of the robust control synthesis problem. 
Finding efficient ways to solve the BMI feasibilty problem is therefore of great 
interest, and will find many applications in the control of space structures, high 
performance fighter aircraft, distillation columns, robots, CD players, disk drives 
and other areas where guaranteed worst case performance is required. 

Given matrices Fi,5 = Fi T E R mxm,  for /  E {0 , . . . ,  nx}, j E {0 , . . . ,  ny} ,  

define the biaffine function F : R n~ x R nu ---+ R mxm,  

r$:c n y  ~ n y  

F(x, y):= Fo,o + Z x F ,o + Z yjFo,j + Z   yjF ,j. 
i=l j----1 i----1 j----1 

(1) 
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The BMIFeasibilty Problem is to find, if it exists, (x, y) E R '~ • R n~ such that 

F(z, y) < 0. (2) 

Notation will be standard. In particular, R denotes the set of real numbers, 
and R n the n-dimensional real vector space. For any vector z ~ R n, Ilzllo  .'= 

maxi~{1 ..... n} ]z/l, and for any (x,y)  c R ,~* • R =~, II(x,y)ll  :--II [xT, yT] T I1~. 

The space of m • m real matrices will be denoted R m• For symmetric matrices 
A and B, ~{A} and _~{A} refer to the greatest (most positive) and smallest (most 
negative) eigenvalues of A, and A > 0 means ~{A} > 0, A > B means A - B  > O. 
For scalars _.b, b E R with b < b, [__b, b] denotes a closed interval C R. 

k 

This paper will mainly be concerned with the problem of finding a global 
solution to the following minimax problem. Given F(x, y) of (1), define 

A(x, y) := -~{F(x, y)}.  (3) 

The BMI Eigenvalue Minimization Problem is 

min A(x, y). (4) 
(x,y) 

Clearly, there exists a solution (x, y) to the BMI feasibility problem (2) if and only 
if 0 > min(x,y) A(x, y). 

The Linear or Affine Matrix Inequality (LMI/AMI) or Semidefinite Program- 
ming (SDP) problem of, e.g. [3, 29, 8, 38], characterized by the problem 

m~n + xi , (5) 
i=1 ) 

where Fi = F/T, is a special case of the BMI problem which emerges if either one 
of x or y in (4) is fixed. The LMI/SDP problem is convex, and relatively efficient 
polynomial time algorithms for its solution exist [17, 37]. 

It may be shown that the function A(x, y) is convex in x for fixed y, and 
convex in y for fixed x, but not convex in (x, y) in general. Further, the function 
is not local-global in general; i.e. the function A(x, y) may have local minima 
which are not global minima. While to is fairly straightforward to find at least 
one local minimum of the A(x, y) over some compact domain M C R n~ • R n~ , 
the complete solution of the minimization problem, i.e., for some ~ > 0, find any 
(~, ?7) such that A(~, ~) < A(x, y) + e for all (x, y) E M C R n~ • R ny, is a 
global optimization problem. Hence, unlike the LMI or SDP problems, the general 
BMI problem is computationally "hard" [18, 31, 28, 36], and it is unlikely that 
computational algorithms with polynomial time worst case performance bounds 
exist for the BMI problem. 

While the BMI feasibility problem is difficult, it has several agreeable features 
which may be exploited. 
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- Since the problem is bilinear, an obvious approach to the minimization prob- 
lem (4) is to minimize A(x, y) alternatingly over x with y fixed, and vice 
versa. 

- The close relation of the BMI problem to the LMI problem allows various 
adaptations of LMI approaches for the efficient computation of local minima 
with respect to (x, y) jointly. 

- The bilinear form of the semidefiniteness constraint suggests an LMI relax- 
ation of the problem for calculating lower bounds, and for obtaining good 
starting points for local optimization. 

The contribution of this paper is to utilize the above characteristics to present a 
branch and bound global optimization algorithm for the BMI which finds an e- 
global minimum of A(x, y) over any fixed compact hyper-rectangle within a finite 
number of iterations. Branch and bound algorithms do not have polynomial time 
worst case performance bounds, but are nevertheless effective for small problems, 
and can be useful for finding improved suboptimal solutions for large problems. 
An earlier version of this work is given in [22]. 

2 .  R o b u s t  C o n t r o l  M o t i v a t i o n  

The robust control motivation for the study of the BMI problem is now briefly 
outlined. Robust control deals with the analysis and synthesis of dynamic physical 
systems which are subject to significant unknown but bounded modelling uncer- 
tainties and inaccuracy, and disturbance inputs, see, e.g. [ 11 ]. The physical systems 
to be controlled may include satellites, fighter aircraft, distillation columns, disk 
drives etc. The robust control synthesis problem is to design a dynamical controller 
which guarantees worst-case stability and performance. 

It is now clear that while the robust analysis problem may be recast as an 
LMI problem, e.g. [ 14, 34], the general problem of synthesizing a robust controller 
is a BMI problem [20, 21]. In fact, it can be shown that a wide array of difficult 
control problems, such as #~Kin-synthesis, decentralized control, constrained order 
7-/~ synthesis, the synthesis of one controller for multiple plants etc. reduce to BMI 
problems. 

It may be noted that global optimization techniques have previously been applied 
to robustness analysis [10, 5, 30, 6], and another robust control problem which 
may benefit from a global optimization approach is the LMI with rank constraints 
problem of, e.g. [13, 9]. 

As an example, the #~Kin-synthesis problem [33, 12], which is in many senses, 
the key problem in robust control, one needs to simultaneously find a suitable 
multiplier and controller pair. In [35, 21] it is shown that the problem is equivalent 
to the BMI problem of solving for the real matrices T, S, P,  W and Q, where T, 
S, P are symmetric, such that the following matrix inequalities hold, 
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P > O, - herm{P(RGA + UG.4QVGA)} > O, 

where for any square matrix X,  herin{X} := 1 ( X  + x T),  and M, R MT, 
UMT, VMT , Ra  A , Ua A , VC A are known/prescribed matrices. Local minimization 
procedures coupled with the ability to make good initial guesses are often sufficient 
to give significantly improved results compared with other currently available 
approaches. 

3. Preliminaries 

Several important facts about the BMI problem are listed. See [20] for further 
details. Firstly, note that for any two symmetric matrices A, B, A(A} + A{B} _< 
A{A + B} _< A{A} +-A{B}, e.g. [24, Theorem 4.3.1]. It then follows that A(x, g) 
is continuous in (x, y). Further, A(x, y) is nondifferentiable, but expressions for its 
subdifferential at any given (x, g) may be obtained. 

A function f �9 R n > R is said to be Lipschitzian on some compact M C R n 
if there exists an L such that If(x) - f (y) l  --- LIIx - yll, v x, y ~ M,  where I1.11 
denotes any norm on R ~. Since the subdifferential of A(x, y) of (4) is uniformly 
bounded over any compact M C R '~ x R ny , it follows that A(x, y) is Lipschitzian 
on any compact M. 

For the rest of this paper, restrict the domain of A(x, y) of (4) to some closed 
bounded hyper-rectangle X x Y C R n~ x R ny where 

X :~-- [DxI,'Dzl] X. .o X [bxna~,bzn~] , (6) 

for some bounds - o o  < b~ < bx~ < c~, i = 1 . . . ,  nx, and - o o  < b_y; < -byj < 
oo, j = 1 . . . ,  ny. Consider any closed hyper-rectangle Q c X x Y of the form 

where _ax~ and ~x~ are the lower and upper bounds on the variable xi for the 
rectangle Q, and bx~ < a ~  < ~z~ < bx~. Similarly for yj variables. Note that if 

x i E  [a_x~x,] and y j E  [a_yj,-gy~],thenxiYjE [aw~,~,Sw,,j] where 

_a~o~,~ := min { a_z,a_yi, a%~ ayj, axia_yj, "ax~-ayj } ,  (9) 

~/ ,~ := m a x  {axiayj,a_axlayj,axiayj,ax, ay j }.  (10) 

Given any Q, define the hyper-rectangle 142(Q) c R '~ • as follows 
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Define the affine matrix function of x, y and W, 

n x  n y  na~ ~ y  

F L ( x , y , W ) : = F o , o + ~ x i F i , o + ~ y j F o , j + ~ - ~ w i , j F i , j ,  (12) 
i=1 j = l  i=1 j = l  

where W E IV(Q). Define also 

AL(X, y, W) := A{FL(x, y, W)}. (13) 

Note that AL(X, y, W) is a convex function of (x, y, W) and its global minimum 
over IV(Q) may be computed reasonably efficiently using standard LMI solvers 
[37, 17]. 

The global minimum of AL (x, y, W) over IV(Q) gives a lower bound to A(x, y) 
over Q. This follows immediately from the fact that if (x, y) E Q, then the dyad 
xy  T E IV(Q).  

PROPOSITION 1. / t  holds that 

min -~{F(x, y)} _> min -~{Fn(x, y, W)}. (14) 
(x,u)eQ (x,y)eQ, w~w(Q) 

Define the size of a hyper-rectangle M E R p, for any integer p, by 

size{M} := max {I]z (1) - z(2)llo~ : z(1),z (2) e M} .  (15) 

For Q E X x Y of the form (8), and IV(Q) of (11), it follows that 

size{ Q} = max {max (bx~- ~ i ) , m a x  (by j -by j )  } ,  

size{IV(Q)} = ma.x (-aw~,5 - a-wi,~ ) , 
't~3 

i.e., the lengths of their longest sides. 

LEMMA 2. Suppose t3 := maxQ II(x, y)ll . For any 5 > 0, if size{Q} _< 5, then 
size{IV(Q)} _< 5(2B + 5). 

Proof. If size{Q} _< 5, assume without loss of generality that for some i 
and some j, xi E [a_~i,a_% i + 5], yj C [a_yj,ay~ + 5]. It then follows that if 

Wi,jE [a.wl,j,awi,j], then _aw~.j = min{axi_au~,_a~_aui +a_%iS, fi~_au~ +auiS, 

a_%~ ay 5 + a~ 5 § _au~ 5 + 52 }, and similarly for ~ , j  (with a max instead of a min). 
Clearly, 

g~,,j - a~o,,~ = max {1a_%~51, 1_%51, I_ax,5 + _%5 + 521}. 

The lemma follows by noting that, necessarily, I_a~, I < B, ]ay~ ] < B. 
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4. Local Minimization Approaches 

This section will briefly discuss various approaches to find a local minimum for the 
function A(x, y). Local minimization algorithms give upper bounds for problem 
(4), and are sometimes sufficient for practical purposes. 

The minimization (4) is very closely related to the LMI eigenvalue minimization 
problem and a possible approach is to use currently available LMI algorithms to 
alternatingly minimize A(x, y) with respect to x with y fixed and vice versa. See 
Algorithm 1 as follows. 

ALGORITHM 1. Alternating LMI for BMI. 
Fix e > 0. Select some (x (~ y(O)), k := 0. 
Repeat, { 
R1. x (k+l) := argminA(x,y(k)).  
R2. y(k+l) := arg min A(x (k+l), y). 
R3. k : = k + l .  
} until A(x (k-l), y(k-1)) _ A(x(k)y(k)) < e. 

For a number of reasons, Algorithm 1 is not guaranteed to converge to a local 
minimum of A(x,  y), see, e.g. [39, 20]. As an example, consider the BMI problem 
where A(x, y) = max {y - 2x, x - 2y, xy  - 6}. Clearly, (x, y) = (2, 2) gives 
a global minimum. Note that A(1,y) is minimized by y = 1, and A(x, 1) is 
minimized by x = 1, but the non-differentiable point (1, 1 ) is not a local minimum 
of A(x, y). 

A simple approach for the BMI problem which converges to a local minimum 
(under certain reasonable assumptions), based on the Method of Centers of [26, 
15, 27, 7], is now presented. Given the biaffine matrix function F(x ,  y) of (1), 
introduce 

- l o g  d e t [ a I - F ( x , y ) ]  A { a I - F ( x , y ) } > O ,  
Ca(x, y) := ' - (16) c~, otherwise. 

Note that the barrier function Ca(x, y) is convex in (x, o~), and also convex in 
(y, c~). Furthermore, for all (x, y) such that __A{oJ - F(x ,  y)} > 0, r y) is 
smooth and at least twice differentiable, with derivatives given in [20]. A method 
of centers algorithm, Algorithm 2, for the BMI follows. 

ALGORITHM 2. Method of Centers for BMI [23]. 
Fix e > 0, 6 > 0 and 0 E (0, 1). 

Choose some (x (~ y(O)). Set a (~ := 5 + A(x (~ y(O)), k := 0. 
Repeat, { 
R1. (x (k+l), y(k+l)) := arg local min r y). 
R2. a (k+l) := (1 -O)A(x(k+l) ,y  (k+l)) + Oa (k). 
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R3. k : = k + l .  
} until A(x (k-l), y ( k - 1 ) )  _ A(x(k), y(k)) < e. 

In Algorithm 2, the minimization in Step R1 is a local minimization with initial 
point (x(k), y(k)). It may be shown that a (k) > a (k+l) for all k, and under minor 
assumptions on the uniformity of the local minimization, (x (k) , y(k)) will converge 
to a local minimum of A(x, y). 

5. BMI Branch and Bound 

A branch and bound global optimization algorithm which finds an e-global min- 
imum of A(x, y) over the compact hyper-rectangle X x Y in a finite number of 
iterations is now presented. An e-global minimum of A(x, y) is any (2, 9) such 
that A(2, 9) < A(x, y) + e for all (x, y) E X x Y. Much of the following notation 
and terminology is from [5, 4] and the global optimization text [25]. 

Before presenting a branch and bound algorithm for the BMI, it should be 
noted that it is, in theory, possible to establish the global optimum to any given 
tolerence by exhaustively gridding the entire domain. This follows from the fact that 
A(x, y) is Lipschitz over any bounded domain. However, since local optimization 
algorithms are available for A(x, y), a branch and bound approach will generally 
be very much more efficient; provided that given any set Q c X x Y, one can 
calculate a good lower bound for A(x, y) over Q. 

5.1. UPPER AND LOWER BOUNDS 

The objective is to minimize A(x, y) over the domain X x Y. The basic requh'e- 
ment for a branch and bound algorithm for globally minimizing A(x, y) is for tile 
existence of two functions, ~SL and ~u,  on the family of hyper-rectangles of the 
form (8), which X x Y will be partitioned into, such that the following conditions, 
C1 and C2, hold. 
C1. For every hyper-rectangle Q c X x Y, ~L(Q) gives a lower bound, and 

~u(Q) an upper bound, on min A(x, y) over Q, i.e., 
~L(Q) < rain A(x,y) < ~u(Q). (17) - (x,y)eQ 

C2. As size{Q} "~ O, ff;u( Q) - ~L( Q) "~ 0 uniformly, i.e., 
V e > 0, 3 5 > 0 such that, (18) 

V Q c X x Y ,  size{Q}_<6 ~ (~u(Q)-rbL(Q) <e. 
Define the following functions on the family of hyper-rectangles of the form 

Q c X x Y ,  

~u(Q) := local min A(x,y), (19) 
(x,y)cQ 

~L(Q) := min An(x, y, W). (20) 
(x,y)CQ,WCVI2( Q) 
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The function ffL (Q) is well defined, by the convexity of A L (x, y, W) over (x, y) C 
Q, W E 142(Q), and may be computed reasonably efficiently in polynomial time. 
However, the function ~Su (Q) of (19) requires some further clarification. 

Fix Q and suppose (x*, y*, W*) := arg min(x,y)eQ,w~w(Q) AL(X, y, W). For 
the purposes of the proof that the algorithm to be presented will converge in finite 
time, all that is required is for 'I?u(Q) < A(x*,y*). This will be assumed to 
hold, and will certainly hold if '~u(Q) is computed using any reasonable local 
minimization algorithm with initial points (x*, y*). 

ASSUMPTION 1. Fix Q. If  (x*, y*, W*) := arg min AL(X, y, W), 
(~,y)~Q,wew(Q) 

then ff2u(Q) <_ A(x*, y*). 

Of course, in general, it would be expected that flu(Q) be significantly less than 
A(z*, y*). Clearly, for any Q, a reasonable and sound way to compute Cbu(Q) 
will be to use either Algorithm 1 or Algorithm 2, or, first Algorithm 1, and then 
followed by Algorithm 2. 

THEOREM 3. The functions ~u and r L as defined in (19) and (20), on the family 
of sets { Q : Q c X x Y},fulfil conditions C1 and C2. 

Proof. Firstly, Proposition 1 implies that qSv and ~L satisfy condition C1. 
From the inequality A{A + B} < A{A} + A{B} for hermitian matrices, and 

defining vi,j := vi,j (xi, y j ,  W i , j )  = x i Y j  - -  W i , j ,  

A(x,y) <_ AL(x,y,W)+-X 
i = 1  j = l  

=~ A(x,y) - AL(x,y, W) <_ A vi,jFi,j 
i = 1  

- , y ,  J - <  x , 

i = 1  j = l  

where (x*, y*, W*) := arg min(x,y)eQ,wcw(Q) AL(X, y, W), and 
V'* '  * * * ~,3 : =  V i , j  ( X i  , yj , wi, j ). 

From Lemma 2, for scalar B := maxx• II(x, Y)lloo, 

size{Q} < 5 ~ size{l/V(Q)} < 8 ( 2 B + 5 )  

=~ Ivi,jl < 8 ( 2 B + 5 ) ,  V i  E {1, . . . ,n~} ,  V j  E {1 , . . . ,ny} .  

Define A(Q) := Cbv(Q) - CbL(Q). Clearly, A(Q) > 0, and by Assumption 5.1, 
_ A I x *  * A(Q) < A(x*,y*) - L~, ,y ,W*). It follows that 

A(Q) < A vi*jFi, j < max A ~"~"~vijFi~ 
- -  - - i v i j l < 8 ( 2 B + 8  ) | . z -~ ,  z--~, , ,., ' 
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5.2. A BMI BRANCH AND BOUND ALGORITHM 

Given the functions q}u(Q), r and Theorem 3, it is straightforward to adapt 
the branch and bound algorithm given in [5, 4] to yield Algorithm 3. See also [25]. 

ALGORITHM 3. Branch and Bound Algorithm for BMI 
Fix e > 0. Set k := 0, Qo := X • Y, So := {Qo}. 
Lo := r QO), Uo := Ou( Qo). 
Repeat{ .  

i. ~mect Q from S~ such that 

R2. Split Q along its longest edge into Q1 
and Q2. 

R3. F o r i = l , 2 , (  _ 
Compute ~L (Qi). 
If r <_ Uk, { 

Compute r (Qi). } 
} 

R4. Sk+, := { $ k - { Q } }  U {Q1, Q2}. 

R5. Uk+l := min {Uk,minQe&+~ ~u(Q)}.  Lk+l := minQc&+l ~L(Q). 

R6. Sk+ 1 = Sk+ 1 -- {Q:  (I)L(Q) > Uk+l}. 
~7. k : = k + l .  

until Uk - Lk < e. 

In Algorithm 3, Sk is the collection of hyper-rectangles { Q1, Q2, �9 �9 �9 Q~ } after k 
iterations, where k < k. At the (k + 1)th iteration, Q, the hyper-rectangle in Sk 
with the smallest lower bound, ffz (Q) is identified, and split along its longest side 
into hyper-rectangles Q1, and Q2 (Step R2). 

In Step R3, the lower bounds corresponding to Q1, and Q2, ffL(Q1) and 
(T~L(Q2), are calculated. For i = 1,2, if CbL(Qi) <_ U~, Cbu(Qi) is calculated. 

The new partition set Sk+l is formed from Sk by deleting Q and adding Q1 and 
Q2. The new estimates for the upper bound, Uk+l, and the lower bound, Lk+l, are 
then calculated. R6 is an optional pruning step. The procedure then repeats, unless 
it terminates under the condition Uk - Lk < e. 

Note that necessarily, at each iteration k, 
- fori = 1,2,~L(Qi) _> ~L(Q) = Lk in Step R3. Further, if(x*,y*,W*)isthe 

unique solution of min(x,y)cO,wEw( O) AL (X, y, W), then ~L( Qi) = ~L( Q) 
if and only if (x*, y*, W*) E Qi. 
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- for i = 1,2, size{ Qi} _< size{ Q}, and the "volume" of Qi is half that of Q. 
Further, if Q has a unique longest side, then for i = 1,2, size{ Qi} < size{ Q}. 

Broadly speaking, it can be seen that the lower bound Lk will generally increase 
every iteration, and further, Uk is nonincreasing. In fact, for a fixed e > 0, Algorithm 
3 terminates within a finite number of iterations. 

THEOREM 4. For a fixed e > O, Algorithm 3 terminates within a finite number of 
iterations. 

Proof The branch and bound algorithm used is standard, and the general proof 
may be found in, e.g., [25, Theorem IV.3], which gives convergence of the bounds 
Uk and Lk for the case e = 0. It therefore suffices to prove that the general 
requirements for [25, Theorem IV.3] are fulfilled. The termination of Algorithm 3 
within a finite number of iterations then follows since e > 0. 

Firstly, since any hyper-rectangle Q has only nx + ny sides, given any 5 > 0, 

there exists a positive integer N such that the size~" QN} < 5, where {QJ} is 

a sequence of hyper-rectangles succesively split along their longest sides and 
Q1 := ~. It follows that since flu and ffL fulfil conditions C1 and C2, the 
bounding operation of Algorithm 3 is consistent [25, Definition IV.4]. 

Further, since the set to be split in Step R2, Q, is selected to be such that 
ffL(Q) = Lk, the selection operation is bound improving [25, Definition IV.6]. 
The conditions for [25, Theorem IV.3] are therefore fulfilled. 

An example of the performance of Algorithm 3 is given in the next section. It 
should also be noted that if only the BMI feasibility problem is of interest, i.e., if it 
is desired only to find (x, y) such that A(x, y) < 0, then the algorithm is terminated 
if either Uk < 0 or Lk _> 0. 

5.3. ACCELERATING ALGORITHM CONVERGENCE 

Algorithm 3 may be modified several ways to accelerate its convergence, improve 
on its efficiency and to reduce its memory requirements. The pruning of Sk to 
remove hyper-rectangles for which the global minimum cannot occur, has already 
been mentioned. Pruning is not strictly necessary; however, it reduces the number 
of hyper-rectangles under consideration, and therefore the memory requirements 
of Algorithm 3. 

Another refinement is possible in Step R3. If (x*, y*, W*) is a solution of 
min(x,y)~,w~w(~)AL(x,y,W ), and (x*,y*,W*) E Qi for some i = 1,2, 
then '~L(Qi) = ~L(Q).  Hence the computation of a2L(Qi) for that i may be 
bypassed. 

Also, it has been observed that if (x*, y*) is the solution to local min(x,y)~ ~ A(x, y), 

and (x*, y*) E Qi for some i = 1,2, then one may set ~ v  (Qi) = f lu (Q) for that 
i, and bypass the local BMI solver for Qi with minimal effect on the accuracy of 
the upper bound. Hence the computation of fiG (Qi) for that i may be bypassed. 
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Finally, it is noted that the computation of qbu(.) is potentially expensive. 
The authors' computational experience indicates that Ou(.) is most efficiently 
computed by running Algorithm 1 first, and then using the output of Algorithm 1 
as the initial point for a few iterations of Algorithm 2. 

6. Discussion 

6.1. FURTHER REMARKS ON ALGORITHM 3 

The key to Algorithm 3 is the development of the lower bound function OL, which 
exploits the bilinearity of the problem. However, if the geometry of the BMI 
problem is such that the lower bound of (14) is conservative, then the convergence 
of Algorithm 3 will be slow. 

Even though convergence to a global minimum is guaranteed in Algorithm 3, 
it may not be practical to apply the algorithm to obtain complete solutions to even 
moderate sized BMI problems due to the fact that in the worst-case, the number of 
iterations required by Algorithm 3 to provide a guaranteed e-global optimum will 
increase exponentially with respect to the dimensions of the BMI problem, i.e., nz 
and ny. See, e.g. [18]. 

However, it should be noted that Algorithm 3 need not be run to termination, 
and termination after some fixed number of iterations may be sufficient to pro- 
duce significant improvement over local optimization results. Also, as previously 
noted, if only the feasibility problem is of interest, then early termination is also 
possible. 

It may also be noted that the authors' computational experience indicates that 
the global minimum is often found after only a small number of iterations, and the 
remainder of the algorithm is devoted to tightening the lower bound, Lk. 

The geometrical/variational aspects of the BMI feasibility problem are discussed 
in [20]. In particular, the BMI problem was shown to be equivalent to that of finding 
a hyperplane separating a given matrix numerical range (field of values) and the 
origin, subject to the constraint that the hyperplane being generated by a dyad. 
The connection between that viewpoint and the lower bound of Proposition 1 is 
obvious. 

6.2. OTHER GLOBAL APPROACHES 

There are several references in the mathematical programming literature to branch 
and bound methods for biconvex and bilinear problems, e.g. [2, 1, 25], and refer- 
ences therein. Also available is the Benders decomposition (see [ 19] and references 
therein) which leads to the primal-relaxed dual algorithm of [16]. The algorithm 
of [16] is of particular interest. However, it requires closed form formulae for 
the gradients of the function to be minimized, which is unavailable in the BMI 
context. 
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Another obvious approach to the BMI global optimization problem is to use 
multistart methods, e.g. [32]. Various "intelligent" optimization methods may also 
be used. However, unless the underlying structure of the BMI problem is exploit- 
ed, it is doubtful whether these methods will offer any improvement over Algo- 
rithm 3. Finally, one may also attempt global optimization over y alone, i.e., on 
A-(y) := minx A(x, y); since for fixed y, minx A(x, y) may be calculated rela- 
tively efficiently. 

7. A Simple BMI Example 

Consider a simple BMI problem with its its corresponding LMI: 

F(x ,y )  := 

FL(x,y,w) : =  

- 1 0  -0 .5  - 2  
-0 .5  4.5 0 
- 2  0 0 

9 0.5 0 
--{-x 0.5 0 - 3  

0 - 3  - 1  

-10 -o.5 -2  
-0.5 4.5 0 
-2  0 0 

+ x  0 - 
-3 -1 

-1 .8  -0 .1  ] - 0 . 4  
-F-y - 0 . I  1.2 --1 

-0 .4  - 1 0 

-t- x y  -5 .5  3 , 
3 0 

Olo] 04 
+ y -0.1 1.2 1 

- 0 . 4  - 1  

+ w -5.5 . 
3 

The objective is to find the global minimum of A{F(x,  y) } for (x, y) E [ -0 .5 ,  2] • 
[ -3 ,  7]. Note that _P(1,0, 1) = - I ,  so that min-A{FL(x, y, w)} = - 1 .  Also note 
that there are three local minima in the domain, i.e., 3.3886, -0 .4434  and -0 .9565 
given by the points (0.0049,-2.0253),  (0.4436, 4.0174) and (1.0488, 1.4179) 
respectively. 

The global optimization algorithm, Algorithm 3, requires 24 iterations to reduce 
the difference between the minimum upper bound and the minimum lower bound, 
Uk - Lk to within 0.5% of Uk. The e-global minimum was found to be ~ = 
1.0488 and ~ = 1.4178, and U24 = A(:~, Y) = -0.9565.  The best lower bound 
to min(x,y ) A(x, y), 524 : -0.9603.  Figure 1 shows the partitions generated by 
Algorithm 3. The endpoints of the local minimization algorithm, Algorithm 2, for 
each partition are also shown. The progess of Algorithm 3 is shown in Figure 
2. Note that the global minimum is found fairly early, and the remainder of the 
iterations are devoted to tightening the lower bounds. 

8. Summary and Conclusion 

It has recently been shown that an extremely wide array of robust controller design 
problems frequently encountered in a variety of complex engineering applications 
may be reduced to the problem of finding a feasible point under a Biaffine Matrix 
Inequality (BMI) constraint. 
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BMI Branch and Bound 
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Fig. 1. Contour Plot of~{F(x, y)}, with partitions generated by Algorithm 3 shown. Circles 
are local minimization endpoints. 

The BMI feasibility problem may be viewed as a biconvex optimization problem 
for which a local minimum may not be a global minimum. Hence, while local 
optimization approaches (and even methods such as alternating LMIs) often yield 
sufficiently good solutions, it remains important to investigate methods for finding a 
solution that is guaranteed to be a global minimum within some given tolerence. 

The contribution of this paper is that it provides a branch and bound global 
optimization algorithm for the BMI problem that is guaranteed to find a global 
minimum of the BMI problem to any arbitrary tolerence within a finite number of 
iterations. The algorithm presented exploits the bilinear structure of the problem 
and builds on the recent advances in solving convex LMI problems. A simple BMI 
example is included. 
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