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SOLUTION OF SOME STOCHASTIC QUADRATIC NASH
AND LEADER-FOLLOWER GAMES*

G. P. PAPAVASSILOPOULOS+

Abstract. The linear quadratic Gaussian static Nash and Stackelberg two-player games are considered
and completely solved. Necessary and sufficient conditions for existence and uniqueness Of the solutions are
presented as well as the procedure for finding all the solutions. For the Nash game, in particular, it is shown
that if there exists a solution there will exist a solution affine in the information, and that the solution will
be nonunique if (intuitively) the coupling of the information of the two players equals some power of the
inverse of the coupling of their costs. Many interesting dynamic cases with nested information structures can
be reduced to static ones and are essentially covered by the analysis presented.

1. Introduction. It has been recognized that the single objective optimization
problem cannot capture all the aims of a decision procedure. Usually there are many
conflicting objectives that a decision maker has to meet, and.the formulation of a single
objective as a weighted sum of the several objectives is not necessarily the only way to
go. Also, there might exist many decision makers with conflicting objectives who do
not agree on an overall average objective. On the other hand, an existing hierarchy
among the several decision makers in a certain organization should not be ignored
when one creates the mathematical model. Such considerations make game theory a
natural vehicle for studying multiobjective hierarchical decision procedures. In par-
ticular, the so-called Nash and leader-follower (or Stalkelberg) games offer themselves
for studying such situations. For definitions and some properties of these games see
[2], [3]. (See also [13] for some recent results concerning leader-follower games and
their relation to the theory of incentives in economics.)

There are several results concerning Nash and leader-follower games, but there
are still many open problems. In this paper we study, and solve completely the static
Nash and leader-follower games, where the players have quadratic costs and linear
measurements of a random variable which enters linearly into the costs, see (1)-(7).
Several dynamic cases (where there is time evolution), are included in the static
formulation, as long as appropriate nestedness conditions [4] are imposed on the
information of the players. For example, the stochastic linear quadratic discrete time
Gaussian Nash game, where the players share at each stage all the past information
with one step delay, belongs to the class of dynamic games that can be reduced to static
ones. Another example is the stochastic linear quadratic, discrete time Gaussian
leader-follower game, ,where the leader has information only at the first stage, whereas
the follower in addition to having his own information acquires the information of the
leader with one step delay. Although such dynamic problems can be handled by
the methods developed here, we will focus on the static case only. We will nonethe-
less provide in 5 the procedure, which reduces dynamic problems of this type to
static ones.

The only existing results concerning such types of stochastic games are in [6], [7].
There, sufficient conditions for existence and uniqueness of solutions are found by
imposing a contraction assumption. As a consequence, the results of [6], [7], in addition
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652 G.P. PAPAVASSILOPOULOS

to being extremely conservative, cannot answer the important question of how the
interplay among the information and the costs of the players affects the solution.

The structure of the present paper is the following. In 2 we pose the problems
and in 3 we give the complete solution of the Nash game. It is shown that the solution
will be nonunique if some numbers, which are products of even powers of the canonical
correlation coefficients of the information of the two players, are inverses of eigenvalues
of a matrix (R1R2), which represents the strength of the coupling of the costs.
Intuitively, the solution will be nonunique if the coupling .of the information is equal
to some power of the inverse of the coupling of the costs. It is also shown that if there
exists a solution there will exist a solution linear in the information. The way to
construct all the solutions is also given. In 4 we solve the leader-follower game. In
5 we derive a sufficient condition for the existence and uniqueness of a solution of an

equation which is a generalization of an equation playing a central role in 3. A special
case of this condition was presented in [5], but our result, in addition to being more
powerful, is proven in a much easier fashion. This condition can be used to guarantee
existence and uniqueness of solutions of Nash and leader-follower games, if there are
many players and one is not willing to generalize the exact results of 3 and 4 to the
many player case. In this section we also sketch a way to reduce dynamic problems
with nested information to static ones. Finally, 6 presents the solution of a simple
one-dimensional Nash static stochastic game which can serve to illustrate some aspects
of the whole analysis. 7 is a conclusions section. The proofs of two lemmas used in
3 are given in Appendix A and B. Appendix C contains some results concerning an

operator which turns out to be of importance when solving the Nash or leader-follower
games.

In our analysis, we will consider two players only, but generalization to the many
player case is possible.

2. Statement of the problems. Let x :12 R be a Gaussian random variable with
respect to a probability space (iq, , P), which, without loss of generality, is assumed
to have zero mean and unit covariance matrix. Let

(1) Yi fix, 1, 2,

where the Ci’s are real matrices of dimension ni n. The random variable yi :-
generates a minimal sub o--field i of in 12. Let Ui, 1, 2 denote the space of
functions ui:D, R", which are ,-i measurable and for which Ilu,
where the inner product in Ui is defined by

(2) {ui, v}= uiv dP, ui, vi Ui.

U is a separable Hilbert space and u can be considered as a function of y; see [8]. For
a given pair (u l, u)e U x Ua consider

(3) J(u, u.) E[1/2u’u + uIRu+ u’$1x + UOlU+ u;Fx],
(4) Jz(ua, u2)=E[1/2u’2u2+ u’zR.u + u2S2x + uiOua + uIF2x],
where E denotes total expectation, and Oii= 0, Ri, $i, Fi are real matrices of
appropriate dimensions. We want to solve the problems N and S.

Problem N. Find the pairs (u, u2")e U1 x U2 for which

(6) ]2(u, u’)<-J2(u*, u2) Vu2e U2.
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SOLUTION OF NASH AND I.EADER-FOII.OWER (}AMES 653

Problem S. Find the pairs (u *, u) U1 x U2 which solve"

(7)
minimize J1 (/11,/32)

subject to (Ul, /t2) U1 x U2 and J2(/11,/12) <J2(b/1, /2) V/2 U2,

The formalism (1)-(6) describes a two-player nonzero sum, static, stochastic, Nash
game, where player has information yi, chooses u; and wants to minimize J;. The
formalism (1)-(4), (7) describes a two-player, nonzero sum, static, stochastic, leader-
follower game, where player has information y;, chooses ui and wants to minimize J;,
and, in addition, player 1 (leader) decides and announces his decision Ul, first, before
player 2 (follower) decides on u2.

Without loss of generality, we make the following assumption, which is assumed
to hold throughout the present paper:

Assumption.

rank Ci ni, 1, 2.

The formula E[x y;] CI (CiCI)-ICix, will be used repeatedly in the later sections.

3. Solution of the problem N. In this section we solve problem N. For fixed
u2 U2, the problem

(8) minimize J(u, u2), u U1,

is a quadratic minimization problem in the Hilbert space U,,1 {u:D. R "1, u is o
measurable and Ilull < +oo}, which has U as a closed subspace. Use of the projection
theorem yields (9) as a necessary and sufficient condition for ul to solve (8):

(9) Ul+E[Rluz]y]+E[SlX]yl]=O;
see 1 for details. El. y;] denotes conditional expectation. Similarly for fixed u U1,
the problem

(10) minimize J2(u, u2), u2e U2,

has u2 as a solution if and only if

(11) u2+E[R2blllY2]+l[S2x]y2]=O.
Substituting u2 from (11) into (9), we conclude that the study of Problem N is equivalent
to the study of the equation

(12) Ul-R1RzE[E[ullyz]Iy]=R1S2E[E[xlyz]Iyl]-S1E[Xlyl],
on which we will concentrate from now on.

We will need the following lemma.
LEMMA 1. There exist nonsingular square matrices T, T2 so that the matrices

C1 T C1, C2- T2C2,

have the following properties"
(1) CiC =I, C2C2--L
(2)

’I I ’2 221/, C12 C21, C1C2 0 Cl12C221 0

LC2.1 ] 0 0 I
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654 G. P. PAPAVASSILOPOULOS

(3) Ca and C221 have the same dimensions k n and

o
Cl12 221 ". where OU=x/ 1

(4) The dimensions of all the component matrices are uniquely determined.
The proof of this lemma can be found in standard books on statistics [12], where

the elements of CC’2 are called the canonical correlation coefficients of ya, y2 and
algorithms for finding T1, T2 are described. For the sake of completeness we present
a proof of Lemma 1 in Appendix A.

The importance of Lemma 1 for our problem is that since Tg is nonsingular, the
minimal g-fields generated by yg and Tiyg are the same, and thus, we can consider
equivalently that ug is a function of Tiyi. In the following we will assume that C, Cz
have been brought into the form suggested by Lemma 1 (and drop the bars from C, C2).

In terms of the information structure of the game, Lemma 1 allows us to consider
y and yz as normal Gaussian vectors which can be decomposed into independent
components as y (Yl12, Ylll, Y12), Y2 (Y221, Y222, Y21), where Y12 Y21 is the common
information, y, is known only to player 1, y222 is known only to player 2 and yl2,
y221 represent the nontrivial coupling of the information.

Let us introduce the following notation"

(13)
y Cix, Yu Ciix, Yiit Culx,

ei E, yi3, Pi [, yi3, e E, yi13, i, , , 2,

P, Pi, P# and E are projections in the Hilbert space U,. An equivalent interpretation
of Lemma 1 is that, if without loss of generality, we impose E[u] 0 in U,, then
P and P2 can be decomposed into sums of orthogonal projections; i.e., Pa
Pxx +Plx2 +P2, P2 P222 +P22 +P2, where P2 P2, PxP2 0, P222Px 0,
P, xzPzzx PzzPx,2 and Ile22xexx211 IIPxx2P2zxlI a (see Lemma 2). One can verify that
P12 lim (PP2) as n +, Pxa lim (Px(I-P2)), P222 lim (P2(I-P2)), Pxa2
P-P2-Px, P221 =P2-P21-P222 (see [10, problem 96]).

We can write (12) as

(14) u-RRzPPzu Sya,
where

(15) S=RSC&CC[ -SC, S [sl’’ "ls.].
We will construct an orthonormal complete set for U. Let

(16) p,(z) (-1)"
e

d"
e-’

dz
n=0, 1,2,...,

be the Hermite polynomials which constitute an orthonormal complete set with respect
to the Gaussian measure (z); i.e.,

(17) p(z)p(z) d(z)= 0 if n e l,
where

(i8) tz(z) I 1-e dw
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SOLUTION OF NASH AND LEADER-FOLLOWER GAMES 655

(see [9, p. 217]). Let yl (zl,’ ’, zn,)’. Since yl is a normal Gaussian random vector,

(19) {Pk,(zl)Pk2(Z2)’’" Pk. (Zn)}, kl,’" ", kn 6 {0, 1, 2,’" "}

constitute an orthonormal complete set with which we can express every component
of ul, see [11, p. 56]. Let us enumerate this set and denote it by

(20) {PO(yl), Pl(yl),"" "}.
We will assume, without loss of generality, that Po 1, (Pl(yl), ’, Phi(y1))’= yl, and
that as n increases, the power of each component of y in Pn (yl) goes to infinity. Each

can be expressed as

(21) u(y)= Z c.p(y),
n=O

where cn e R" and

(22) y I[cnll2 < +oo.
n=O

Equation (!4) can be written equivalently as

(23) , cnl,,(yl)-RiR2 ., cnP1P2n(yl)=Syl.
=0 =0

We will need the following lemma, the proof of which is given in Appendix B.
LEMMA 2. Let

anl E[pn(Yl)P1PzP(Yl)], an ann.
Then the following hold:

(1) a, a,.
(2) an =0/fn # l.
(3) a, 0 ifp, depends on
(4) an 1 if Pn depends only on y12, or if n O.
(5) If p,(yl)=pn3(y12)’Pm(Zl) "pmk(Zk), where y112=(zl, .,zk)’ then

tx Ix an is independent of/13, 0 < an < 1 and these an’s constitute a sequence
decreasing strictly to zero.

(6) The operators P112P221, P221Pllz, restricted on the domain of the u’s with
E[u] 0, have norm equal to max {ix1,""", Ix}< 1.

Multiplying both sides of (23) by Pn (yl), taking expectation and using Lemma 2 (2)
yields

(24) c-R1R2cnan= 0 otherwise,

or more concisely
f-_

(25) [Co, c1, "]-R1R2[co, c, .]]ao
Io

al 01 =E00lsl00’" .3.
m’lX1

The conditions for solvability of (25) are apparent.
Let us now state formally all the previous analysis, in the form of a theorem.
THEOREM 1. Consider equation (12):
(1) It has a solution if and only if there exist o, cl,’" R" which satisfy (25).
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656 G. P. PAPAVASSILOPOULOS

(2) If there exists at least one solution, then there exists a solution linear in (the
information) y 1.

(3) The general solution, if it exists, has the form
q

(26) Ul Co "- [c 1, Cnl]Y "31- E CakPak (Y 112)(Dk (Y 12) + [Cr/711, Cfflr]( (Y
k=l

where Co, cl, , cnl, cnl, ", cnqsatisfy (24), 1, , q > na, c,, , c,rconstitute a
basis for the null space of (I- R1R2), b and dk are arbitrary measurable functions of y a2

taking values in g and R respectively, E[c 2g] 1, E[c’c < +, and c contains no
af-fine term in yaz (i.e., E[b] 0, E[yle" b’]= 0).

Proof. The proof is immediate from the previous analysis. It need only be pointed
out that the cnk’s will be finite in number since as n increases the an’s which correspond
to Pn(yle) decrease to zero, and RaRz has a finite number of eigenvalues. Co,

c,al,"" ", c,a, are all eigenvectors of R1Re corresponding to the eigenvalue 1. The
appearance of the product Pnk (Yl12)tk(Y12) is a consequence of Lemma 2(5).

The procedure suggested by Theorem 1 for solving (12) is the following.
Step 1. Try to find u =co+LlYl, which solves (12). (coR" and L1 will equal

[Cl, ", cn] see (26).) This is equivalent to solving the equations

(I-RaRz)co=O,

La-RaRzLaCaC (C2C’2)-C2C (CaC
)-1=RaS2C2(CeC’2)-aCeC’ (CICI)-I-s1c1 (C1C1

(Notice that we do not need to find Ci T,.Ci in order to carry out this step. If this has
been done and we use C in place of C then it is easily seen that the two equations above
are equivalent to (25) with n 0, 1,..., 171.) If there exists no such L I, stop and
conclude that there is no solution. Otherwise go to step 2.

Step 2. Solve for Lz the equation

(I-RxRe)Lz=O,
where Le is an ml r matrix and where r is the dimension of the null space of I-RxR2.
Set Uo L2q (y az), where q is any r 1 vector function of y 12, which satisfies E[c’q <
+, E[q] 0, E[yleq’] 0 (L2 will equal [c,,..., c,], see (26)).

Step 3. Calculate the eigenvalues of R are, the/xi’s of Lemma 1, and consider Tyi
in place of yi in accordance with Lemma 1. Check whether for some nonnegative
integers m a, , ink, not all zero/z ,/z k is the inverse of some eigenvalue of
R IR2. This check will stop in a finite number of steps, since/x ’1 tz goes to zero
because at least one of the mi’s increases. Let .../x’ be an inverse eigenvalue
of R1R2 with corresponding eigenvectors ca,’", car. If /xg corresponds to the ith
component of ya12, zi (see Lemma 2 (5)) consider

Ud= ., Ca,pma(Zl)’’’Pmk(Zk)qgak(Yl2),
k=l

and set
Uc Z ua (finite sum),

d

(Uc corresponds to the third term of (26)). Then the solution of (12) is ua uL + Uo + Uc.
It should be noticed that the part of u which depends on y aaa is determined

uniquely and is linear in y a, because every Pn which depends only on Y aa has an 0,
and thus the corresponding cn is either equal to s or 0.
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SOLUTION OF NASH AND LEADER-FOLLOWER GAMES 657

Let us now consider the impact of the possible nonunique solutions for (u l, u2) to
the costs J1, J2 of the Nash game. Let Oij 0, Fi 0, /’. If (u 1, u2) is a solution, then
using (9), we obtain

Thus,

E[u’aR u2] E[PI(u 1R1u2)] E[u’IR1Pl u2]
E[u (-//1 SIPIX)] -E[u’xul]- E[u’Slx].

? (u, u)= -E[u’1//1],
and from (26)

J* (u, u2)-- -1/2{llcol[2 / IIcllz /... / IIc,ll2
/ [Ic 2 /... / IIc ,112 / E[’C’. C]}, where C [c1 c r].

If O12, F1 are not zero, we can again calculate J*. Jl* will have some more quadratic
terms in the ci’s, but it will also include the term E[4,’C’R.Q12R2C&]. It is clear that
in the case of nonuniqueness of solutions, by choosing the cn’s, and b appropriately,
we can vary J*, J*. If O12 and F1 are not set equal to zero, but are chosen so as to
convexify J* as a function of the ci’s and b, then the possibility of arbitrarily small J*
will be ruled out. It will then necessarily hold that C’(-I+2R.O12R2)C>=O (i.e.,
-I + 2R’2012R2 >= 0 on the null space of I-R1R2) and thus player 1 will choose b 0.
Thus, if C’(-I + 2ROlzR2)C => 0, a second level deterministic problem can be intro-
duced where player 1 will determine the c’s to find the best (for himself) out of the
many Nash solutions. Of course additional restrictions will have to be imposed in order
to guarantee the convexity of the second level deterministic problem.

It should also be noticed that Theorem 1 reveals the dependence of the solution
of the Nash game upon the relation between the matrices which determine the
information and the matrices which determine the cost. Obviously only C1, C2, R1R2
have an impact as far as it concerns the existence and uniqueness of the solution.
Nonetheless, the matrices Qij, Fi have an influence in the choice of the best out of the
many Nash solutions when the second level optimization problem is solved and this
influence can be very drastic (see 6).

In Appendix C we present some useful results concerning the operator I-
R1REP1P2, which is obviously of central importance in our analysis.

4. Solution ot problem S. The purpose of this section is to solve Problem S. Our
development will be brief in view of the analysis of 3.

For a given ul the follower solves problem (10), finds u2 in terms of ul (see (11)),
and//2 is substituted in J1 so that the leader has to solve

minimize J(ul) E[1/2ul (I-(R1R2 + R’zRI + R’zOlzRz)Pz)ul
ueU

+ u ($1 + P2(-R 1S2 + RQ12S2- R2F1))x
XtI1st+ 2012S2 S’2F1)P2x]

(27)

To guarantee inful J(ul) > -c, we assume that J1 is convex in ul for//1 Plul, i.e., we
assume that

(28) P1 ->- RP1P2P1,

where

(29) R RIR2 +RR +RO12R2.
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658 G. P. PAPAVASSILOPOULOS

If (28) holds, then ul is a solution if and only if

(30) u RPP2u +P($1 + P2(-R 1..2 -- RQ12S2 R2F1))x O,

which is of exactly the same type as (12) and thus all the analysis of 3 carries over.
The only question pertaining to Problem S in particular is present in assumption (28).
Using (21) and Lemma 2 we obtain the following relation equivalent to (28):

E IIc.112 E c’n(anR)c., VCo, cl,’’" with E IIc 112<
=0 =0 =0

or

(31) a,R =<L n 0, 1, 2, ,
and since ao 1, we conclude that (28) is equivalent to

(32) R<=I.

(32) could have been deduced directly from (28) by allowing u constant, but (31) can
be useful if we decide to restrict u. For example, if u is restricted to being a nonlinear
function of y112, only, then using (B-5) and (37), a weaker condition which will involve
the zi’s, can be substituted for (32).

In light of the discussion above and the analysis of 3 we can easily conclude the
following concerning the leader-follower game:

(i) If R </, then there is a unique solution and it is linear in the information
(since if R < I no inverse eigenvalue of R can be equal to some/x ,1 ,k).

(ii) If there exists a solution there will exist a solution affine in the information.
(iii) If R has some eigenvalue equal to 1 then the general solution of (30), if it

exists, will be of the form l0 + Llya +L2q (y12), where l0 + Lay1 is a solution and the
columns of L2 constitute a basis for the null space of 1- R.

(iv) If (32) does not hold then inf J1 - (since if u c R"I, where (I R)c
&c, & < 0, then J - as Ilcll +).

Solving the leader-follower game is less demanding than solving the Nash game
since the calculation of ,..., txk is not necessary. Of course, one needs to find y2 if
! R is singular.

It is clear that the discussion in 3 about different values of the cost induced by
different solutions, convexification and a second level game, carry over to the leader-
follower game as well.

5. A sufficient condition, extensions to dynamic cases. It is an immediate con-
sequence of the analysis of 3 that, if RaR2 has no eigenvalues in [1, +), then the
Nash problem admits a unique solution which will be linear in the information. This
can be proved independently as a consequence of Theorem 2 below. Theorem 2 is
related to [5, Thm. 1], which is a special case of our Theorem 2. In addition our proof
of Theorem 2 is much simpler than the one given in [5].

THZOrEM 2. Let H be a Hilbert space over the complex numbers and P an
orthogonal profection in H. Let O"H H be a continuous linear operator (P and O do
not necessarily commute) and v an element of H. Then, a sufficient condition that the
equation

(33) POu +Pv 0, Pu u

have a unique solution u H is that there exist a continuous linear invertible operator
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SOLUTION OF NASH AND LEADER-FOLLOWER GAMES 659

E" H -H which commutes with P, and that the following holds"

(34) QE* +EQ* >- I on PH.

If (34) holds, then the solution of (33) is given by

(35) u=P , [(I-E-1Q)P]nI-lv,
n=0

where 6E for any 6 > IIOO*ll.
Proof. The requirement that u solve (33) is equivalent to the requirement that u

solve

(36) PQu PEu +Eu +Pv 0

for some E, as in the statement of the theorem. Obviously, (33) implies (36). Con-
versely, if (36) holds, applying P to both sides of (36) yields

(37) PQu + Pv O,

and (36) together with (37) implies -PEu +Eu 0, i.e., Pu u. (36) can be written as

(38) [I-PEI-E-IO]]+ u +PE-av =0.

A sufficient condition that (38) have a unique solution given by (35) is that

IIP[I E-10 ][[ < 1,
or equivalently

(39) P[E-aO-I][O*E-a*-I]P<-(1-e)I onH,

for some e, 0 < e < 1. Taking into consideration the fact that we can multiply E by any
6 > 0, we can easily conclude that (39) is equivalent to (34).

Condition (34) holds if O O’> 0, is a real matrix, if we choose E eL where e
is sufficiently large and positive. This special case was proved in [5] by more complicated
arguments.

To apply Theorem 2 to the Nash game we first bring RxR2 into its Jordan form,
T-1TRR2 =J andlet u Tul, v= TSyl. If ui is a component of u and pi an eigenvalue

of RIR2, it suffices to be able to invert the operator 1-piPP2. The role of O in
Theorem 2 will be now played by 1-piP2. Taking E to be any complex number
and using (34), we conclude that if pi [1, +c) then the solution of (12) exists, is unique
and linear in the information. (It should be pointed out tharJ does not need to be
diagonal" if a 2 x 2 block of J involves the eigenvalue p and has a 1 in the upper right
corner, then we first invert the 1-pPIP2 associated with the component of u, ui
corresponding to the bottom row of this block and move to the above row in order to
solve for the other component of u, ui-1; the 1 of the Jordan block multiplies ui which
is already known, and so we have to invert 1-pPP2 again.)

Another application of Theorem 2 is in the study of equations of the form

(40) POu + Pv O, Pu u,

where H HI H2@’ (R) Hn, P diag [P1, , Pn ], O is a real matrix, v e H and P
is the projection of H onto Hi. Such an equation will appear if we consider the n-player
Nash game instead of the 2-player game of 2. It will also appear in the study of
dynamic linear quadratic Nash games with noisy linear state measurements, a discrete
time evolution equation and appropriate nestedness conditions (see [4]) on the infor-
mation of the players. Application of Theorem 2 to (40) yields that if there exists a real
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660 G. P. PAPAVASSILOPOULOS

matrix E diag [El, , E. ], Ei’Hi "-> Hi, Ei, with

(41) EO* + OE* > 0,

then (40) admits a unique solution. Of course, if the Hi’s admit Hermite polynomials
as a complete set of orthonormal eigenvectors, one can follow a procedure identical to
the one of 3, but the formulae derived will be quite complicated. Finally notice that
if n 2 and

then (40) represents another way of writing (9) and (11). Application of the condition
(41) is possible, but the result will be weaker than the one derived by first transforming
(12) into its Jordan form and then applying Theorem 2.

In the rest of this section we will show how some dynamic problems can be reduced
to static ones (see also [4]), and how one can solve them. Let

x,+a A,x,, +Bu +B2u2 k=0, 1,...,N,

Yk Ckx +v, 1, 2

i’ i]Ji(Ul,//2) E XN+I[ 3v E XkON+IXN+I kXk nt- bl kU k "nt- u R ,u
k=O

i,/= 1, 2,

Xo, wk, v k are independent Gaussian random variables with nonsingular covariance
i’ >O, Riimatrices. The real matrices Qk Q, k, Ak, B ,,Ck have appropriate dimensions,

kxR",u6R ,yR andui=(u ),.o, Ul, uk Player 1 chooses u as a function
2of (yo,y,"’,y,yo, .,y,_), and player 2 chooses u as a function of

(yo, y-l, yo, y). Using the evolution equation, we can express the Ji’s as
2quadratic functions of x0, wk, v, u, u k and the y’s as functions of Xo,

WO Wk-l V V /) V -1 and u ,. , b/k-l /go b/k-1. Because of
the nestedness of the information we can do away with the presence of the u i’

lS
0=< l-<_ k 1 in the expression for y, and similarly for y Let X (Xo, WO, WN,

2 v2u). We have thus transformed our problem into the following"V0 VN V0

Jl(Ul, u2)= E[ulQllUx + uIgl2u2 + blISlX -b b/O12U2 +- u’zF1x + x’LIX],
J2(ul, u2)= E[uO22u2 4- uR21Ul + uS2x + u(21u1+ UlF2X +x’L2x],

YlO CloX, Yll CllX, YlN C1NX,

Y20 C20x, y21 C21x," ", Y2N C2NX.
Let

Plk =El’lYe,"’", y,, yg,’"", y#_,],
P2k El’ lYe,.""’, Y#k-1), yo2, Y:],

P1 diag [P,o, ’, PN], P2 diag [P2o, ’, P2N].
(PIIcPzl P2I, P2IcPll Pit if <_- k 1 and Pad,Pat Pt, PzkPzl Pzl if <_- k.) If we are
interested in the Nash solution we can write down the analogues of (9) and (11), which
can be viewed together, as an equation of the type (40). We can thus either apply a
generalization of the analysis of 3 or settle for less and use Theorem 2. (If we are
interested in the leader-follower solution, we have to assume that y 0 for k -_> 1.)
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SOLUTION OF NASH AND LEADER-FOLLOWER GAMES 661

6. Example of a Nash problem. In this section we will solve a one-dimensional
Nash problem. Let

yl xl, y2 xl + ax2.

xl, x2 are normally distributed, independent Gaussian random variables and a # 0. Let
0 be the absolute value of the correlation coefficient of ya, y2, 0 (1 + a2)-a, 0 < 0 < 1,

Ja(ul, u2) E[1/2u + rlulu2+ ul(slxl + s2x2)+1/2quZ2 + u2(hxxa + hzx2)],

(u, u) E[gu2 + rulu2+ u2(s21xl + s2x2)+q2u + uz(t2xxa + t22x2)],
where r, sq, q are reals. (12) assumes the form

(42)
where

0 rr2, s ra(s2 + as22)- Sl.

Let u ,=0 c,p, (ya), where the p, are the one-dimensional Hermite polynomials
(see [9]), and c] <+. A straightforward application of Theorem 1 yields the
following. Consider the equations for the c’s,

c,(1-p0)
if n 0, 2, 3,....

If:
(i) 1 00 ", n 0, 1, 2,..., then the solution exists, is unique and is given by

u(yx)=s(1-pO)-ay.
(ii) 1 00, but O0"= 1 for some n =0, 2, 3,..., then the solution is ua(y)=

s(1-00)-ya + cp,(ya.), c arbitrary and real.
(iii) 1 pO and s 0, then the solution is u (ya)= lya, is arbitrary and real.
(iv) 1 pO and s 0, then there is no solution.

If 1 =p0 for some n 2, then case (ii) holds and an easy calculation shows that

Jx c2[-1 +qOr + constant,

since 0"= 1/(rlr2)>O. We conclude that if r/r>q player 1 can make his cost
arbitrarily small or sufficiently large c. If r/r2 < qa he will do well to choose c 0. If
both rx/rz<qx and r2/r <q2, hold then both players will agree on c =0 (or on c
sufficiently small if ra/rz > qa and r/r > qz). If r/ra q, then player 1 does not care
about c. Conflict will arise about the choice of c if r/r2 > q and r;/ra <q2, in which
case player 1 will want c as big as possible whereas player 2 will want c 0. If player
1 is faster than 2, he calculates his u through (42) first, realizes the possibility
choosing c arbitrarily and by declaring his decision he forces player 2 to use (11) to
find his decision and thus player 1 imposes his choice of c. Therefore, the case of
nonunique Nash solutions carries hidden in it the concept of the leader-follower game.
Finally, notice that if J is convex in u a, u2, i.e., q r, since fir2 1/0> 1, then we
obtain 1/rz<ra and thus r/r2<r Nq, i.e., q ra/r2; therefore player 1 will prefer
c 0, in agreement with the fact that the convexity of J cannot permit it to go to -m.
Nonetheless, it might very well be that ra/r < qa < r in which case player 1 will again
prefer c 0, although J is not convex in ua and u2, i.e., he cannot make J arbitrarily
small although J is not convex in (u, u2). This situation is due to the fact that what
matters is the convexity of J in ua Pu, u P2u2, i.e., convexity on some subspace
and this convexity is guaranteed by qa > r/r2.
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662 G.P. PAPAVASSILOPOULOS

The condition 1 pO", i.e., 0 correlation coefficient of yl, y2 (rlr2) -n, is critical.
rlr2 can be interpreted as the coupling of J, J2, whereas 0 is the coupling of the
information. We can thus interpret the condition 1 pO, as saying that if the coupling
of the information equals the inverse of some power n 1 of the coupling of the costs,
the solution will be nonunique.

7. Conclusions. Here we will point out several directions in which the analysis
presented can be generalized, or problems which suggest themselves for study within
our framework.

The second level problems that have to be solved in the case of nonunique
solutions, as discussed at the end of 3 and 4 are of definite importance. In the Nash
case, J* is a quadratic function of the ci’s (we set 4 0) and the constraints on the ci’s
are finite, since the ci’s involved are finite in number. Thus player 1 is faced with a
classical quadratic deterministic optimization problem subject to linear constraints.
Although it is an easy problem, it merits special attention because it will provide the
best Nash decision to player 1.

To generalize our analysis to the many player case one needs to extend Lemma 1
and Lemma 2. One can go one step further and allow different components of U to
have different information or even more, one can study equations of the form
PQu +Pv 0, where P diag [P1, P ], Pu u, P diag [P1," Pk ], where Pi, Pi
are projections. Such extensions are important in order to be able to handle dynamic
games with nested information structures (although conceptually they are covered by
the methods presented here).

Another interesting problem whose study lies within the capabilities of the.
methods presented, is the one where one leader is followed by two followers, which
followers play Nash.

Appendix A: Proof of Lemma 1. Let R (C) denote the range of a matrix C. All
bases to be mentioned are orthonormal. Let the rows of C2 C21 be a basis for
R (C) fq R (C.). Let the rows of (1 be a basis for R (C) fq R (C)+/-. Let the rows of
222 be a basis for g (C)- f’) R (C). Choose ffxx2 so that its rows together with those
of C1 and Cx2 constitute a basis for R (C). Choose C22 so that its rows together with
those of ff222 and ff21 constitute a basis for R (C&). This construction proves (1), (2) and
(4). Let us concentrate on Cl12, C221, which we will denote by D1, D2. If D1 is kl n,
DE is k2n and k k2, let k > k2, without loss of generality. Then there are
nonsingular square matrices L1, L. so that LDD.L will have its last row equal to
zero, which means that the last row of L1DI is an element of R(D) perpendicular to
R (D&) Such elements, nonetheless, were put in R -’(C and thus k cannot be strictly
greater than k2. Reversing the roles of kl and k2 we conclude that kl k2 k and that
DD is a square nonsingular matrix. Let A be the diagonal Jordan equivalent of DID,
i.e.,

(DID’I U UA,
where U is the matrix of the orthogonal eigenvectors. Let M be the diagonal Jordan
equivalent for which

(A-1/2 U’DD; (D2D;)-ID2D UA-1/2) V VM,

where V is the matrix of the orthogonal eigenvectors. Let

/1 V’A-1/2 U’D1,

12 M-1/2 V’A-/2U’DD& (D2D. )-ID2.
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It can be verified that

11 L 21’ L 1 M/2,

so we can use Da,D2 for Ca2, C221. R (D) andR (D2) have no common elements, since if
they had one, it should have been placed in R(z) from the beginning. M is diagonal
has positive elements, and each //is the product of two nonidentical unit length
vectors (rows of 3, 32). Thus 0 < 4//< 1. 71

Appendix B: Proof of Lemma 2.

ant EEp.P,Pp] E[pP2ff/] E[(Pzp) fill aln,

since Pi is self-adjoint and Pp. p.. p. and pl have the form

Pn (Yl) Pn(Yl11)Pn2(Y112)Pn3(Y12),
//(Yl) h(Y111)12(YII2)I(Y12).

Using the independence of some of the components of y, ye, we have

ant E[n(Yx)VxV2t(Yl)]
E[/ (y)Pp/(y 1)]

--E[n(Y1)E[ffll(YIII)12(YII2)ffI3(YI2)[Y2, Y22, Y222]]
=E[P,,(y1)P(ya2)E[pll(y11)P:(ylI2)Iy1:z, y2zl, y22]]
E[/:3,, (y 1)/13(Y 12)E ffh (Yll )//z(Y 112)I y22]3

(B.1) E[pn(Y1)fi13(Yxz)E[E[fi11(Y111)ffl_(Y112)[Y221, Y11211
E[n(YI)l(YI2)E[2(YII2)E[h(YII)IY22,
E[n (y 1)/:33 (y 12)E i0t(y 12)E[ p/x (yx 1)] Y221]]
E[n(Yx)" 13(YI2)E[PlI(Y1)]" E[ffl2(Yx2)] Y22]]
E[Pnl(yl)P.(yz)P.(yz)P(yz)E[P(y)]. E[P(y12) yzz]]

E[P1(y111)]’ E[pl(Yl)]" E[P.(YZ)Pl(Y12)]" E[P.(Y12)E[pl(Y112)IY2z133.

It holds that

(B.2)

Let

E[p,(y11)] { 0 if n # 0,
1 if na =0,

E[/3,,3(y12)//3(y2)] ] 1
if n3#/3,
if n3 13.

10n2(Y112) Prnl(Z1) Prn (Zk),

i0/2(Y112) psx(Z1) Pst (Zk),

where ),’112 (Zl," Zk)’. Let Y221 (WI,’
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664 G.P. PAPAVASSILOPOULOS

Since zi depends only on wi and vice versa (Lemma 1, (3)) we have

E[psl(Za)’" psk(zk)lwl,’’’, wk]
=E[E[p(z). p,,(z,)lz, w,.. ., w,]lw,.. ., w,]

=E[ps(zl)E[ps2(z2)" ps,.(z,)lz, w," w]lw," w,]
=E[ps(Zl)[Wl]" E[psz(Zz)" ps,(z)[w2," ,.Wk]

[pzlw]. [pzlw]. E[psZ,,lw,,].
Therefore,

(B.3) =E[pm(Za) pm,(z,)E[Psl(za)lw,]" U[ps.(z,)lw,]]
E[p,(za)E[Psl(Zl)lwa]]’’" E[p,,(z,)E[p,,(z,)lw,]].

Since E[zaw]=/--, E[ps(zl)[w] will be a polynomial of order sl in w and
the leading coefficient of this polynomial will be the leading coefficient of
multiplied by (/-)sl. Similarly, E[E[ps(z)[wl][z] will be a polynomial in za of
order s a, with the leading coefficient of ps multiplied by (/--)2. Thus

$1E[E[p(z)lwl]]z] tz ps,.(z)+ Hermite polynomials in z of order strictly less than
s x. Thus we conclude that

E[p,,(zx) E[p(zl)[ w]]= E[p,,.,(z)E[E[ps(zl)l w][ zl]]

j" 0 if s < ml,

if ml s.
Since E[p,(zx)E[ps(z)] wl]]=E[ps(zl)E[p,,,(z)l wx]], we conclude that

(B.4) E[p,(zx)E[ps(Za)l w.]]= {
From (B.3), (B.4) we now obtain

(B.5) E[p,.,(yxxz)E[p2(ylz) yzza] t
Equations (B.1), (B.2) and (B.5) prove (2)-(5).

if n2# 12,
if n2 12 and
Pn2(Yl2) pm(Zl) Pm, (Zk).

Let us now prove (6). To find IIP112P22111 we will calculate P112P221u. U can be
restricted to depend only on yl12 and thus u n= cnp(yx2), where ,__a
(Co 0 so that E[u 0).

[P112P221u[[ E[(P112P221u)’ P112P221u]
E[u’. PzzlP2P22au]

E CClE[p.(y1z)P22,PePzzxP,(y12)]
n,ll

CnClanl.
n,ll

An argument similar to the one used before shows that 8,1 0 if n # l, and if n l,

m 2ink 2nn an an.
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SOLUTION OF NASH AND LEADER-FOLLOWER GAMES 665

Thus, IIP1a2P221u[I2 En_-i IIcll2a 2 Also

Ilu[I= E c’c,EEO., p,]= E IIcll,
n,l>--I n=l

and therefore

IIPl=P=ull 27=111cnll=a
Ilull2 Y=xllcll2

Obviously IIP:P::ll=supa,. and since a. decreases, because 0</xi<l, we
conclude [IPlP:ll=max{,..., } a. For reasons of symmetry, IlPPll
max{a,..., }=IIPI:PII.

Appendix C: The operator I-RPPz. From the analysis of 3 it is obvious that
if instead of having to solve (14) we had to solve

(c.) (I nele)u v,

where v Ua (and thus v Ei=o diPi, C R m, E IIdll2 < +), we would end up with the
equivalent system of linear equations

(C.2) (I aR )ci di, O, 1,. ..
If (C.1) has a solution Co, c,. , with ci e Nm then

u E cp, E c < +,
]=1

is a solution of (C.2). Therefore the R’s for which I-RPPe is invertible are those
which do not have any of the 1/a’s (for an 0) as eigenvalues.

To find II- RPlell, let u 2o c0. Thus Ilull
[I(I-RPP)ull E[u’u + .’R’RPPP. 2u’neP:u]

E
n=0., c’ (I a,,R (I a,,R)c,, < 2 Ilcn = sup IlI- a,,R ,
rt=0

and obviously III-RPP:II-sup,IIZ-a,RII. If (z-ee- exists, to find II(I-
ReP-II, let v EodP, llvll= Eolldll=<+, Then (I
2o(I aR)-ldpp ECoCp.,ll(I-RP1Pe)- [
(I a.R)-d.. Thus [[(I RPP)-[[ sup. I1(I- aU)-l, (It is easy to see that if
(I a.R)- exists for all a., then sup.

Let us formalize this discussion into a proposition._
PROPOSITION 1.
(1) spectrum (RPxPe) {a.r; r eigenvalue of R, n O, 1, 2, .}.
(2) I[I- RPxPeII sup. III- anU[I.
(3) (I RPIP)- exists, if and only if 1 # a.r for all n and then II(I- RPP)-I[

supn II(I a.R)-l.
We can use (3) in the case where we have to solve for u the equation (I RPIP)u +

f(u)=v, where I[f(u)-f(a)llLllu-a[ and f:UlU, vU. If L<
inf. [[l(I-a.U)-ll-] the contraction mapping theorem is applicable and yields
existence and uniqueness of a solution. Equations of this form can arise when the cost
J is nonlinear in Ux, u.
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