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Abstract

A distributed asynchronous algorithm for minimizing a
function with a nonstationary minimum over a constraint set
is considered. The communication delays among the proces-

sors are assumed to be stochastic with Markovian character.
Conditions which guarantee the mean square an most

sure convergence to the sought solution are presented.

1 Introduction

The recent emphasis on parallel processing is motivated
by the compelling need to accelerate computations when
solving large dimensional problems in which great memory
storage and immense computation capabilities may hinder
the performance of centralized algorithms. A number of pro-
‘cessors are utilized that operate simultaneously in a collabo-
rative manner on several subproblems decomposed from the
original one. To further amend the enhancement of perfor-
mance, the processors are permitted to communicate asyn-
chronously such that little coordination of communication
is maintained. It is shown that dispensing with the synchro-
nization points at the end of each iteration induces.improved
efficiency, load balancing among processors and reduction of
processor idle periods [4, S, 8]. .

In this paper, we study asynchronous algorithms with
stochastic delays that solve minimization problems with
time drifting minimum over a comstraint set. The plau-
sibility of the notion of stochastic delays stems from the
fact that it models the case of an unpredictable delays in
the communication among the processors and therefore ad-
dresses various reliability aspects [2]. Constrained optimiza-
tion problems are prevalent in actual applications, where the
riature of the problems solved necessitates imposing natural
conditions. Other cases are when the designer often wishes
to confine the acceptable values of processors’ iterates to
lie within a certain region in order to further prevent the
processors {rom straying away from the correct solution.

The paper is organized as follows. In section 2, we de-
scribe the model of asynchronous iterations for constrained
minimization problems under conditions of time drift. We
provide convergence conditions and analysis of the proposed
models in section 3. These conditions guarantee also con-
vergence for the case when the problem is time invariant.

2 System Model

We employ a model of n processors working asyn-
chronously on minimizing a function F(t,z) subject to z €
Q. The minimum z°(t) is nonstationary, i.e., changes with
time t. We assume that the function F(t,z) is continuously
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differentiable and that the constraint set Q is nonempty,
closed, convex and does not depend on time. Assume that
the motion of the minimum is characterized by the known
nonlinear function R(t,z) such that

z*(t +1) = R(t,z°(t)), (i)

and the initial value z°(0) is unknown. Knowledge of the law
describing the drift was assumed by Dupac [7] and Tsypkin,
Kaplinskiy and Larionov [17]. It, therefore, becomes appro-
priate to utilize this prediction defined in equation (1) in
the formulation of the minimization algorithms.

We assume that the set Q is a Cartesian product of lower
dimensional subsets Q.. This entails that the projection of
z on-the set Q is equivalent to the projection of z; on the
set Q; for all 1 which lends itself naturally to parallelization.
Consequently, each processor projects independently on its
constraint set. We let Q; C R"™¢, where z.-sl n; = N and
allow each processor i to update z;(t). We denote d;i(t) as
the delay incurred by transmitting a message from processor
J to processor i at time t. We let the communication delays
{d;i(¢)}, for all § and s, be stationary Markov chains with

state space .
' S={1,2,...,B},

where B is the maximum allowable communication delay for
the transmitted messages. We let the probability transition
matrix corresponding to dji(t) be Pj; = (pji(l, m)), where

pii(l,m) = Pr{di(t) =m |d;i(t-1) =1},  (2)

fori,m = 1,2,..., B, where here and in the sequel Pr{C}
denotes the probability of event C.

As was done in Beidas and Papavassilopoulos (2], we uti-
lize the vector y*(t) that summarizes the information avail-
able to each processor due to the presence of the communi-
cation delays, i.e.,

' z1(t + 1 — dyi(2))
y'(t)= : 3
za(t+1 = dni(t))

Assume that instead of computing the gradient, the proces-
sors are only able to obtain a noise corrupted version of it.
The asynchronous gradient projection algorithm proceeds as
follows. Processor s evaluates a gradient iteration, projects
back onto the set Q; using the unique closest Euclidean dis-
tance and assumes this value as its new update.

E(1) = Rty () - 1T F R (1) +G(0)
st +1p = fE(t+1)], )
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where )
Wifz] = min [l - =]I ®

Namely, the projection operator when applied to the point
z is the point in the constraint set that minimizes the Eu-
clidean distance to z. Convergence is studied with the use
of the Lyapunov function defined as the squared norm of
the distance away from the desired minimum, i.e.,

Vit 2) = glle - 2Ol ®

wher= hers and in the sequel || - || is the Euciidean norm.
Let Z; define the previous informatioa of tie algorithm uatil
time ¢ such that

T = { d;i(7),¢i(r), for r < t and j,i= 1,...,n}. (7)

T, includes the initial condition information. We note that
zi(t) is uniquely determined by the random variables defined

by I(.

The basic assumptions are introduced, the form of which
is expressed in terms of y'(t) which is the information avail-
able to each processor. This permits the individual verifica-
tion of the basic assumptions by the various processors. It
is important to note that the ability of such verification is
an intrinsic property of asynchronous iterations.

Basic assumptions:
1. There exists deterministic positive K1(t) such that for
- all i,-.we have : o
E [ (#i(8) = i (@) (VeF(t v’ (0) + GO) | T |
> KE[I'®) -z IT]. - (8)
2. There exist deterministic nonnegative K2(t) and Kj(t)
such that for all i, we have
E[IV:F(t, ')+ GOIP 1 T ] |
< Ka()+ Ks(E[ V') -=z"¢+DIP 1T ].

)]
3. There exist nonnegative a(t) and ﬂ(t) such that
(1 +a(@®)ll=(t) = ="l
< IRt =(1) = R(t, z" ()]
< @ +B()l=(t) - ="l
(10)

4. For the initial approximation, we have
E||lz(0) — z°(0)||* < o0 and [|z"(0)]| < 0. = (11)

Given the previous history of the algorithm, inequality
(8) requires that the expected direction of =VF(t,y'(t))
is one of decrease with respect to the Lyapunov function
V(t,y'())- Inequality (9) imposes growth conditions on the
update V;F(t,y'(t)) and the noise. The inclusion of K2(t)
in inequality (9) is indicative of the presence of additive
noise with variance that is not necessarily finite.

3 Convergence Analysis

We formulats the main converg-uce results of procese (4).
Let us denote ,

ot) = (1+B8(1) + 7 ()Ks(1)(1 + A1)
=27() K1 () (1 + (1))*. - (12)

For a closed and convex set Q;, the projection operator
has the following properties, '

(z - Wilz])(y - mi[z]) <O

lili{z] - Iy} < =~ vli
The analysis is carried out by utilizing the second property
of the projection operator II;[ - ] which allows the Lyapunov
function defined by equation (6) to maintain a supermartin-
gale and hence the convergence is retained as in the noncon-
strained case established by Beidas and Papavassilopoulos
[2]. Therefore, since z;(¢+ 1) is an orthogonal projection of
Zi(t +1) on Q; and since z(t + 1) € Q; then

llzi(t +1) - zi (¢ + 1)l
< Rty () - Ri(t,="(1))
—(&)(ViF(4, Ry (D)) + G (14)
This enables the nusual Lyapunov argument to be exploited

to reduce the error defined in equation (6) and shaping this
error equation to fit the form of an easily manageable vector
inequality.

We also note that a sequence v(t) of random variables
converges to a random variable v almost surely if

Pt{ 'l_i-n;u(t) =v } =1. : (15)

forall y € Q:

(i3
for any z, y

.Theorem 1 Consider the sequence {zi(t)} generated by
equation (4). Suppose that the cost function F(t,z) has a
unique minimum at £ = z°(t) € Q for any t. Let the basic
assumptions (1) - (4) be satisfied. In addition, assume that

1) g(t) < oo, q(t) 20,

t=0

2. iﬂ(t)k o,

t=0

3. Y IR O < oo,

t=0

4 ) 7T (t)Ka(t) < oo.

Then for every initial condition the sequence {zi(t)} con-
verges to z{(t) € Q: in the mean square and almost surely
for each i.

Proof: Subtracting z;(t+ 1) from equation (4) and taking
norms, we write

=it + 1= =i ¢+ DI |
A2 IR 5 (6) = 7(O(TiE (ROt 5(0) + G(O)]

~Ri(t, =" (I
‘ (16)
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Using the properties of the projection operator and recalling
the fact that z;(t) € Qi, we write

lzi(t +1) =i (e + DI
< R ¥'(1) - Ritt, =" ()P
+7 (OIVF (e r(t, 9" (1)) + GO
= 29(1)[Ri(t,¥' (1))
= Ri(t, =" ()] (Ve F(t, R(t, ¥ (1)) + Ci(2))- (17)
Here, we notice that applying steps similar to those of the

proofs contained in Beidas and Pagpavassilopnulos [2] yields
the reguired result.

Q.E.D.

It is worthy of mention that convergence in the mean
square requires a weaker version of condition 4. which can
be replaced by lim¢—oo v?(t)K2(t) = 0.

Next we cover different cases of the projection operator
as the constraint set Q; takes more specific forms.

Example 1 .
Let the set Q; consist of simple constraints such that

Qi ={zi:z; 2 0}.

In this case, the asynchronous gradient projection algorithm
is described as

zi(t+1) = ‘ v
max{0, Ri(t,y" (t)) = 7(¢)(ViF (¢, R(t,9'(1))) + G(t) }-
(18)

Example 2

Let the set Q; consist of upper and lower bounds such that -

Qi = {zi:ai <zi < bi},

where a; and b; € R™. In this case, the asynchronous
gradient projection algorithm takes the form of

ai Zi(t+1) <a
zi(t+1) = bi o Zi(t+1) > b

Ri(t,y'(¢)) = (t)

- (ViF(t, R(t,¥'(1)) + Ca(t!) othcrwise(lg)

4 Conclusion

We studied the behavior of distributed asynchronous iter-
ations with stochastic delays that solve optimization prob-
lems with nonstationary minimum over a constrained set.
For the purpose of confining the iterates to the constraint
set, each processor evaluates a gradient iteration and then
projects back its iterate independently of the other proces-
sors. This procedure guarantees that each iterate generated
by the algorithm is contained in the constraint set. The
analysis that establishes the sufficiency conditions required
to guarantee mean square and almost sure convergence is
based upon utilizing a Lyapunov function given by equation
(6) and using properties of the projection that maintain its
supermartingale property and, finally, showing that the ad-
verse effects possibly inflicted by the communication delays

are negligible.
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